
An Exploratory Study of Cloning in Industrial Software Product Lines

Yael Dubinsky∗, Julia Rubin∗†, Thorsten Berger‡§, Slawomir Duszynski¶, Martin Becker¶ and Krzysztof Czarnecki‖
∗IBM Research in Haifa, Israel. Email: {dubinsky,mjulia}@il.ibm.com

†University of Toronto, Canada.
‡IT University of Copenhagen, Denmark. Email: thbe@itu.dk

§University of Leipzig, Germany.
¶Fraunhofer IESE, Germany. Email: {slawomir.duszynski,martin.becker}@iese.fraunhofer.de

‖University of Waterloo, Canada. Email: kczarnec@gsd.uwaterloo.ca

Abstract—Many companies develop software product lines—
collections of similar products—by cloning and adapting ar-
tifacts of existing product variants. Transforming such cloned
product variants into a “single-copy” software product line rep-
resentation is considered an important software re-engineering
activity, as reflected in numerous tools and methodologies avail-
able. However, development practices of companies that use
cloning to implement product lines have not been systematically
studied. This lack of empirical knowledge threatens the validity
and applicability of approaches supporting the transformation,
and impedes adoption of advanced solutions for systematic
software reuse. It also hinders the attempts to improve the
solutions themselves.

We address this gap with an empirical study conducted
to investigate the cloning culture in six industrial software
product lines realized via code cloning. Our study investigates
the processes, and the perceived advantages and disadvantages
of the approach. We observe that cloning, while widely dis-
couraged in literature, is still perceived as a favorable and
natural reuse approach by the majority of practitioners in the
studied companies. This is mainly due to its benefits such as
simplicity, availability and independence of developers. Based
on our observations, we outline issues preventing the adoption
of systematic software reuse approaches, and identify future
research directions.

Keywords-software product line; cloned product variants;
exploratory study;

I. INTRODUCTION

Software Product Line Engineering (SPLE) approaches

support development of products from a common set of core

assets in a prescribed way [1], [2], [3]. These approaches

advocate strategic, planned reuse that yields predictable

results. However, in reality, software product lines often

emerge ad-hoc, when a company has to address its target

market needs by releasing a new product that is similar, yet

not identical, to existing ones. In many cases, artifacts of

an existing product are cloned and modified to fit the new

requirements—the “clone-and-own” approach [4], [5], [6].

Usage of the “clone-and-own” approach is discouraged in

the SPLE literature and numerous authors propose solutions

for re-engineering cloned products into a “single-copy”

software product line representation [4], [5], [7], [8], [9],

[10], [11]. Why is cloning then still a popular method of

choice in many industrial organizations?

The first step towards suggesting alternatives that can

replace cloning is to gain a better understanding of the current

cloning practices. Are the organizations satisfied with those

practices? What are the advantages and disadvantages of the

approach? Do they wish to eliminate cloning? And if so,

what prevents them from doing that?

Surprisingly, to this date, no systematic study has been

conducted to investigate these questions, and little empirical

knowledge is available. Without such a study or empirical

knowledge, understanding and improving the current cloning

practice remains difficult and unfocused.

We thus conducted an exploratory study to investigate

the cloning culture in the context of software product lines.

Specifically, we performed eleven semi-structured interviews

with participants involved in six cloned product lines of three

well-established large-scale organizations providing solutions

in the data storage, aerospace and defense, and automotive

domain. We interviewed employees from a variety of roles,

such as developers, testers and product managers. We used

a structured questionnaire to complement the interview data

and analyzed all the collected data using the grounded theory

approach [12].

Among our findings, we observed that the majority of

product lines that use cloning techniques still perceive

it as a favorable reuse approach, mainly because it is a

rapidly available mechanism that allows practitioners to start

from an already specified and verified functionality, while

having the freedom and independence to make any necessary

modifications. In fact, several practitioners are satisfied with

the cloning practices and believe that it is a viable reuse

mechanism. While others would wish to shift to a better

managed approach, we observed that existing organizational

structures might impede the shift because there is usually

no role in an organization that is responsible for promoting

reuse.

Based on these findings, we develop a set of recommen-

dations for practice, and suggestions for future research. We

address organizational structure, governance models, and tool

support that are required to efficiently develop and manage

software product line assets. With our work, we aim to assist

both practitioners and researchers who are interested in the

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.13

25

field of software reuse: practitioners can use the experience

gained by other organizations and leverage it in their own

settings, while researchers and tool developers can acquire

better understanding on why and how cloning is practiced in

the industry and refine their proposed solutions accordingly.

We proceed as follows. Section II introduces our research

methodology. Section III reports the main results, followed

by a discussion on their implications in Section IV. Section V

depicts limitations and threats to validity, and Section VI

summarizes related work. Finally, Section VII concludes.

II. RESEARCH METHODOLOGY

We base our exploratory study on grounded theory—a

methodology developed by Glaser and Strauss [12] for

the purpose of building theory from data. It was later

refined and generalized by Corbin and Strauss [13] to derive

theoretical constructs from qualitative analysis. Grounded

theory is increasingly being used in studies related to

Software Engineering [14], because of its ability to formulate

a theory based on empirical evidence.

The objective of our study was to understand how cloning

happens in the observed organizations and what its underlying

mechanisms are, rather than confirming or refuting any

specific hypotheses. Thus, this work has an exploratory,

theory-building nature. We followed the approach in [13],

which recommends evolving the research tools in the course

of the research, as more information becomes available

to take advantage of the emerging results. For example,

the questionnaire that was used in the first interview was

later reduced to a shorter attitude questionnaire. In addition,

after the fourth interview, we decided to interview several

participants from a specific product line. This was done to

gain an extended perspective on the product line governance

issues, involving a number of members from the same team.

A. Participants

As summarized in Table I, we interviewed eleven prac-

titioners from six different product line (PL) environments

in three different enterprise organizations that belong to

three different industries: aerospace and defense (A&D),

data storage management (DSM), and automotive (Auto).

The selection of the organizations was limited to those we

had access to and that use cloning as a method to reuse

artifacts between the different products in their product lines.

The first product line we analyzed in our study (PL1) is

relatively new: it emerged around three years ago. The second

and the third ones (PL2 and PL3) are mature product lines

developed for eight to ten years each. Products of PL4 were

initialized one and a half year ago as proofs of concept, and

were later commercialized as they became successful. PL5

was developed over the course of five years and nowadays is

being merged with a larger product line, due to a company

acquisition. The first products of PL6 were created about 10

Table I
INTERVIEW PARTICIPANTS (ORDERED CHRONOLOGICALLY)

Participant Industry PL Role

p1 A&D 1 Software leader
p2 A&D 2 Senior software leader
p3 A&D 3 Integrator & QA engineer
p4 A&D 4 Architect
p5 A&D 2 Developer
p6 DSM 5 Architect
p7 DSM 5 Technical leader
p8 DSM 5 Senior architect
p9 DSM 5 Developer
p10 DSM 5 Technical leader
p11 Auto 6 Technical leader & developer

years ago, and further products emerged continually up to

the present time.

Almost all ever created products of these product lines

are still sold on the market. Both full-product cloning and

feature cloning are used in the interviewed organizations.

Development teams mostly reuse artifacts developed “in

house”—by the developers of the same team.

From 26 to 100 people are involved in developing and

managing each product line. To gain a broad perspective,

we selected representative roles that have decision rights

and responsibilities at various stages of the product line

development (column “Role” in Table I). The theoretical

sampling was evolved when after the fourth interview,

we decided to extend our point of view by going back

and interviewing another participant from product line #2

(participant p5). Also, in order to gain team perspective

we interviewed five participants from the same product line

(participants p6–p10). The last interview (participant p11)

was already scheduled before that decision, thus we were

only able to reach one person from that organization.

B. Data Collection

We used a semi-structured interview and a pre-interview

attitude questionnaire [15] to collect our data. Combining

both research tools provided us with the ability to triangulate

data when identifying the concepts and categories, as well

as to enrich our description of the results.

Questionnaire. The interviewees were requested to spend

between five to ten minutes on filling in the questionnaire

right before starting the interview. Its goal was to gather

interviewees’ initial perception, before starting the conver-

sation. When filling in the questionnaire, participants were

asked to think about the product line they work on and

to indicate the extent to which each of the questionnaire

statements describes it. Together with statements about the

cloning practices, the questionnaire included statements that

relate to the product line setting in general.

Table II presents an aggregated view of answers to some of

the questionnaire’s statements. We only show statements that

strongly support or contradict the derived theory (Section III)

26

Table II
RESULTS OF THE PRE-INTERVIEW ATTITUDE QUESTIONNAIRE, USED TO ELICIT PARTICIPANTS’ AGREEMENT WITH CERTAIN STATEMENTS. THE TABLE

SHOWS THE NUMBER OF PARTICIPANTS CHECKING EACH CELL.

Statement Not
at all

To a great
extent

1. I’m aware of a product line strategy in my organization 1 2 2 6

2. My team develops core assets that are later used by other teams 1 2 4 3 1

6. We regularly clone pieces of code 3 5 2 1

10. We measure how many times a certain core asset is used 5 4 2

17. People in my team know who should approve a change request 1 4 5

19. We have work procedures that include cloning of artifacts 2 6 1 2

20. I feel our development process is well-defined 1 2 6 2

21. We clone to reuse artifacts between products of a product line 5 5 1

22. All project teams follow in practice the defined process 1 2 6 2

23. We have relatively many clones of code 6 4 1

27. We do not change main APIs without receiving an approval 1 5 5

31. We have relatively big clones of code 5 4 2

and are relevant to our discussion (Section IV). The number

in each cell indicates the number of participants who marked

this cell. For example, six participants indicated that they

extensively clone to reuse artifacts between products of a

product line (two rightmost columns in statement #21).

Interview Following the questionnaire, we conducted inter-

views that included open-ended questions and took about one

hour. Each interview started with general questions regarding

the product line environment and the interviewee role, and

then focused on the way the cloning is performed. For

example, we asked the interviewee to describe the product

line that he or she is involved with, its lifecycle and phases,

and the tools that are used.

Specifically, we asked about the capabilities of the tools, as

well as about the roles and activities that are directly related

to the product line development. We investigated the way

cloning is implemented, e.g., who decides to make a clone

and how the information about existing clones is maintained.

We were interested to find out whether there are procedures

that regulate the cloning process and whether there are any

measurements in this respect. We also asked participants to

describe which artifacts are cloned and at which phases, how

big and how many clones there are.

C. Data Analysis

We used open coding [13] to analyze the collected data.

The transcripts of our interviews and the answers to the

questionnaire were analyzed line by line to detect concepts—

key ideas contained in data. When looking for concepts, we

searched for the best word or two that describes conceptually

what we believe is indicated by the raw data. Based on the

concepts, we created more abstract categories that group

lower-level concepts and represent threads of ideas that we

found in the analyzed data. We then related concepts to each

other, forming a hierarchy of concepts and sub-concepts. This

hierarchy is presented in Section III.

In grounded theory, data collection and analysis are inter-

related processes: we used evolving concepts and categories

to refine questions that we ask subsequent participants.

This process is referred to as theoretical sampling and was

illustrated in Section II-A. The process continued until no

new concept emerged—thus, conceptual saturation is reached.

Since all findings are linked to specific evidence—either an

interview quote or a questionnaire response—we are able

to provide grounding to the results we report and attribute

them to the collected data.

III. RESULTS: CLONING PRACTICES

This section presents the findings of our study. Following

the analysis of the interviews and the questionnaires, we

learned that cloning happens at all stages of software

development—from requirements through design, implemen-

tation and testing, up to the preparation of user documentation:

artifacts in each stage are cloned and adjusted to the needs

of a new customer. Practitioners, however, indicated that in

their projects, code is cloned more often than other artifacts.

All but three practitioners indicated that, by design, their

products are built on top of a reusable platform. Still, cloning

is a frequent reuse mechanism and commonalities are rarely

extracted to the common platform. A team lead of a product

indicated that:

“there are [core, reusable] assets but they are degenerated,
just place-holders; < ... > [core asset] repository does not
contain significant assets, but the intention is there.”
We also observed that clones can be of different size,

from few methods or single components up to significant

sub-products and even complete products. The amount of

clones in a product line varied between a few (five to ten)

instances up to few tens of instances.

Below, we identify and summarize four major char-

acteristics (categories) related to the use of cloning in

software product lines context, which are further discussed

in Sections III-A–III-D. When presenting our empirical

27

observations, we do not attempt to assess their positive and

negative implications; these implications are discussed in

Section IV.

Efficiency: Cloning is perceived to be a simple yet efficient

reuse mechanism that saves time and resources. It allows

participants to start the development from already imple-

mented and verified set of artifacts. At the same time, it

provides independence and freedom to change these artifacts

as needed.

Overhead: Adapting cloned artifacts to the new needs

sometimes involves a significant effort. Effort in maintaining

the artifacts can also be increased because some tasks need

to be performed on each cloned copy. Also, propagating

modifications between clones is not a trivial task.

Short-Term Thinking: Lack of resources to invest in

systematically managing reuse, as well as lack of awareness

of other reuse approaches, leads to choosing cloning as

the favorite reuse mechanism. Organizations often focus on

making sure their individual products are successful and

postpone dealing with reuse issues to the future.

(Lack of) Governance: Knowledge about reuse is rarely

maintained. Reuse is not measured and there are usually

no roles in the organization that are responsible for reuse

practices and processes.

In what follows, we discuss these observations in more

details and illustrate them with the quotes from the partici-

pants.

A. Efficiency

There are three major reasons for considering cloning

as an efficient reuse mechanism in software product line

engineering.

1. Cloning saves time and reduces costs: Most interviewees

stated that it is faster and more efficient to start with an

already developed and tested set of artifacts:

“It is easier to start with something. Cloning gives [us]
an initial basis.”
“< ... > there is no need to reinvent the wheel.”
“The most significant thing < ... > is to take a ‘stack’ as
is and reuse it. This can save thousands of hours.”
“We want to make the development faster. < ... > The
work assumption is that we clone.”

Moreover, most participants highlighted the importance of

reusing the already validated code:

“It saves time. These components were already used, tested,
closed. A kind of an on-the-shelf software.”
“We did something. It is ‘old’ and for most cases it is
stable. The amount of time to bring [new code] to the
required level of quality is not easily estimated.”

2. Cloning provides independence: After cloning, develop-

ers enjoy the freedom of making any necessary changes to

their clones. They do not have to worry about synchronization

with other teams, neither about the form of the common

artifacts nor about their lifecycle and schedule.

“It gives freedom to change, [when cloning] there is no
damage to existing products.”
“The management is more convenient. We believed that this
code will be significantly changed so no point in keeping
it as a shared code.”
“No code sharing, [because] the two copies are not
developed in the same pace.”
Also, one participant emphasized the understandability and

readability of the cloned product-specific code compared to

the more complex, generic reusable code:

“[In the past,] a new variant < ... > was integrated back
into the mainstream by using preprocessor switches. This
has made the code very unreadable, so we wanted to go
away from that and we started to branch off the files that
differ among variants.”

3. Cloning is the most available mechanism: Some of our

participants indicated that there are no other readily available

reuse mechanisms:

“There are simply no other options.”
“There was no other choice. [But] we need to avoid doing
cloning, it has a price.”

B. Overhead

As one of the interviewees noted in the previous section,

cloning practices have their price: organizations usually have

to deal with the overhead involved in creating and managing

the clones. We identified four major issues introduced by

cloning.

1. Propagating changes between clones is difficult: Most

interviews stated that no connection between clones is

maintained. Thus, it is difficult to make sure that changes

and bug fixes made to one of the clones are propagated to

the others.

“< ... > code that we cloned looses connection with the
product which it is cloned from, and then there is no sharing
of new insights and innovations.”
“If we find a bug then many times it can be here and also
in other places. The new product contains code that exists
also in the old product. So, if we fix the old one then we
also fix the new or vice versa.”
“Sometimes, we find the same bug again in a different
variant that nobody thought about before.”

2. Integration of the cloned artifacts is difficult: In some

cases, practitioners stated that adapting clones to the new

needs involves larger effort than expected.

28

“In this process we always lose quality. Sometimes, we
have no choice but to throw away the code and re-write.”
“It is usually not possible to port without making changes
to the code.”
“[They] took an existing asset and tried to reuse. They
claimed that integration duration was too long.”
“Sometimes clones are too big for relatively small needs.”
“It is a copy and a lot of adaptation.”

3. Repetitive tasks are common: Some participants in-

dicated that cloning causes a significant increase in the

maintenance effort.

“We need to perform many activities several times: for
each variant, we have to check the code and implement
the change or fix. Then, the design and documentation
documents, as well as the test specification need to be
adapted for each variant. Tests need to be run.”

4. It is not clear which variant to use as the source for
cloning: One participant indicated that when several clones

exist, it is not always clear which one is the best “starting

point” for cloning.

“With each new project we ask: ‘where do you start from’?”

C. Short-Term Thinking

As stated in Section III-A, sometimes, practitioners per-

ceive cloning as the only available reuse mechanism. This

often occurs because development organizations invest little

time and resources in supporting and managing reuse. Below

are three major factors reflecting organizational thinking with

respect to reuse.

1. Lack of planning: Most practitioners stated that thinking

ahead and planning for reuse is rare.

“We were not aware we develop product lines.”
“Maybe we can [think about reuse] from the beginning.
Still this is easy to say now, when we know that the first
product is a success. At the beginning, the other risks are
more important.”
“When a new customer came, we needed to decide how to
implement his requirements in the fastest way. We do not
have time to think thoroughly about generic approaches.”
On the other hand, sometimes it is not clear in the

beginning of product development that reuse would be

needed:

“At the beginning we did not know that we will have to
support all the controllers that we support now – this
emerged over time.”

2. Lack of resources: Our interviewees were concerned with

the lack of support for product line engineering practices.

“There is a lack in resources for an organized work and
methodology with respect to the product line engineering.”

“We sometimes need to beg for reuse.”

3. Unawareness of other approaches: In some cases,

cloning is considered to be “state-of-the-art” in reuse.

“We clone code and should do better with cloning require-
ments and design.”
“If something is good < ... > then it will be cloned.”
Only in one case, the participant explicitly stated that

even though other approaches were considered, the company

deliberately chose cloning as their reuse approach:

“We explicitly decided to use separate branches for our
variants.”

D. (Lack of) Governance

All but one of the participants clearly stated that no

governance of product line development exists in their

organizations. We identified three issues related to the (lack

of) product line governance.

1. Lack of reuse tracking: All practitioners indicated that

no infrastructure that tracks and facilitates reuse opportunities

exists. Information about cloned artifacts exists primarily in

people’s mind and they are responsible to make sure that

changes between clones are propagated correctly. Similarly,

reuse opportunities are identified if somebody remembers
which similar artifact can be reused. Reuse is done via

personal knowledge, memory and networking.

“When requirements are given, the software leader and
most of us know if there is already such a thing.”
“I am aware of things that I did and saw. If I recall
something similar to what I need, I’ll find it and copy.”
“A person who was in a specific team takes the capabilities
to another project.”
“Many things are in the heads of people: ‘why don’t you
use what we did?”’

2. Lack of organizational roles and processes: In most

cases, there are no organizational roles that are responsible

for reuse. Many times, project leads are those who actively

look for reuse opportunities, in order to reduce costs of their

tasks. However, there were no participants who indicated

that they are encouraged to contribute reusable artifacts.

“No one [is responsible for reuse]. One who requires an
asset, takes it.”
“No one is in charge of the cloning knowledge—in practice,
it is the one who implements [a functionality] and the
architect who is in charge of the work item.”
“The decision to do cloning is probably done by a manager
or an architect.”
“The responsibility at the end is on the software leaders.”
“In each project, there is a software leader who manages
the software development activities as part of the system

29

development. He or she is in charge of using existing
assets.”
Only in two cases, the interviewees indicated that there

is an organizational or technical structure that mandates the

process of reuse.

“There is an architecture forum that is being led now by
the person who is in charge of the assets management.
There are members of all the disciplines in the department
in this forum. The forum’s role is to manage the department
assets and identify artifacts that can be reused.”
“We have a pool of components or files that are meant to
be reused by the projects (using branching). However there
is no dedicated group that maintains these assets; this is
the responsibility of the projects.”
In another case, a participant stated that there is a person

who can technically clone artifacts when asked to.

“Developers are not supposed to clone. It happened at the
beginning, but not later. The configuration manager has a
procedure how to do it.”
However, similarly to the lack of roles, there are mostly

no processes that define when and how to clone artifacts.

“There is no place or procedure that asks to search for
existing assets.”
“It is not perceived as a process. It is simply something
that is done.”

3. Lack of measurement: In none of the cases we observed

measurement of reuse. Organizations lack any quantitative

indication on the benefits or drawbacks related to cloning.

“In quarterly reviews we should report how many hours in
average we saved by reusing. [But there are] no measures.
Usually there are reports on few hundreds of hours.”
“There is no structured method [to evaluate reuse]. [We
do] design review in which we validate that reuse was
done.”
“We don’t really measure, but there are some places that
know the level of reuse, e.g., that we use an asset four
times. In general, no one measures.”

IV. DISCUSSION

In this section, we discuss the findings and the observations

we made during data collection and analysis. We derive

recommendations for practitioners, and identify directions

for further research. Our discourse uses three different angles:

1) The human individual perspective that looks at the

attitudes and motivation for cloning.

2) The technical perspective that deals with the way

cloning is implemented and how it is merged with

the other development activities.

3) The organizational perspective, where we examine the

process descriptions and the management style that

position the cloning practice as one of the practices

that are used. We also examine the mechanisms that

monitor the cloning enactment.

A. The Individual Perspective

Among our subjects, cloning is perceived as a natural

technique to support the development of similar products.

This is due to its low entrance barrier, being an easy thing

to do since artifacts are ready and available. Also, in most

cases, practitioners can perform cloning in an ad-hoc manner

without the need to adhere to formal procedures. Most

practitioners are happy with cloning and can easily explain

their motivation, e.g.: it accelerates development, since we

use what we already have; it saves time and, therefore, it

saves money.

However, there is ambivalence in the way cloning is

perceived. Delving into the details and raising questions

on how cloning is performed and how clones are evolved

and maintained reveals feelings such as frustration and

helplessness as well as statements calling to avoid cloning

or to “eliminate it”. The cloning information is usually

kept by each individual and no special tools are used to

store, maintain, and share it. Maintaining different products

that include independently-evolved cloned artifacts is time-

consuming and gives the interviewees the feeling that “we

are not professional enough”.

In light of the ambivalence that was found, we suggest

to further explore the cloning practice. Since it has clear

advantages i.e., simplicity and availability, we suggest to

study ways for resolving the causes of frustration and

to define the terms in which cloning can exist and be

promoted. We also suggest to compare between product line

environments that use cloning and those that avoid cloning,

thus improving the understanding of the alternatives. Any

approach that aspires to be better than cloning has to have

a way to address the great perceived advantages of cloning,

which is simplicity and availability. Many approaches fail

because they fail to convince practitioners that they would

yield better results. Hard data would play a role in providing

correct guidance and improving adoption of such alternative

techniques.

In addition, it seems that practitioners lack the awareness

and knowledge about different forms of reuse and, specifi-

cally, about the methods that avoid cloning. Promoting edu-

cation on this topic can contribute to improving practices of

individuals and organizations. Investing in education includes,

among others, studying and leveraging experiences of other

organizations. For example, our interviewees indicated that

reusing already-tested code is one of the main benefits of

cloning—while other companies experienced [16] that the

original testing is not necessarily sufficient for the target

conditions of the cloned code1.

1A prominent case is the Ariane disaster [17], which occurred due to
reuse of code that was tested and verified on previous missions, but which
did not fit the new advanced system.

30

B. The Technical Perspective
As shown in Table II, code is regularly cloned (statement

#6). Still, the level of reuse across the product line is not

always perceived as high (statement #2) or just not measured

(statement #10). Although the work procedures are defined

and participants comply (statements #17, 20, 22, 27), they

do not include the cloning activity (statement #19), which

means that the cloning practices are performed in an ad-hoc

manner.
One way to improve the cloning practice is to manage the

cloning knowledge. Among others, interviewees suggested

to document cloning tasks, meaning both to identify a

task as a cloning one and to document its lifecycle. Such

documentation can provide the cloning history, the ability

to share the cloning knowledge and to examine the cloning

patterns. While there are numerous tools that detect software

clones, suggest refactoring techniques for their elimination,

or promote actions to keep the clones synchronized (see

Section VI), it is not clear at what level to track clones,

which clones to track, and how to do it in the most effective

way. To identify precise requirements for clone management

tools in SPLE, or to determine suitable existing tools, is

still a question for future studies. Moreover, one needs to

also understand when it pays off to eliminate clones and

when it may be better to keep them. Unfortunately, the SPLE

community has little or no guidance on that.
Some practitioners also suggested strengthening the

cloning practice by integrating it into the architectural

decision making process. This means that cloning activities

should be performed upon approval, should be consistent with

the architectural decisions and should be validated during

the architecture and design reviews. This would increase the

transparency of the cloning knowledge and enable using this

knowledge for better reuse.
Finally, there is lack of quantitative data on how much

clones save or cost under different circumstances and how

far we can scale cloning, i.e., for how many products in

a product line cloning is worthwhile. Studies that quantify

these issues are required. Also, there are trade-offs based on

different risks whether to clone or to share [16]. There is a

need for a better guidance on when and what to share versus

clone.

C. The Organizational Perspective
Cloning, if applied, is part of the product line strategy that

is used—whether it is explicitly defined or can be implicitly

understood from the procedures that are derived from the

strategy. We found that usually cloning is deployed using

indirect ways. One of the participants stated:

“It would be good if there was a cloning process that
is arranged and [there were] documents that define this
practice.”

As we found out, processes that regulate reuse are missing in

the interviewed companies and the organizational roles that

are responsible for reuse are not well defined. Measurements

regarding cloning are usually not taken (statement #10

in Table II) and there is a lack of tools to support the

cloning process. However, as shown in Table II, eight out

of eleven participants indicated that they are aware of a

product line strategy in their organization (statement #1). We,

thus, conclude that there are some general announcements

in the organization regarding product lines, in the form

of announced goals only, without the actual definition and

enactment of mechanisms to implement these goals.

Since organizations regularly define work procedures and

other governance mechanisms to steer the development

process, we suggest to increase the awareness to the cloning

activity as a reuse method and to merge it into current

processes including shaping the role schema, refining the

work procedures, adding basic measures to be able to assess

its implementation, and educating about the risks and trade-

offs of cloning. This way, evidence can be collected about

when cloning is a successful practice and when it is not,

compared to other alternatives.

Examining reuse costs, we conjecture that there is a non-

negligible investment in setting up a structured product line.

In domain engineering, there is a cost in making the software

component generic and reusable. In application engineering,

there is a cost in retrieving the reusable component and

configuring it for the specific product [18]. Organizations

might face difficulties to raise the funds to pay these costs.

However, there is a trade-off between short-term savings

obtained through cloning and the long-term maintenance

problems that are caused in the result. These should be

taken into account when deciding on a reuse strategy.

In organizations with loose governance, people might be

tempted to “locally optimize” their work, thus, sacrificing

the “globally-optimal” result.

V. THREATS TO VALIDITY

External validity: Our main threat to external validity

is the limited number of subjects stemming from six product

lines. We attempted to mitigate this threat by approaching

development organizations from different industrial sectors

and by interviewing practitioners holding a spectrum of

organizational roles. Furthermore, we acknowledge this threat

by carefully avoiding to generalize our results. Instead, we

invite other researchers to confirm or refute our findings by

studying further companies.

Our exclusive data source are interviews and questionnaire

responses. In particular, we did not perform any artifact study

of the actual product line projects, for example, to analyze

sizes of clones or their extent of replication. Such an analysis

could complement our study and aim at cross-checking

results. However, artifact studies are, in general, very difficult

to perform for commercial, closed-source projects.

We limited our subjects to those who apply code cloning

for product line development. Thus, estimating the frequency

31

of this technique in practice is out of our scope. Due to our

experience, we speculate that code cloning is a common

approach to product line realization; however, a widely-

distributed follow-up questionnaire would be necessary to

empirically confirm (or refute) this hypothesis.

Internal validity: We see two main threats to internal

validity. First, we might have misphrased some interview

questions in a way that affects participants’ answers, espe-

cially since participants are usually not aware of product-line-

specific terminology. We mitigated this threat by doing pre-

tests and refining our interview guide when questions raised

confusion. Second, we might have misinterpreted participants’

answers and derived incorrect conclusions, threatening the

reliability of our study. This reliability primarily depends on

the categories and concept hierarchy we created. However,

these concepts were carefully discussed and verified against

the transcripts by another author.

VI. RELATED WORK

Software cloning—duplication and reuse with or with-

out modifications—has seen active research in the last

decade [19], both in the context of single systems devel-

opment and software product lines. We now discuss such

related work.

Clone Management Techniques. Clone management tech-

niques have been extensively studied; in particular, clone
detection—identifying cloned code artifacts [20], clone syn-
chronization—tracking clones during evolution and propagat-

ing changes [21], [22], clone merging—integrating multiple

changes that happened simultaneously to the clones on both

sides [23], clone correction—eliminating clones through

refactoring [24], [25], and clone prevention—assisting devel-

opers while writing code [26].

Our work differs from those, as we do not suggest

any technique, but rather provide the basis to apply such

techniques, by investigating cloning practices in industry.

Further, we empirically investigate cloning in the context of

software product lines, not single systems development.

Studies on Software Cloning. Although clones were initially

considered undesirable [27], multiple authors later argued

that this assumption is not necessarily true and reported

corresponding empirical data. Kapser and Godfrey [28]

describe several observed patterns of cloning and provide

evidence that cloning is used as a principled engineering

technique. Aversano et al. [29] present empirical data on

how clones are maintained. The results seem to indicate

that the majority of clones is maintained consistently, and

if an inconsistency is introduced, then often intentionally

with a reason. This finding was confirmed by Göde and

Koschke [30], who study the frequency of changes to clones,

concluding that only 12% of clones were ever changed and

only 15% of all changes were unintentionally inconsistent.

Kim et al. [31] further indicate that eliminating clones not

necessarily improves the development. By analyzing clone

genealogies from codebase histories, they conclude that for

short-lived clones, the removal effort is often too high to

pay off, whereas long-lived clones are usually too hard to

refactor. Ernst et al. [6] study forking of open source projects,

which can be seen as a special form of inter-organizational

cloning by putting whole codebases under another leadership.

Forking allows addressing new requirements, but at the risk

of fragmenting developer communities. Although our work

focuses on intra-organizational cloning in the context of

SPLE, such studies complement our finding that cloning is

considered a beneficial and sometimes necessary technique.

Similar to our findings, Cordy [16] reports that developers

enjoy the freedom of making arbitrary changes to their

clones. The reported experience from projects in the financial

domain shows that clones increase the freedom of developers

while reducing coupling, testing costs, and maintenance risks.

Eliminating clones (i.e. sharing code) increases coupling

between modules, thus, changing such shared code requires

re-testing of all modules using it. Since in these financial

projects, most costs went into testing (70%), eliminating

clones would have raised costs significantly—assuming

frequent changes to clones. Unfortunately, Cordy’s work—as

he points out—is only a personal experience report, not an

empirical study. This work also does not consider the PL

perspective.

Cloning in the Context of SPLE. Several research works

[32], [4], [33], [5] indicate the existence of industrial product

lines that are realized by cloning instead of using variability

management techniques. Faust and Verhoef [4] further

describe “Software Mitosis”—the uncontrolled adoption of

systems in a global organization, where successful systems

are duplicated and modified by local sub-organizations.

Staples et al. [34] indicates that Software Configuration

Management (SCM) systems, such as CVS, RCS or SVN,

are used to realize product lines by exploiting their branching

and merging capabilities. The authors report experiences on

creating a product line using an SCM system and challenge

some tenets from the literature, such as the need for a

complete upfront scoping process and a variability-enabled

architecture [35]. Van Gurp et al. [36] confirm this perspective

and argue that SVN can be sufficient for SPLE. Even

specific product line tools based on SCM systems have been

developed, such as Thao et al.’s [37] MoSPL tool, which has

built-in product derivation support.

Although our study was inspired by all these singular

reports, we not only confirm the application of cloning in

SPLE contexts, but go significantly beyond by qualitatively

investigating the cloning practice. We also observed the use

of SCM tools. In fact, four of our participants stated that they

create a branch for each new product. However, studying

whether SCM systems improve the cloning practice was out

of our scope, but would constitute interesting future work.

32

Re-engineering of Products into Product Lines. Based on

the assumption that many product variants are clones of

others, many researchers provide solutions for re-engineering

similar products into a configurable product line. The

approaches of Faust and Verhoef [4], Mende et al. [33],

[5], and Frenzel et al. [7] all identify common functionality

using clone detection techniques with certain metrics in

order to lift sufficient similarity to the architectural level.

Jiang et al. [8] report industrial experience on maintaining

and evolving a mobile phone product line at Motorola.

Facing increasingly time- and resource-intensive, but quality-

degrading evolution, they discuss data mining techniques

to maintain reuse and to reduce design erosion. Ryssel et

al. [9] detect cloned subsystems across Simulink models and

re-integrate them into one subsystem with variation points.

These variation points and their dependencies are identified

using formal concept analysis and are further used to

generate a feature model. Rubin and Chechik [10] introduce

a framework based on model comparison and merging to

refactor cloned product models into an annotative SPLE

representation. Yoshimura et al. [11] present an alternative

approach, which detects variability in software products

from change history, assuming that each product consists

of individual components and evolution entails an update

to these. Duszynski et al. [38] describe a framework for

the analysis and visualization of similarities across related

systems. After identifying corresponding files, the framework

facilitates browsing variants in large code bases.

While the techniques above can be used to eliminate

clones towards systematic variability management, our work

aims at improving the understanding on whether and when

clones should be eliminated. Therefore, we investigate

the underlying rationales, advantages, perils, as well as

organizational and governance aspects of cloning.

Maturity of SPLE. Our results can further be compared to

existing work on organizational aspects and maturity levels of

SPLE, such as Riva and Del Rosso [32] or Bosch [39]. These

authors classify the clone-and-own approach as the lowest

level of maturity in an organization. Our study challenges this

simplification, at least from the perception of our participants.

As cloning appears to be legitimate in many cases, even

organizations with very mature development processes might

intentionally apply cloning. Whether existing maturity levels

need to be refined requires further research, however.

VII. CONCLUSIONS

SPLE reuse approaches promote development of related

software products from a common set of assets in a prescribed

manner. Yet, developers still use cloning to realize different

products of a product line. Without understanding the nature

of the current cloning practices, attempts to transform

collections of cloned products into representations promoted

by contemporary SPLE approaches, as well as attempts

to improve the approaches themselves, are difficult and

unfocused.
We thus conducted a study to collect empirical data on the

current development practices in organizations that employ

cloning to realize product lines. We believe that acquiring

better understanding on why and how cloning is practiced in

industry can help developing better methodologies, tools, and

measurement models that promote efficient software reuse.
Our study involved eleven participants from six cloned

product lines of three well-established large-scale organi-

zations. We observed human, organizational and technical

aspects that are part of the cloning culture, discussed

main characteristics of cloning and highlighted perceived

advantages and disadvantages of the approach. We believe

that our observations hold for many similar organizations.
We observed that the majority of interviewed practition-

ers involved in developing cloned product lines perceive

cloning as a favorable reuse approach, which is “natural” to

developers and has a low entrance barrier. Our participants

stated that cloning is a rapidly available mechanism, which

allows them to start from an already specified and verified
functionality, while leaving the freedom and independence to

make any necessary modifications to it. However, in the

long run, cloning might result in difficulties to perform

maintenance and evolution tasks.
Trade-off between savings obtained through cloning and

the longer-term problems introduced by it should be fur-

ther investigated. Yet, it became clear that any approach

attempting to re-engineer cloned product lines into structured

SPLE models should clearly show and quantify benefits in

doing so, as practitioners’ desire to abandon their current

cloning practices is not obvious. Moreover, structured SPLE

reuse approaches should strive to maintain those qualities of

cloning that were perceived as important by the industrial

practitioners. The SPLE approaches should also come up

with clear measurement models, quantifying improvement

achieved by SPLE adoption.
In addition, lack of organizational roles responsible for

and promoting software reuse raises the need for establishing

organizational structures that support SPLE. Industrial practi-

tioners should also be educated on different reuse approaches,

focusing on expected benefits from adopting those both on

the personal and on the organizational level.

ACKNOWLEDGEMENTS

We thank all the developers, architects, technical learners

and QA engineers who participated in our study and offered

their valuable feedback.

REFERENCES

[1] P. C. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, ser. SEI Series in Software Engineering.
Addison-Wesley, 2001.

[2] H. Gomaa, Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures. Addison
Wesley, 2004.

33

[3] K. Pohl, F. Guenter Boeckle, and van der Linden, Software
Product Line Engineering : Foundations, Principles, and
Techniques. Springer, 2005.

[4] D. Faust and C. Verhoef, “Software Product Line Migration
and Deployment,” Software: Practice and Experience, vol. 33,
no. 10, pp. 933–955, 2003.

[5] T. Mende, R. Koschke, and F. Beckwermert, “An Evaluation of
Code Similarity Identification for the Grow-and-Prune Model,”
Journal of Software Maintenance and Evolution: Research
and Practice, vol. 21, no. 2, pp. 143–169, 2009.

[6] N. A. Ernst, S. M. Easterbrook, and J. Mylopoulos, “Code
forking in open-source software: a requirements perspective,”
CoRR, vol. abs/1004.2889, 2010.

[7] P. Frenzel, R. Koschke, A. P. J. Breu, and K. Angstmann,
“Extending the Reflexion Method for Consolidating Software
Variants into Product Lines,” in Proc. of WCRE’07, 2007, pp.
160–169.

[8] M. Jiang, J. Zhang, H. Zhao, and Y. Zhou, “Maintaining
Software Product Lines - an Industrial Practice,” in ISCM’08,
2008, pp. 444 –447.

[9] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Automatic
variation-point identification in function-block-based models,”
in Proc. of GPCE ’10, 2010, pp. 23–32.

[10] J. Rubin and M. Chechik, “Combining related products into
product lines,” in Proc. of FASE’12, 2012.

[11] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno,
“FAVE: Factor Analysis Based Approach for Detecting Product
Line Variability from Change History,” in Proc. of MSR’08,
2008, pp. 11–18.

[12] B. Glaser and A. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research, ser. Observations (Chicago,
Ill.). Aldine de Gruyter, 1967.

[13] J. Corbin and A. Strauss, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory,
3rd ed. Sage Publications, Inc., 2008.

[14] S. Adolph, W. Hall, and P. Kruchten, “Using Grounded Theory
to Study the Experience of Software Development,” Empirical
Software Engineering, vol. 16, pp. 487–513, 2011.

[15] M. Q. Patton, How To Use Qualitative Methods in Evaluation.
Newbury Park, CA: Sage., 1987.

[16] J. R. Cordy, “Comprehending Reality - Practical Barriers to
Industrial Adoption of Software Maintenance Automation,” in
Proc. IWPC’03, 2003, pp. 196–.

[17] B. Nuseibeh, “Ariane 5: Who dunnit?” IEEE Software, vol.
14(3), pp. 15–16, 1997.

[18] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, and
K. Schmid, “Calculating ROI for Software Product Lines,”
IEEE Software, vol. 21(3), pp. 23–31, 2004.

[19] R. Koschke, “Frontiers of Software Clone Management,” in
Frontiers of Software Maintenance, 2008., 2008, pp. 119–128.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE
Trans. Software Eng., vol. 33, no. 9, pp. 577–591, 2007.

[21] M. de Wit, A. Zaidman, and A. van Deursen, “Managing Code
Clones Using Dynamic Change Tracking and Resolution,” in
Proc. of ICSM’09, 2009, pp. 169 –178.

[22] E. Duala-Ekoko and M. P. Robillard, “Clone region descriptors:
Representing and tracking duplication in source code,” ACM
Trans. Softw. Eng. Methodol., vol. 20, pp. 3:1–3:31, July 2010.

[23] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen, “Clone-Aware Configuration Management,”
in Proc. of ASE’09, 2009, pp. 123–134.

[24] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis, “Advanced Clone-Analysis to Support Object-
Oriented System Refactoring,” in Proc. of WCRE ’00, 2000,
pp. 98–.

[25] M. Rieger, S. Ducasse, and G. Golomingi, “Tool Support for
Refactoring Duplicated OO Code,” in Proc. of ECOOP’99
Workshop on Object-Oriented Technology, 1999, pp. 177–178.

[26] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hude-
pohl, “Assessing the Benefits of Incorporating Function Clone
Detection in a Development Process,” in Proc. of ICSM’97,
1997, pp. 314–.

[27] S. Jarzabek and S. Li, “Unifying Clones with a Generative
Programming Technique: a Case Study,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 18,
pp. 267–292, 2006.

[28] C. J. Kapser and M. W. Godfrey, “”Cloning Considered Harm-
ful” Considered Harmful: Patterns of Cloning in Software,”
Empirical Softw. Eng., vol. 13, pp. 645–692, 2008.

[29] L. Aversano, L. Cerulo, and M. Di Penta, “How Clones are
Maintained: An Empirical Study,” in Proc. CSMR’07, 2007,
pp. 81–90.

[30] N. Göde and R. Koschke, “Frequency and Risks of Changes
to Clones,” in Proc. of ICSE’11, 2011, pp. 311–320.

[31] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical
study of code clone genealogies,” in Proc. of FSE’05, 2005,
pp. 187–196.

[32] C. Riva and C. Del Rosso, “Experiences with Software
Product Family Evolution,” in Proc. of IWPSE’03 workshop
on Principles of Software Evolution, 2003, pp. 161–.

[33] T. Mende, F. Beckwermert, R. Koschke, and G. Meier,
“Supporting the Grow-and-Prune Model in Software Product
Lines Evolution Using Clone Detection,” in Prof. of CSMR’08,
2008, pp. 163 –172.

[34] M. Staples and D. Hill, “Experiences Adopting Software Prod-
uct Line Development without a Product Line Architecture,”
in Proc. of APSEC’04, 2004, pp. 176–183.

[35] J. Bosch, “Maturing Architectures and Components in Soft-
ware Product Lines,” in Component-Based Software Quality,
ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2003, vol. 2693, pp. 246–258.

[36] J. Van Gurp and C. Prehofer, “Version Management Tools as a
Basis for Integrating Product Derivation and Software Product
Families,” in Proc. of the SPLE’06 Workshop on Variability
Management, 2006, pp. 48–58.

[37] C. Thao, E. Munson, and T. Nguyen, “Software Configuration
Management for Product Derivation in Software Product
Families,” in Proc. ECBS’08, 2008, pp. 265–274.

[38] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the Source
Code of Multiple Software Variants for Reuse Potential,” in
Proc. of WCRE’11, 2011, pp. 303–307.

[39] J. Bosch, “Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization,” in Software Product
Lines. Springer, 2002, vol. 2379, pp. 247–262.

34

