
A Framework for Managing
Cloned Product Variants

Julia Rubin§∗ and Marsha Chechik∗
∗University of Toronto, Canada
§IBM Research at Haifa, Israel

mjulia@il.ibm.com, chechik@cs.toronto.edu

Abstract—We focus on the problem of managing a collection
of related software products realized via cloning. We contribute
a framework that explicates operators required for developing
and maintaining such products, and demonstrate their usage on
two concrete scenarios observed in industrial settings: sharing of
features between cloned variants and re-engineering the variants
into “single-copy” representations advocated by software product
line engineering approaches. We discuss possible implementations
of the operators, including synergies with existing work developed
in seemingly unrelated contexts, with the goal of helping under-
stand and structure existing work and identify opportunities for
future research.

I. INTRODUCTION

Software Product Line Engineering (SPLE) promotes strate-
gic, well-managed software reuse [1]. In reality, however,
products are developed ad-hoc, often using artifact cloning (the
“clone-and-own” approach). Over the past decade, there have
been individual attempts to propose solutions for dealing with
cloned product variants. Some [2], [3] advocate refactoring
such variants into software product line (SPL) representa-
tions (the product line merge-refactoring). Others [4], [5]
propose efficient mechanisms for managing multiple variants
without attempting to refactor them. The latter approaches
are particularly important in light of our earlier exploratory
study [6] which shows that organizations sometimes prefer
to stick to cloning due to its simplicity, availability and
developer independence. Despite numerous isolated solutions
aiming to assist the practitioners in developing, maintaining
and refactoring collections of related software products, this
task is still challenging [6] and many gaps remain.

Inspired by an empirical analysis of realistic scenarios
observed in industrial settings [7], this paper makes the
following contributions. It (1) identifies the basic operators
required for managing collections of cloned product variants
(Sec. II); (2) demonstrates the applicability of the operators
for addressing real-life scenarios (Sec. III); and (3) discusses
possible implementations of the operators, including synergies
with relevant solutions developed outside the SPLE context,
and identifies remaining gaps (Sec. IV). The main goal of this
paper is to structure existing work designed for or applicable
to managing cloned product variants and to provide an agenda
for future research.

Example. We illustrate the presented operators and scenarios
on a “toy” example of a set of related products realized
via cloning, taken from [8]. Fig. 1 depicts four transition

pay soda serveSoda open

close

change take
1 2 3 4 5 6

7

(a) Soda.

pay
soda serveSoda

open

tea
8

serveTea
close

change take
1 2

3 4
5 6

7
9

(b) Soda and Tea.

pay soda serveSoda open

cancelreturn close

change
take

1 2
3 4 5 6

7
89

(c) Soda with Cancel.

soda serveSodafree

take
2 31

4

(d) Free Soda.

Fig. 1. Vending Machine Variants.

systems corresponding to four beverage vending machine
variants. The basic one, in Fig. 1(a), accepts payment, returns
change, selects and serves soda. Then it opens a compartment
allowing the user to take the drink, and, when taken, closes the
compartment. A variant of this machine serving either soda or
tea is shown in Fig. 1(b). It allows the user to choose the drink
and then serves it. Yet another variant, in Fig. 1(c), allows to
cancel the purchase before selecting the drink and returns the
paid amount. The last, in Fig. 1(d), offers free drinks, and does
not open or close the beverage compartment.

II. NOTATION AND OPERATORS

FS

fs1

fs2

fs3

FR

A
rt
if
a
ct

Fe
a
tu
re

Tr
a
ce

System

FE

Fig. 2. Notations.

We define a product as a well-
formed set of artifacts, such as
code statements and model ele-
ments. A product’s artifacts im-
plement features. Inspired by Ra-
jlich and Chen [9], we represent a
product feature as a pair consist-
ing of a feature specification (FS)
– a label and a short description
that identifies the feature, and a
feature extension (FE) – a subset of product artifacts that

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1233

realize the FS (see Fig. 2). A FS is traced to the FE that
realizes it. Features can have relationships (FR) with each
other, e.g., one feature can require another in order to operate.
Finally, a system is a set of features (FSs traced to FEs) and
relationships between them. A single system can correspond
to an individual product or a set of related products (an SPL).
In what follows, we use these notations to define a set of
basic operators required for managing a collection of cloned
products (see Table I).
findFS returns a set of feature specifications, i.e., <feature

name, description> pairs, realized by the given product. For
the vending machine in Fig. 1(b), the FSs include <soda, sells
soda>, <tea, sells tea> and <pay, allows to pay for the drink
being purchased>. To save space, in this paper we omit either
the name or the description of a given FS, if clear from context.
findFE, commonly known as feature location, returns a FE

of the given FS – the traced set of artifacts that realize the input
FS. The exact form of the detected FE depends on the goal of
feature location: e.g., “detect the artifacts that contribute only
to the feature of interest” or “detect all artifacts required for
the feature to be executable (including the main method of a
program)”. We declaratively represent this goal using the input
property that specifies inclusion and exclusion conditions for
the feature location process. For example, transitions 1 and 2
of the vending machine in Fig. 1(b) realize the pay FS w.r.t.
the property which disregards transitions contributing to other
features, such as soda and tea.
require? determines whether feature f1 requires feature

f2 from the same product in order to operate. The input
property captures the nature of the require dependency.
Such a property can express simple dependencies such as “f1
requires f2 in order to compile”, or more complex behavior
dependencies. For our example in Fig. 1(b), the soda feature
requires the pay feature w.r.t. the property “soda is served
only after a payment is received”. The operator returns a set
of witnesses, each demonstrating the require relationship
between the artifacts of f1 and f2 (or none if the features
are independent). In the example above, a witness is the flow
between the pay and the soda features: transitions 1 and 2,
realizing the first one, precede transitions 3 and 4, realizing
the second.
agree? determines whether feature f1 of product1 is con-

sistent with feature f2 of product2, i.e., whether there are no
disagreements in both the specifications and the extensions of
the two seemingly equivalent features. For the four products in

TABLE I
OPERATORS FOR MANAGING CLONED VARIANTS.

Operator Input Output

findFS product set of FSs

findFE product × FS × property FE

require? <f1, product> × <f2, product> × property set of witnesses

same? <f1, product1> × <f2, product2> × property set of witnesses

interact? set of <feature, product> × property set of witnesses

compose
system1 × . . .× systemn × systemmatches × resolution

Fig. 1, the take drink feature, allowing one to take the ordered
drink, is implemented similarly in Figs. 1(a), 1(b) and 1(c),
by transitions 5-7. However, this feature is implemented only
by transition 4 in Fig. 1(d) since the corresponding product
does not need to open and close the beverage compartment.
Thus, this feature implementation ”disagrees” with the rest.
Like require?, this operator uses a property that specifies
disagreements of interest and returns a set of witnesses exem-
plifying the disagreements (or none if the features agree). A
simple form of disagreement is when features have different
implementations, as in the above example. In that case, a
witness could include artifacts that distinguish between the
corresponding feature extensions. Disagreements can also be
semantic, e.g., when checking for behavioral properties rather
than the syntax of the implementing artifacts.
interact? determines whether combining a set of features

would alter the behavior of one or more of those features. The
input property specifies the form of interactions to be checked
and the output set of witnesses exemplifies them. For example,
a composition of features pay and free from transition systems
in Figs. 1(a) and 1(d) might result in a transition system where
the transition pay follows free: one has to pay after requesting
a free drink, clearly violating the main behavioral property of
the free feature.
compose combines features of the n input systems, produc-

ing a single system as a result. The matches parameter specifies
artifacts that are considered similar and should be unified
in the combined representation. In addition, the resolution
parameter declaratively specifies how to resolve disagreements
and interactions between the input features, e.g., by overriding
one feature extension with another, integrating the extensions
together (thus producing a “merged” implementation), or keep-
ing both as separate features (with distinct FSs). For example,
when composing the transition systems in Figs. 1(a) and 1(d),
one might choose to override the behavior of the take drink
feature in Fig. 1(d) with the one in Fig. 1(a) or keep both
behaviors as alternatives. compose can be used for combining
individual features (systems with a single feature each), adding
a feature to an existing product (systems with a single feature
combined with a system representing a well-formed product),
or combining distinct products (systems each representing a
well-formed product).

III. SCENARIOS

In this section, we describe two common scenarios of
managing cloned product variants, exemplifying challenging
software engineering activities only partially supported by
existing tools and approaches. We show how these scenarios
can be implemented using the operators defined in Sec. II.

Sharing Features Between Variants. Developers occasion-
ally need to identify and share features between cloned prod-
ucts [6]. Fig. 3 sketches the sequence of operators supporting
this activity. For example, suppose the developers of the Soda
and Tea product in Fig. 1(b) decide to adapt the cancel
functionality implemented by Soda with Cancel in Fig. 1(c).
They retrieve the artifacts implementing cancel using findFE

1234

Input: productA and productB, with productB containing a feature of interest FS
Output: productA with the additional feature from productB
1. feature = FS, findFE(productB, FS, property1)
2. systemA = ; resolution =
3. setOfFSA = findFS(productA)
4. for each FSA in setOfFSA
5. systemA = systemA FSA, findFE(productA, FSA, property2)
6. end for
7. witnesses = interact? ({featureA, productA}feature, productB, property3)
8. if(witnesses null) provide resolution using witnesses
9. systemA' = compose (systemA, feature, matches, resolution)
10. return artifacts of systemA'

Fig. 3. Algorithm for Sharing Features.

changepay open

cancel

return

soda serveSoda

tea
8

9
serveTea

take

close

1 2 5 6

7

3 4

10

11

Fig. 4. Transferring the Feature Free from Product (c) to (b) in Fig. 1.

(line 1) with property1 set to find the minimal set of artifacts
directly contributing to this feature (as those will be transferred
to the target product). Transitions 8 and 9 in Fig. 1(c) are
returned as the result. Together with the feature specification,
these transitions comprise a single-feature system.

The integration target systemA is built similarly: first, all
feature specifications of product Soda and Tea are detected
using findFS (line 3), and then findFE is applied to these
specifications (lines 4-6). To avoid undesired integration side-
effects, interact? is applied on the set of all features from
systemA and the new cancel feature, w.r.t. property3 (line 7).
This property specifies behavioral characteristics of all input
features and looks for violations of these characteristics as
the result of feature composition. Our example does not have
violations, and no resolution is needed (line 8).

Finally, compose combines the systems (line 9). In our
example, the matches parameter considers artifacts to be
similar if they have identical names. As the result, the option
to cancel the purchase is copied from the original Soda with
Cancel product to the corresponding location in the artifacts
of systemA, producing the desired model in Fig. 4.

Merge-Refactoring Variants into an SPLE Representation.
Another common scenario of dealing with a collection of
related variants is re-engineering them into a single-copy SPL
representation. The implementation of this scenario is sketched
in Fig. 5: first, systemi is built for each producti by detecting
its FSs and the corresponding FEs (lines 1-6). Unlike Fig. 3,
here require? is applied to each pair of features from the
same product, capturing the relationships between them (lines
7-10) – this time, such relationships are an important part of
the produced representation. Next, each pair of features from
different products is checked for potential disagreements (lines
12-15), and all possible combinations of features are checked
for potential interactions1 (lines 16-19). If disagreements or
interactions are found, developers need to provide the desired
resolution (lines 14 and 18). The simplest resolution strategy
is to mutually exclude the interacting features, e.g., feature

1Products derived from the generated SPLE representation can contain
various sets of features; thus, we check all combinations. Specific detection
techniques can provide optimizations to avoid a large number of checks.

Input: product1 … productn
Output: single system representing the collection of products
1. for each producti
2. systemi =
3. setOfFSi = findFS(producti)
4. for each FS in setOfFSi
5. systemi = systemi FS, findFE(producti, FS, property1)
6. end for
7. for each featurek, featurem in Si
8. witnesses1 = require? ((featurek, producti), (featurem, producti), property2)
9. if(witnesses1 null) systemi = systemi (featurek requires featurem)
10. end for
11. end for
12. for each featurek, featurem from systemk, systemm such that k m
13. witnesses2 = same? ((featurek, systemk), (featurem, systemm), property3)
14. if(witnesses2 null) update resolution using witnesses2
15. end for
16. for each set F of feature, product pairs
17. witnesses3 = interact? (F, property4)
18. if(witnesses3 null) update resolution using witnesses3
19. end for
20. return compose (system1, …, systemn, matches, resolution)

Fig. 5. Algorithm for Merge-Refactoring Products.

change/paypay/pay open

cancel/cancel

return/cancel

free/free
soda/soda serveSoda/soda

tea/tea
8

9
serveTea/tea

take

close

1 2 5 6

7

3 4

10

11

12

Fig. 6. Merge-Refactoring Products in Fig. 1.

free of the Free Soda product and pay of the remaining
products in Fig. 1. More complex resolutions allowing to
override or merge features from different products are also
possible. For example, the take drink feature of the Free Soda
product “disagrees” with the remaining variants: all but the
Free Soda product open and close the drinks compartment
after serving the drink. Thus, its behavior is replaced by
the behavior of the other products. Fig. 6 shows the result
of combining the products in Fig. 1 under this strategy, as
produced by compose (line 20). Like the previous scenario,
matches combines artifacts with the same name. The produced
system has five features: pay, free, soda, tea and cancel, with
the first two being alternative of each other, as stated above.
The FS that corresponds to each transition in Fig. 6 is shown
after the ’/’ character, e.g., pay corresponds to both transitions
1 and 2. The main advantages of the produced representation
are lack of duplication and the ability to easily produce new
product variants, e.g., a Tea with Cancel product.

IV. OPERATOR IMPLEMENTATION AND REMAINING GAPS

In this section, we discuss existing approaches applicable for
implementing the operators described in Sec. II and identify
gaps to be addressed.
findFE (a.k.a. feature location) and interact? (a.k.a.

feature interaction) are by far the most studied. Over 20
different feature location techniques for source code have been
developed [10]. Yet, it is often unclear what the exact prop-
erties of the located feature are, how to compare techniques
based on the features they detect, and how to extend these
approaches to allow users to specify the desired properties
of the location process. Also, feature location techniques for
artifacts other than code, e.g., models, are poorly studied.

Feature interaction techniques have also received a lot of
attention, especially in the telecommunications domain [11].

1235

Most of the existing approaches, however, deal with pairwise
feature interactions. They have to be extended to consider
interactions between sets of features that are part of real-
life products: such sets can introduce interactions that are
not detectable in a pairwise manner. Also, the applicability of
many techniques for analyzing feature interactions is limited
because they are designed to work on special-purpose models
rather than production artifacts.

Compare and merge techniques, for both code and mod-
els [12], [13], as well as aspect weaving [14] and feature-
oriented composition approaches [15], can be used to realize
compose. Such techniques need to be extended to allow spec-
ifying the desired resolutions. Also, the techniques should be
able to deal with unstructured product slices that correspond to
feature extensions rather than complete, well-formed products
or features declared in a specific manner. Lastly, approaches
considering the “global” picture and devising strategies for
combining n inputs simultaneously, rather than doing so in a
pairwise manner, are to be developed.

Syntactic and semantic comparison techniques [16], [17]
can also be used to implement the operator same?. However,
future work is required to adapt them for analyzing unstruc-
tured feature extensions and declaratively obtaining the desired
properties of the analysis.

Code analysis techniques, e.g., program slicing [18], can
be used to implement require?. Similar techniques are not
well developed for artifacts other than code. Also, it should
be possible to explicitly classify the techniques based on the
nature of the detected require relationships and even retrieve
require relationships of a desired type.

Finally, implementations of the findFS operator do not
seem to exist. Such implementations should take into account a
variety of product artifacts, including product documentation,
marketing reports, etc. Techniques for decoupling product
code, such as [19], and then concisely summarizing each part
individually, as in [20], could be extended to produce FSs.

V. SUMMARY AND RELATED WORK

In this paper, we focused on the problem of managing a
collection of related product variants realized via cloning – a
practice commonly taken in industry. Despite numerous iso-
lated solutions aiming to assist the practitioners in managing
such variants, this task is still challenging. We thus took a
systematic, top-down approach for identifying a set of required
operators and demonstrated their applicability for realizing two
real-life scenarios. Our operators are intentionally abstract;
moreover, the presented set might not be complete and some
of the operators we considered atomic might need to be further
split up. Yet our work provides a first step towards specifying
and organizing solutions required for dealing with cloned
variants. We discussed possible strategies for implementing the
proposed operators, including synergies with solutions outside
the SPLE domain, and identified the remaining gaps. Based
on those, we hope to be joined by the research community
in devising dedicated solutions and empirically studying their
applicability.

Related work. Other authors also looked at systematic classi-
fications of programming tasks: Chen and Rajlich [9] identified
six fundamental program comprehension operators that trace
feature label, description and extension to each other. We
incorporated some of them in our work, however, our main
focus was on cases of multiple variants rather than single-copy
systems and involved manipulations on the variants rather than
only comprehension activities. Borba et al. [21] suggest a
theory of product line refinement. This is a special case of
variant management, the problem we consider here. Brunet et
al. [22] identified model merging operators and specified their
algebraic properties. Our work is not limited to models and
considers a broader set of necessary maintenance activities.

REFERENCES

[1] P. C. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[2] T. Mende, R. Koschke, and F. Beckwermert, “An Evaluation of Code
Similarity Identification for the Grow-and-Prune Model,” J. of Soft.
Maintenance and Evolution, vol. 21, no. 2, pp. 143–169, 2009.

[3] J. Rubin and M. Chechik, “Combining Related Products into Product
Lines,” in Proc. of FASE’12, 2012, pp. 285–300.

[4] J. van Gurp and C. Prehofer, “Version Management Tools as a Basis for
Integrating Product Derivation and Software Product Families,” in Proc.
of VaMoS’06, 2006, pp. 48–58.

[5] C. Thao, E. Munson, and T. Nguyen, “Software Configuration Man-
agement for Product Derivation in Software Product Families,” in Proc.
ECBS’08, 2008, pp. 265–274.

[6] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An Exploratory Study of Cloning in Industrial Software
Product Lines,” in Proc. of CSMR’13, 2013.

[7] J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants:
A Framework and Experience,” 2013, submitted.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines,” in Proc. of ICSE’10, 2010.

[9] K. Chen and V. Rajlich, “Case Study of Feature Location Using
Dependence Graph,” in Proc. of IWPC’00, 2000, pp. 241–249.

[10] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location
in Source Code: A Taxonomy and Survey,” J. of Soft. Maintenance and
Evolution, vol. 23, no. 8, 2011.

[11] P. Zave, “FAQ Sheet on Feature Interaction,” http://www2.research.att.
com/∼pamela/faq.html, 2004.

[12] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction,” IEEE
TSE, vol. 33, pp. 725–743, 2007.

[13] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and Merging of Statecharts Specifications,” in Proc. of
ICSE’07, 2007, pp. 54–64.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An Overview of AspectJ,” in ECOOP’01, 2001.

[15] D. S. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE TSE, vol. 30, no. 6, pp. 355–371, 2004.

[16] S. Horwitz, “Identifying the Semantic and Textual Differences Between
Two Versions of a Program,” in Proc. of PLDI’90, 1990, pp. 234–245.

[17] D. Jackson and D. A. Ladd, “Semantic Diff: A Tool for Summarizing
the Effects of Modifications,” in Proc. of ICSM’94, 1994, pp. 243–252.

[18] F. Tip, “A Survey of Program Slicing Techniques,” J. Prog. Lang., vol. 3,
no. 3, 1995.

[19] K. Herzig and A. Zeller, “Untangling changes,” Sep. 2011, manuscript.
[20] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating Natural

Language Summaries for Crosscutting Source Code Concerns,” in Proc.
of ICSM’11, 2011, pp. 103–112.

[21] P. Borba, L. Teixeira, and R. Gheyi, “A Theory of Software Product
Line Refinement,” TCS, vol. 455, pp. 2–30, 2012.

[22] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh, “A Manifesto for Model Merging,” in Proc. of GaMMa’06,
2006, pp. 5–12.

1236

