
Managing Cloned Variants:
A Framework and Experience

Julia Rubin1,2, Krzysztof Czarnecki3, Marsha Chechik1

1University of Toronto, Canada
2IBM Research at Haifa, Israel

3University of Waterloo, Canada

mjulia@il.ibm.com, kczarnec@gsd.uwaterloo.ca, chechik@cs.toronto.edu

ABSTRACT
In our earlier work, we have proposed a generic framework for
managing collections of related products realized via cloning – both
in the case when such products are refactored into a single-copy
software product line representation and the case when they are
maintained as distinct clones. In this paper, we ground the frame-
work in empirical evidence and exemplify its usefulness. In par-
ticular, we systematically analyze three industrial case studies of
organizations with cloned product lines and derive the set of basic
operators comprising the framework. We discuss options for im-
plementing the operators and benefits of the operator-based view.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse Mod-
els; D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Design, Management

Keywords
Legacy software product lines, cloned product variants, industrial
case studies.

1. INTRODUCTION
Software Product Line Engineering (SPLE) promotes strategic,

well-managed software reuse [7, 24]. In reality, however, reuse
might be ad-hoc, often realized via artifact cloning (the “clone-and-
own” approach). Over the past decade, several strategies for deal-
ing with cloned product variants have been proposed. Some [9, 21,
39, 30] advocate refactoring them into software product line (SPL)
representations (the product line merge-refactoring), whereas oth-
ers [35, 38, 37] propose mechanisms for maintaining multiple vari-
ants without attempting to refactor them. Yet, these product mainte-
nance and reverse engineering solutions are often “monolithic” and
are designed with a specific project context or particular application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC 2013 August 26 - 30 2013, Tokyo, Japan
Copyright © 2013 ACM 978-1-4503-1968-3/13/08 ...$15.00.

domain in mind, making it difficult to reuse existing work for a new
case at hand. For example, an approach for merge-refactoring Mat-
lab/Simulink models [30] is not directly applicable to code hand-
written in C++.

Some approaches, often developed in seemingly unrelated con-
texts, can be used as “building blocks” for cloned product line man-
agement tasks – both merge-refactorings and clone maintenance.
Examples of such approaches include feature location [28] aimed
at tracing feature declarations to their corresponding implementa-
tions, as well as feature interaction detection [40] aimed at spot-
ting conflicts caused by feature compositions. However, sufficient
guidance on which approaches are needed and which of them are
applicable for a given scenario does not exist. Selecting the right
implementation for an approach is also challenging: even though
more than 20 feature location techniques are available [28], it is
unclear how to select one that works best in a particular context as
assumptions made by these techniques are not always explicated.
Moreover, existing approaches cover only a subset of activities re-
lated to the development, maintenance and refactoring of cloned
product variants; complementary approaches also need to be iden-
tified and developed.

The goal of our research is to support the management of cloned
variants by providing a framework for organizing knowledge re-
lated to the development, maintenance and merge-refactoring of
product lines realized via cloning. We empirically analyze a num-
ber of industrial case studies and devise a framework that specifies
and organizes a set of basic management operators – those that are
required to support both the case when refactoring of the cloned
variants into SPL representations is performed and the case when
such a refactoring is not desired or possible [8]. In fact, we show
that these two cases share a substantial number of common opera-
tors.

In our earlier 4-page paper [26], we gave an initial version of
the framework and its operators, focusing on the landscape of ex-
isting implementation approaches and the gaps that remain. The
goal of this work is both to ground the framework on empirical
evidence and exemplify its usefulness. In particular, we systemati-
cally analyze three industrial case studies that rely (or have relied)
on cloning to realize their product lines, derive the set of the re-
quired management activities and demonstrate their decomposition
into a set of basic operators.

We do not attempt to produce a complete set of operators yet, but
rather to explore and demonstrate the benefits of the operator-based
view for a more systematic organization of development tasks. We
aim to provide a common vocabulary to describe and compare ex-
isting techniques, helping identify remaining gaps and eventually
moving towards a recommender system that can assist users in se-
lecting an approach that best fits their purpose.

Contributions. This paper makes the following contributions.
1. We perform a detailed analysis of development activities in

three industrial organizations that employ (or have employed)
cloning to realize their product portfolio, decomposing them
into operator instances.

2. We present a refined version of the cloned product line man-
agement framework and its operators, incorporating lessons
learned from the analysis.

3. We propose the operator-based view for organizing the man-
agement tasks and creating a body of knowledge around their
implementations.

The reminder of the paper is structured as follows. In Section 2,
we describe our research methodology and give an organizational
context of the three case studies being analyzed. Section 3 de-
scribes the activities that are performed as part of the transition
from cloning to an SPL approach and identifies the relevant op-
erators. Section 4 identifies the operators required for the interim
coping with clones. We describe our vision of building the body of
knowledge around the operators in Section 5. Section 6 discusses
related approaches, while Section 7 concludes the paper with a
summary and an outline of future research directions.

2. RESEARCH METHODOLOGY AND
CASE STUDIES

In this section, we describe our research methodology and the
industrial case studies that we analyzed (see also Table 1 for a sum-
mary). We selected case studies based on the following criteria:

1. The company employs (or used to employ) cloning to realize
its product portfolio.

2. We have access to a significant amount of company-specific
data and a deep understanding of the development process.

These criteria lead us to choose three partner companies, diverse
enough to draw insightful conclusions. The first one is currently
in the advanced stage of the transition from cloning to a managed
SPLE approach (case study #1 – Section 3.1). The transition of the
second one, Danfoss Drives, is completed and has been reported
in [13, 12] (case study #2 – Section 3.2). In the third case, the
company still relies on cloning to implement its commercial prod-
ucts, and the transition to SPLE has just been initiated (case study
#3 – Section 3.3). Confidentiality issues prevent us from sharing
the names of the first and the third companies, which are both from
the aerospace and defense domains.

We performed semi-structured interviews with the employees
of the studied companies and completed our understanding of the
Danfoss Drives case using published data [13, 12]. Our analysis fo-
cused on each company’s development environment, including the
tools it uses, the development artifacts it maintains, the processes it
follows, the target SPLE approach the company aims to adopt and
the challenges it faces, as described in the remainder of this section.
We then analyzed in detail the activities that the company performs,
identified their atomic steps, mapped those steps to instances of the
operators and discussed automation opportunities (see Sections 3
and 4).

2.1 Case study #1
For the first case study, we analyze a software product line of a

large aerospace company, developed over the course of 15-20 years
by approximately 300 engineers, half of them system- and half soft-
ware engineers. As summarized in the second column of Table 1,
the product line of this company is realized using four types of ar-
tifacts: system requirements, software requirements, design mod-
els and tests. System and software requirements are maintained in

an internal requirements management tool similar to IBM Rational
Doors1. Design models are specified in SCADE2, with code be-
ing automatically generated from the design models using model-
driven technologies [32]. Due to regulatory requirements3, a de-
tailed vertical traceability is established between the artifacts: from
system to software requirements and further to the design models
and code.

The development process strictly follows a waterfall model. Over
50 products of the product line are implemented by cloning (cap-
tured by a complex clone derivation graph) with the cloned variants
kept as separate branches in a Software Configuration Management
(SCM) system. The goal of the company is to establish a compo-
nent library as well as a configurable framework architecture con-
necting the components. Those are to be used as a basis for all
future products of the product line. However, the company does
not intend to re-implement existing products on top of the common
framework – these products are to be maintained as is.

2.2 Case study #2
Danfoss Drives is one of the largest producers of frequency con-

verters – electronic power conversion devices used to control shaft
speed or torque of a three-phase induction motor. According to
the reports in [13, 12], the company produces three main product
series – for manufacturing industry, for HVAC (Heat, Ventilation
and Air-conditioning), and for the water segment. In addition, the
company provides many specialized products, e.g., for crane and
specific textile applications. It employs 1200 individuals globally
and approximately 200 in the R&D department. About 60 of them
are embedded software developers, working in four development
sites located in four different countries. Almost all of the function-
ality in a frequency converter is handled by software.

The main characteristics of the Danfoss development environ-
ment are summarized in the third column of Table 1. Product de-
velopment is addressed by a matrix organization where projects are
carried out by the integrated product development with dedicated
personnel and target markets. Line organizations provide skilled
developers for projects to draw upon to ensure application and do-
main knowledge for timely product releases. Exceptions are the
testing organization which is “global” to all products, and an Em-
bedded Software Platform team responsible for enforcing reuse.

The company follows an iterative development approach, with
most artifacts being C++ code and test cases. Since late 1990s,
the idea of managed reuse was promoted within the Danfoss de-
velopment organization, resulting in creation of an object-oriented
framework architecture written in C++. Yet, the evolution of the
code base was not really controlled, and reuse between products
was done in a “clone-and-own” way: code was taken from one
project branch to another via merging in an SCM system.

In 2005, the company decided to migrate its recently launched
new series of products to an SPLE approach, specifically, a con-
figurable platform (“the 150% view”) – a common code base in
which variability points are selectable via compiler switches. The
new series of products initially contained four cloned variants, two
of which were selected for a pilot study. The code of the selected
variants was analyzed to identify common and variable parts, and
refactored into a common platform.

In the following years, the remaining two products of the new
series were integrated into the common platform, and all additional
products were developed on top of it. For the platform-managed

1http://www-01.ibm.com/software/awdtools/doors/
2http://www.esterel-technologies.com/products/scade-suite/
3DO-178B

Table 1: Analyzed Case Studies.

Case Study #1 Case Study #2 Case Study #3

Domain Aerospace Electric motor controllers Aerospace and Defense

Process – V model (strictly waterfall)
– Model-centric, with full
requirements-to-code traceability
– DO-178B certified

– Iterative
– Code-centric

– Iterative
– Code-centric
– Requirements managed by a
requirements management tool but no
traceability to code is maintained
– Requirements-based testing

Artifacts – Textual requirements
– Executable design models (code is
generated)
– Tests

– C/C++ code
– Tests

– Textual requirements
– C/C++ code
– Tests

Transition
Process

– Over 50 product variants before
transition
– Complex derivation graph
– Six products as initial input to
transition

– At least four product variants in the
new series
– Two products used as input to
transition

– Five commercial product variants
and a couple of prototypes before
transition
– Two products as initial input to
transition

Target Component library and a configurable
framework architecture connecting
the components

Configurable platform (150% view) Component library

Status Transition to SPLE in progress Transition to SPLE completed Transition to SPLE initiated

code, each product team could either use the code “as is” or cre-
ate a branch from it with product-specific changes and additions.
Products of other series were still maintained as distinct clones,
with some being phased out.

At the time of writing, all products of the new series are derived
from a shared platform in a feature-oriented manner. The company
uses pure::variants4 to manage its platform containing over 1100
features and hundreds of configurations used by customers.

2.3 Case study #3
The third case study, just like the first one, comes from a large

aerospace and defense company (see the last column of Table 1).
We analyzed a relatively recent software-intensive product line, de-
veloped over the last five years. It stems from two similar products
which became successful and grew into a family containing five
commercial products and a couple of in-development prototypes.
Software is responsible for almost all of the functionality of these
products.

The product line was developed by around 30 R&D professionals
involved in different development stages – from requirements engi-
neering to testing, with a centralized development team responsible
for all products of the product line. Since the products are sup-
portive rather than safety-critical, the company spends less time on
regulatory issues, compared to the first case. For the same reason,
design artifacts are rather informal and not always synchronized
with code which is hand-written in C. The company uses IBM Ra-
tional Doors to maintain requirements. It complies to rigid testing
procedures at all development stages including customer sites.

The product line management team indicated that they realized
a they were developing a product line only after the success of
the initial products, when customers started to ask for additional
variants. The company made an effort to establish a library of
reusable components early in the process, yet this library was of-
ten bypassed, and developers used cloning to rapidly serve their

4http://www.pure-systems.com/

customers’ needs. Moreover, together with the disadvantages of
cloning, developers saw several advantages of the approach: it did
not require any upfront investment; it was a rapidly available and
easy to use practice, and it gave the developers freedom to make
necessary changes in their code, without any need to synchronize
their work with others [8]. For these reasons, the team mostly con-
tinued to clone.

With an increase in the number of products, a transition to SPLE
received a higher priority. The company thus aims to inspect the
existing implementations and identify reusable configurable com-
ponents with well-defined interfaces. These components will then
form a shared component library, allowing new products / projects
to pick components from it. Each component should be indepen-
dently testable so that the focus of the new product testing becomes
integration testing. Thus, the library of components is anticipated
to speed up both the development and the testing. Since the entire
product line is developed by one centralized team, the team is able
to redefine the development processes such that this time the library
is put into use and kept up-to-date.

At the time of writing, an initial process of identifying common-
alities and variabilities in the developed variants and building a li-
brary of reusable components has started.

3. TRANSITION TO SPLE
In this section, we describe the development activities that the

companies performed as part of the transition process. We start by
fixing some terminology (see also Figure 1).

We define a variant (a.k.a. product) as a well-formed set of ar-
tifacts, such as requirements, model elements and code statements.
A variant’s artifacts implement features. Inspired by Rajlich and
Chen [6], we represent a product feature as a pair consisting of a
feature declaration (FD) – a label and a short description that iden-
tifies the feature, and a feature implementation (FI) – a subset of
product artifacts (requirements, model elements, code statements,
etc.) that realize the feature declaration. A feature declaration is

Feature Declaration

fd1

fd2

fd3

Feature Relationship

A
rt

if
a

ct

Fe
a

tu
re

Tr
a

ce

Feature-Oriented System

Fe
a

tu
re

 Im
p

le
m

en
ta

ti
o

n

Figure 1: Notation.

traced to the feature implementation that realizes it. Features can
have relationships with each other, e.g., one feature can depend on
another in order to operate. A feature model is a set of feature dec-
larations and relationships between them. A feature-oriented sys-
tem (a.k.a. system) is a feature model and a set of artifacts traced
to feature declarations from that model. A feature-oriented system
can correspond to an individual product variant or a set of related
products (a software product line).

In what follows, we use the above terminology to define a set of
basic operators required for each of the case studies (see Table 2).
Due to space limitations, we present a detailed analysis only of the
first case study and a more brief analysis of the other two.

3.1 Case Study #1
The transition to SPLE proceeded in a top-down fashion, i.e.,

it started by first analyzing requirements documents, then creat-
ing a common architecture, and then building common assets, as
schematically shown in Figure 2. At the time of writing, the ar-
chitecture creation step has concluded and its verification is yet to
commence. It terms of implementation, the created component li-
braries cover about 10% of the architecture. The assets were built
incrementally using three major activities, described below.

Activity 1: Variability and commonality analysis.
This activity involves a comparison between a few variants in order
to assess the variability scope and build an initial feature model.

1.1 Compare requirements documents.
As the first step, requirements documents are analyzed and com-

pared to each other at the structural level. In this case study, all
requirements documents follow the same structure: major capabili-
ties are described in separate document sections which are grouped
hierarchically. Each section contains a set of requirements state-
ments. Every variant has its own requirements document. If a vari-
ant does not have a certain capability, the corresponding section in
the requirements document for that variant is missing.
findFD: In effect, each document outline represents a feature

tree of the corresponding variant, revealed using two conceptual
operations. The first, captured by the findFD operator (line 1 in
Table 2), returns the set of all feature declarations (FDs) realized
by a given variant. In this case study, the implementation of the
operator simply collects all sections in the corresponding document
and treats them as feature declarations: section titles are treated as
FD labels while section descriptions – as FD descriptions. The
result has to be reviewed by a domain expert: while the majority
of sections represent features, a few may not. Also, some section
titles are rather long, and shorter feature labels have to be created.
dependsOn?: The second operation retrieves dependencies be-

tween feature declarations and is captured by the dependsOn? op-
erator (line 3 in Table 2). There are several possible forms of such

Requirement
documentRequirement

documentRequirement
document

Initial feature
model

Implementation

Compare
requirement documents

Compare
implementations at feature level

Implementation
Implementation

Variant
1

Extract common architecture

Architecture
description
document

Refined
feature model

Feature to
architecture

traces

Verify architecture

Refined
Architecture

1
. V

ar
ia

b
ili

ty
 a

n
d

 c
o

m
m

o
n

al
it

y
an

al
ys

is
2

. D
ev

el
o

p
m

en
t

o
f

a
co

m
m

o
n

 a
rc

h
it

ec
tu

re
3

. D
ev

el
o

p
m

en
t

o
f

co
m

m
o

n
 a

ss
et

s

Common
Assets

Develop core assets for a certain
part of the architecture

Requirement
templates

Component
implementations

Variant
2

Variant
3

Refined
feature model

Variant
4

Variant
5

Variant
6

consultation

Figure 2: Transition Activities in Case Study #1.

dependencies, declaratively specified by the input property param-
eter. For example, one feature can require another in order to com-
pile. Behavior dependencies, when one feature requires the other in
order to operate correctly, are more complex. In our case, the input
property of the operator is configured to determine feature declara-
tions as dependent if their corresponding subsections have a parent
/ child relationship. The operator returns a set of witnesses, each
demonstrating the dependsOn relationship between the artifacts of
FD1 and FD2 (or none if the features are independent). In this case,
a witness is just a pair of section numbers where one is a subsection
of the other.

The result of applying these two operators is a tree of feature
declarations containing mandatory features of each variant. Note
that in this case study, the particular implementations of the two
conceptual operators can easily be merged and optimized, to pro-
duce a candidate feature tree in one pass, but this is not always true
in general.
same?: The requirements documents are further compared at the

statement level to find pairs of features from distinct variants that
are considered similar. Conceptually, this can be seen as an appli-
cation of the same? operator (line 4 in Table 2), which determines
whether two features are equivalent by considering their specifica-

Table 2: Operators for Managing Cloned Variants.

Operator Input Output

1. findFD variant set of FDs

2. findFI variant × FD × property FI

3. dependsOn? <FD1, variant> × <FD2, variant> × property set of witnesses

4. same? <FD1, variant1> × <FD2, variant2> × property set of witnesses

5. interact? set of <FDi, varianti> × property set of witnesses

6. compose system1 × . . .× systemn × matches × resolution system

7. reorganize system system′

tions and implementations. Like dependsOn?, this operator uses a
property that specifies equivalence criteria and returns a set of wit-
nesses exemplifying the disagreements (or none if the features are
equivalent).

In this case study, the implementation of same? matches fea-
ture declarations based on their lexical similarity (the Levenstein
distance metric [18]) of their corresponding sections in the require-
ments documents as well as the individual statements of these sec-
tions. Feature declarations that correspond to sections containing a
significant number of similar statements are considered similar as
well. This implementation works well since in this case documents
are mostly produced by cloning. Yet, the result still needs to be
reviewed and refined by a domain expert.

1.2 Compare implementations.
findFI: Next, the design models of several variants are com-

pared to each other. In this case, due to the regulatory constraints,
every element of design models contains traceability links to the re-
quirements it implements. Thus, establishing traceability between a
feature declaration and its corresponding feature implementation –
an instance of the findFI operator (line 2 in Table 2) – is trivial,
and the property input parameter of findFI is simply configured
to look for existing traceability links.
same?: Once the traceability is established, the feature declara-

tions of distinct variants are compared again, this time considering
design-level functions. This operation can be seen as a separate
application of the same? operator. While conceptually both com-
parison operations could have been performed at once, in this case
study they were executed separately, mostly because the compar-
ison at the implementation level was done by manual inspection.
We envision that this step can be automated using model match-
ing techniques [36]. Regardless of how the implementation-level
matching is done, its result still has to be reviewed by a domain
expert and modified where necessary. For example, some of the
differences can correspond to new, rather than already defined, fea-
ture declarations and hence should be lifted to the feature tree level.

1.3 Create an initial version of a feature model.
compose: This step involves merging the feature trees of the ana-

lyzed variants, unifying those declarations that are deemed similar.
This can be seen as an instance of the conceptual compose operator
(line 6 in Table 2): for n input systems, a set of matches between the
corresponding input elements, and a resolution parameter defining
how to handle conflicts that occur when input elements disagree.
The operator produces a merged system. In our case, we are only
interested in feature trees which are given to the compose operator
as a parameter. The set of matches contains feature declarations de-

cided by a process similar to the operator same?, and the resolution
parameter specifies which variant to prefer if the two variants dis-
agree. Again, while it is performed manually in this case study, we
can envision automation of the operator, relying on existing works
on feature model composition [1].

Activity 2: Development of a common architecture.
In this activity, three recent variants are analyzed in order to create a
common architecture, define modules, interfaces and connections.
The variants are picked so that they appear far apart in the cloning
derivation graph and implement a diverse set of features, ensuring a
sufficient scope coverage. The architecture is then validated using
another three variants.

2.1 Create a common architecture.
reorganize: The chosen variants are first reorganized and “nor-

malized” to create modules that cluster related artifacts together,
usually by their functionality and also by applying certain archi-
tectural patterns. To support this task, we use the reorganize

operator (line 8 in Table 2) which receives a system and a property
that declaratively defines the nature of the required reorganization,
as defined above. The operator returns a refined version of the sys-
tem, after the reorganization has been performed.

When possible, the implementation of reorganize should en-
sure that the traceability between implementation artifacts and their
corresponding feature declarations, established using findFI, is
preserved. Alternatively, new traceability relationships are to be
created. In this case study, the reorganization was performed man-
ually while keeping the traceability relationships. Automation rely-
ing on existing model and code refactoring techniques [22] might
also be possible and should be explored further. Yet, we do not
envision a fully automated process but rather a set of automated
techniques that assist the domain expert as necessary.
compose: Following the reorganization, the artifacts (both fea-

ture trees and implementations) of distinct variants are combined
using compose, creating a candidate architecture and a refined fea-
ture model, with traceability between them. This step was also
performed manually, involving architects with experience in build-
ing some of the previous variants. The outcome was a document
describing the resulting architecture.

2.2 Verify the common architecture.
reorganize: The created candidate architecture and the feature

model are further reviewed to validate their fitness and the ability to
support additional three variants, distinct from those that were used
as input to the previous step. This part of the review, conceptually
captured by an instance of reorganize applied on the generated
feature-based system, was also performed manually. This step re-

veals the need of applying the reorganize operator for both the
cloned variants before the transition and the product line architec-
ture after the transition, thus obtaining a feature-oriented system as
a parameter rather than a concrete variant.

Activity 3: Development of common assets.
The development of common assets is done incrementally, with
each increment covering a different part of the architecture. The
created assets, which include requirements templates (text docu-
ments with placeholders) and component implementations, are in-
tended to be used as libraries in the development of new variants.
findFI, same?: The activity relies on the ability to trace fea-

ture declarations from the generated feature model to their imple-
mentations in the analyzed variants, as established by the findFI

operator, as well as the ability to compare and identify disagree-
ments at the implementation level, using the same? operator. Then,
existing variants are manually inspected and consulted during the
development of the common assets: most of the assets are built
from scratch by a domain expert to fit the more general context, to
distill robust abstractions and ensure a high degree of modularity.

3.2 Case Study #2
In contrast to case study #1, the transition to SPLE in the second

case proceeded in a bottom-up fashion, starting from code differ-
ences and working up to a feature model. The process was car-
ried out incrementally, refining the common platform to improve
its quality and modularity by refactoring along the way. The pro-
cess involved four major activities, schematically shown in Figure 3
and described below.

Activity 1: Merge initial set of variants.
compose: As the first step, the implementations of two subsystems
is compared to each other on the code level using a textual diff
tool, and further unified. During the unification, conditional com-
pilation directives with #ifdef PRODUCT_IS_XXX commands
are introduced wherever the source code files disagreed with each
other. This activity is conceptually represented by an instance of
the compose operator, where the matches parameter is empty (i.e.,
only identical elements are considered similar) and the resolution is
to insert conditional compilation directives that represent original
variants.
findFD, findFI, interact?: The implementations of findFD

and findFI are trivial: a feature declaration is created for each in-
serted directive and traced to its corresponding code. A mutually-
exclusive relationship is defined between each pair of feature dec-
larations that correspond to distinct variants. That provides a trivial
resolution to the potential interaction of features that were not de-
signed to work together. Feature interactions, ranging from purely
syntactical to behavioral, are detected using the interact? opera-
tor (line 5 in Table 2) which obtains as input a property specifying
the form of interactions to be checked.

As the result of applying the above operators, a feature-oriented
system containing a common “150% view” representation of the
code artifacts is created. The system contains a “primitive” fea-
ture model with mutually-exclusive features that correspond to in-
put variants. This feature model drives the definition of two differ-
ent makefiles for building the two original products from the unified
code base.

Activity 2: Refactor to introduce meaningful features.
reorganize: In this activity, product-specific #ifdef statements
are manually inspected by the domain expert and replaced with
feature-specific statements #ifHAS_FEATURE_XXX == 1. This

Include
feature

makefile

Exclude
feature

makefile

Include
feature

makefile

Exclude
feature

makefile

1
. M

er
ge

 in
it

ia
l s

et
 o

f
va

ri
an

ts
2

. R
ef

ac
to

r
co

d
e

to
 in

tr
o

d
u

ce

m
ea

n
in

gf
u

l f
ea

tu
re

s
3

. B
ri

n
g

ad
d

it
io

n
al

 v
ar

ia
n

ts
 o

n
to

 t
h

e
p

la
tf

o
rm

4
. C

re
at

e
a

fe
at

u
re

 m
o

d
el

 a
n

d

tr
an

sf
o

rm
at

io
n

s

Variant 1 Variant 2

Compare and merge

Common code with
product-specific

compilation
directives

Makefile 1 Makefile 2

Inspect and replace with
meaningful features

Common code with
feature-based
compilation
directives

Include
feature

makefile

Exclude
feature

makefile

Compare and merge

Refactor to introduce
meaningful features

Common code
with feature-

based compilation
directives

Include
feature

makefile

Exclude
feature

makefile

Include
feature

makefile

Exclude
feature

makefile

Include
feature

makefile

Exclude
feature

makefile

Variant
Variant

Variant

Extract features

Feature model

Transforma-
tions for
makefile

generation

Define relationships between
features

Feature to
code traces

Figure 3: Transition Activities in Case Study #2.

activity, seen as an instance of the conceptual reorganize opera-
tor, includes refining the set of feature declarations, the traceability
relationships between them, and the corresponding code.

In the same step, product-specific makefiles are also replaced
by feature-specific counterparts: for each feature declaration, one
makefile holds the list of artifacts to build when the feature is en-
abled, whereas the other holds the list of artifacts required when the
feature is disabled (in most cases – an empty list).

Activity 3: Bring additional variants onto the platform.
The remaining variants are incrementally integrated into the con-
structed platform, one-by-one, until the full coverage is achieved.
First, the code of a variant is combined with the existing plat-
form, using product-specific #ifdef directives (via the operators
compose, findFD, findFI and interact?, as described above).
Later, the code is manually refined (via reorganize) to include
feature-specific statements.

Activity 4: Create a feature model and transforma-
tions.
As the final step, compiler directives used to configure the code are
extracted into a feature model that is managed by pure::variants.

...

...

Requirement
documentRequirement

documentRequirement
document

Initial feature
model

Implementation

Compare requirement
documents

Compare implementations

Implementation
Implementation

1
. V

ar
ia

b
ili

ty
 a

n
d

 c
o

m
m

o
n

al
it

y
an

al
ys

is
2

. D
ev

el
o

p
 R

eu
sa

b
le

 L
ib

ra
ry

Component
Library

Extract Reusable Components

Component
Implementations

Test

Compare tests

Test
Test

Brainstorming

Refined
Feature Model

Variant

Refined
Component

Library
Component

Implementations

Extract Reusable Components

Next
Variant

Consultation

Next
VariantNext

Variant

In plan

Figure 4: Transition Activities in Case Study #3.

4.1 Extract features.
findFD, findFI: This step can be seen as an instance of the

findFD operator whose implementation trivially extracts the ex-
isting compilation directives. In the Danfoss case, the extracted
directives were listed in a text file which was further imported to
pure::variants. In this case, detecting traceability between the ex-
tracted feature declarations and the code that corresponds to them
(the instance of the findFI operator) is also trivial.

4.2 Define relationships between features.
dependsOn?, same?, interact?, reorganize: Since the above

process does not produce dependencies between features, the cre-
ated feature model lists all features as optional. Refining it to in-
clude richer relationships such as grouping or alternatives concep-
tually relies on operators that can determine such relationships be-
tween feature declarations – dependsOn?, same?, interact?, as
well as on the ability to reorganize the resulting feature model
and improve its structure [34]. In the Danfoss case, this step was
carried out manually by domain experts. Finally, transformations
for creating makefiles for a specific feature configuration were de-
veloped using pure:variants, again, in a straightforward manner.

3.3 Case Study #3
In the third case, the transition process to SPLE has only just

began. The company started from the analysis of the product port-
folio and the existing product artifacts, aiming at capturing com-
monalities and variabilities among the current set of variants. Later
on, the development of a reusable component library is planned, as
shown in Figure 4. At this stage, all activities in this case study
are performed manually, with the goal to identify and investigate
automation opportunities. Thus, we do not discuss automation of
the operators yet.

Activity 1: Variability and commonality analysis.
The goal of this activity is to create a feature model that scopes
the product portfolio and explicates the list of supported features.
Unlike the case study #1, there is no clear documentation listing
the set of all existing feature declarations. Thus, the activity is
performed in two steps.

1.1 Brainstorming.
findFD?: During a few brainstorming sessions, the development

team members holding various organizational roles (i.e., managers,
architects, developers and testers) proposed an initial set of fea-
ture declarations (findFD?), focusing mainly on capabilities that
are perceived to be distinguishing between the developed product
variants and those that customers use to describe the products. The
set of elicited feature declarations is captured in a text document.
dependsOn?, same?, interact?: Identifying requires and mu-

tually exclusive relationships between the found feature declara-
tions is again performed manually based of the team’s familiarity
with the developed products. A requires dependency is introduced
every time one feature depends on the presence of the other (as
represented by the dependsOn? operator), while a mutually exclu-
sive relationship is introduced every time features are not designed
to work together (interact?) or implement functionality that is
perceived similar (same?).

1.2 Comparing artifacts.
findFD: In this step, the initial set of feature declarations is fur-

ther refined by inspecting development artifacts such as require-
ments documents, code and test descriptions. Artifacts are com-
pared to each other manually and, similarly to the case study #1,
disagreements “hint” at additional variation points, which become
feature declarations. This is an instance of the findFD operator,
performed manually.
dependsOn?, same?, interact?: Relationships between features

are also detected manually. Conceptually, require dependencies be-
tween features (dependsOn?), distinct implementations of similar
features (same?) and conflicting features (interact?) are consid-
ered. The set of the discovered feature declarations and relation-
ships between them produce a version of a feature model.

Activity 2: Development of reusable library (proposed).
compose, reorganize: The company plans to build a library of
reusable components in an incremental manner, by analyzing prod-
uct variants one by one. Each analyzed variant either augments the
library with additional components (an instance of the compose

operator) or refines parameters of the components already in the
library (an instance of compose followed by reorganize).
reorganize, findFI: After each iteration, the assets might be

extended, refined and refactored (reorganize) in order to improve
encapsulation and ensure that components can be usable in a di-
verse set of variants. The feature model is to be consulted at this
stage to ensure that the components are easily configurable to pro-
vide the functionality perceived as important. If possible, traceabil-
ity between feature declarations and the artifacts that implement
them is to be established (findFI).

4. COPING WITH CLONES
The transition from cloning to SPLE is an incremental process

which might easily take several years, as in case study #2. In case
study #3, the transition is only in its initial stage, so immediate
customer needs still have to be addressed by cloning. Moreover, in
all three case studies considered here, the created SPL architecture
only targets future products, while existing ones are still maintained
as distinct clones.

In this section, we focus on the problem of maintaining existing
cloned product variants. In most cases, little automation is avail-
able to support the required maintenance activities [25]. In fact, in
our case studies, such activities are performed manually. We thus
discuss these activities collectively, mapping them to instances of
the conceptual operators in Table 2.

Activity 1: Propagating changes between variants.
findFD, findFI, same?: Changes made in one cloned variant might
be useful in another. To locate such changes, correspondences be-
tween feature declarations of a variant (detected using findFD)
and the artifacts that implement them (detected using findFI) are
established. Differences between distinct implementations of the
same feature declaration (detected using same? and represented by
a set of witnesses) are inspected and propagated between variants.
In the simplest form, the differences can be detected using a tex-
tual difference tool, as was done in case study #2. Detecting more
sophisticated behavioral differences is also possible, e.g., using the
technique in [11].

Activity 2: Sharing features between variants.
findFD, findFI: Like individual changes, complete features can
be shared between distinct product variants. Here, again, a list of
feature declarations, together with traces to implementation-level
artifacts, is identified and maintained (instances of findFD and
findFI).
same?, dependsOn?: Different implementations of the chosen

feature of interest are compared to each other (using same?) se-
lecting the one found most appropriate. Further, the set of other
features it requires (detected using dependsOn?) is inspected. If
those features are not part of the target product, some of their ar-
tifacts have to be transferred to the target product together with
the selected feature, to ensure its correct operation, as discussed
in [29].
interact?, compose: Next, the interact? operator verifies

whether the new feature interferes with the functionality of the ex-
isting ones in the target product variant. Following that, compose
integrates the selected feature and those that it requires in the target
system, resolving the conflicts identified by interact?.

Activity 3: Retiring features.
findFD, findFI, dependsOn?: While new features are added, some
of the existing features might no longer be needed. Like in the pre-
vious activities, the set of feature declarations and their correspond-
ing implementations is detected (using findFD and findFI) and
features that depend on the one being removed are identified (using
dependsOn?). Since the functionality of such features should not
be affected by the feature retirement, artifacts that these features
use are not removed.

Activity 4: Establishing new variants.
findFD, same?, dependsOn?, interact?, compose: Depending on
the maturity of the transition process, there might still be a need to
create new variants following the existing cloning practices, like in
the case study #3. In such cases, the feature portfolio of all existing

Textual documents Short textual documents, e.g.,
requirements.

Levenstein distance Case study #1

UML class diagrams Compared models have common
ancestors. Elements are compared
based on their unique ids.

IBM Rational Software
Architect

...

UML class diagrams UMLDiff ...

findFD findFI dependsOn? same? interact? compose reorganize

Elements with similar names are
likely to be similar.

Input Assumptions Existing Implementations Usage Examples

Figure 5: An Initial Sketch of the Knowledge-Based Library.

variants (detected using findFD) is inspected, and the variant with
the most similar functionality is used as a starting point for cloning.
Then, features that are not required in this variant are removed, as
described in Activity 3, while additional features are either devel-
oped from scratch or “borrowed” from other variants, as described
in Activity 2.

5. TOWARDS BUILDING THE BODY OF
KNOWLEDGE

Our empirical analysis of the case studies demonstrated the ap-
plicability of the operators and their ability to support a variety of
development activities related to the management of cloned product
variants, as summarized in Table 3. By focusing on the operators,
we broke processes down into well-studied logical components,
thus promoting the reuse of existing component implementations
when dealing with cloned product variants.

For example, the implementation of the same? operator can be
based on analyzing lexical similarities between textual documents,
e.g., using the Levenstein distance metric [18], as was done in case
study #1. This implementation is applicable to short and unstruc-
tured text, such as requirements descriptions. When comparing de-
sign artifacts (i.e., models of different types), a variety of model
comparison and matching techniques can be applied. These are
surveyed in depth in [36]. Comparison techniques for code arti-
facts have also been studied extensively. These can rely either on
textual diff tools, e.g., [20], as in case study #2, on tools that attempt
to detect semantic differences, e.g., [11], or on more sophisticated
implementations based on code clone detection [3].

Numerous implementations of findFI (a.k.a. feature location)
have been developed (see [28] for a survey). Feature interaction
techniques, implementing interact?, have also received a lot of
attention, especially in the telecommunications domain [40].

We believe that the operator-based view enables a better under-
standing of existing implementations and their applicability. Ul-
timately, creating a library of possible implementations for each
operator, together with the assumptions that the implementation
makes and the properties it supports, can facilitate an efficient man-
agement of cloned variants and enable reuse across organizations
and domains. A sketch of a vision for such a library in shown in
Figure 5. “Crowdsourcing” of existing implementations can even-
tually lead to an increased quality and a larger spectrum of available
solutions.

6. RELATED WORK
Several works [10, 2, 15, 14, 16] capture guidelines and tech-

niques for manually transforming legacy product line artifacts into
SPLE representations. Some also introduce automatic approaches
to reorganize product variants into annotative representations [17,
21, 31, 27]. Works on feature-oriented refactoring [19, 23] focus on
identifying the code for a feature and factoring the code out into a
single module or aspect aiming at decomposing a program into fea-
tures. Our work differs from those as we do not propose a specific

Table 3: Applicability of the Operators.
findFD findFI dependsOn? same? interact? compose reorganize

C
as

e
1

1. Variability and commonality
analysis.

3 3 3 - - 3 -

2. Development of a common
architecture.

- 3 - - - 3 3

3. Development of common
assets.

- 3 - 3 - - -

C
as

e
2

1. Merge initial set of variants. 3 3 - - 3 3 -

2. Refactor to introduce
meaningful features.

- - - - - - 3

3. Bring additional variants onto
the platform.

3 3 - - 3 3 3

4. Create a feature model and
transformations.

3 3 3 3 3 - 3

C
as

e
3

1. Variability and commonality
analysis.

3 - 3 3 3 - -

2. Development of reusable
library.

- 3 - - - 3 3

C
lo

ni
ng

A
ct

iv
iti

es

1. Propagating changes between
variants.

3 3 - 3 - - -

2. Sharing features between
variants.

3 3 3 3 3 3 -

3. Retiring features. 3 3 3 - - - -

4. Establishing new variants. 3 3 3 3 3 3 -

refactoring approach or technique but rather capture and classify
common tasks required during such refactoring.

Other authors also looked at systematic classifications of pro-
gramming tasks: Chen and Rajlich [6] identified six fundamental
program comprehension operators that trace feature label, descrip-
tion and implementation to each other. We incorporated some of
them into our work, as these operators are also applicable in the
context of cloned product variants. However, our main focus was
on cases of multiple variants rather than single-copy systems and
involved manipulations on the variants rather than only compre-
hension activities. Borba et al. [4] suggested a theory of product
line refinement. This is a special case of variant management – the
more general problem that we consider here. She et al. [33] clas-
sified several software re-engineering scenarios involving feature
model synthesis. These can be seen as detailed scenarios for our
findFD and dependsOn? operators, while our work has a broader
scope. Brunet et al. [5] identified model merging operators and
specified their algebraic properties. Our work is not limited to mod-
els and considers a broader set of necessary maintenance activities,
focusing specifically on cloned product variants.

7. CONCLUSIONS AND FUTURE WORK
Software Product Line Engineering is gaining increasing pop-

ularity in industry due to its promises to enable a significant im-
provement in time-to-market and quality, reduction in engineering
costs, increase in portfolio size, and more. However, in reality,
many companies still employ cloning to realize their product vari-
ants. In this work, we conducted an empirical study involving three
such companies and analyzed in detail the development activities
these companies perform.

We broke the activities down into individual clone management
operators and showed that our operators support both the case when

a company transitions to a structured SPL-based artifact manage-
ment approach and the case when existing clone variants are main-
tained as is. Taking the operator-based view allowed us to study and
organize the landscape of development tasks for managing cloned
variants as well as to map these tasks to a broad set of existing
solutions.

While one can come up with a different set of domain-specific
operators that closer reflect the necessary development activities
for each case and exploit the increased degree of specialization, we
believe that the generic operator-based view leads to more efficient
development and maintenance practices. Specifically, it allows or-
ganizations to locate and reuse existing work as well as to share
experiences with each other using a common vocabulary.

This is a first step in exploring the space of clone management
operators. While we showed that the current set is reasonable, it
is most likely incomplete. In the future, we aim to refine the set
of operators and their interfaces. Moreover, identifying and clas-
sifying contexts in which the operators are automatable as well as
quantifying the cost of providing such automation is still required.
“Smart” implementations of the operators that can work incremen-
tally, to help address incremental changes in the development arti-
facts, would also be very useful.

We invite the product line community to join our efforts and fur-
ther improve the framework by refining the set of the operators,
studying their applicability and organizing existing work around
the established common terminology. We believe that such an ef-
fort will assist practitioners, by allowing a greater generality of
what the field offers, as well as solution developers, by system-
atizing and organizing the support that is to be provided.

8. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France. Comparing

Approaches to Implement Feature Model Composition. In
Proc. of ECMFA’10, pages 3–19, 2010.

[2] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and
M. Apel. Transitioning Legacy Assets to a Product Line
Architecture. In Proc. of FSE’99, pages 446–463, 1999.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE
TSE, 33:577–591, 2007.

[4] P. Borba, L. Teixeira, and R. Gheyi. A Theory of Software
Product Line Refinement. Theoretical Computer Science,
455:2–30, 2012.

[5] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh. A Manifesto for Model Merging. In
Proc. of GaMMa’06, pages 5–12, 2006.

[6] K. Chen and V. Rajlich. Case Study of Feature Location
Using Dependence Graph. In Proc. of IWPC’00, pages
241–249, 2000.

[7] P. C. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[8] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker,
and K. Czarnecki. An Exploratory Study of Cloning in
Industrial Software Product Lines. In Proc. of CSMR’13,
2013.

[9] D. Faust and C. Verhoef. Software Product Line Migration
and Deployment. J. of Software Practice and Experiences,
30(10):933–955, 2003.

[10] S. Ferber, J. Haag, and J. Savolainen. Feature Interaction and
Dependencies: Modeling Features for Reengineering a
Legacy Product Line. In Proc. of SPLC’02, pages 235–256,
2002.

[11] D. Jackson and D. A. Ladd. Semantic Diff: A Tool for
Summarizing the Effects of Modifications. In Proc. of
ICSM’94, pages 243–252, 1994.

[12] H. P. Jepsen and D. Beuche. Running a Software Product
Line: Standing Still is Going Backwards. In Proc. of
SPLC’09, pages 101–110, 2009.

[13] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally Invasive
Migration to Software Product Lines. In Proc. of SPLC’07,
pages 203–211, 2007.

[14] K. C. Kang, M. Kim, J. Lee, and B. Kim. Feature-oriented
Re-engineering of Legacy Systems into Product Line Assets.
In Proc. of SPLC’05, pages 45–56, 2005.

[15] K. Kim, H. Kim, and W. Kim. Building Software Product
Line from the Legacy Systems: Experience in the Digital
Audio and Video Domain. In Proc. of SPLC’07, pages
171–180, 2007.

[16] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi.
Refactoring a Legacy Component for Reuse in a Software
Product Line: a Case Study: Practice Articles. J. of Software
Maintenance and Evolution, 18(2):109–132, 2006.

[17] R. Koschke, P. Frenzel, A. P. Breu, and K. Angstmann.
Extending the Reflexion Method for Consolidating Software
Variants into Product Lines. Software Quality Control,
17(4):331–366, 2009.

[18] V. I. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics Doklady,
10, 1966.

[19] J. Liu, D. Batory, and C. Lengauer. Feature Oriented
Refactoring of Legacy Applications. In Proc. of ICSE’06,
pages 112–121, 2006.

[20] D. MacKenzie, P. Eggert, and R. Stallman. Comparing and

Merging Files with GNU diff and patch. Network Theory
Ltd., 2003.

[21] T. Mende, R. Koschke, and F. Beckwermert. An Evaluation
of Code Similarity Identification for the Grow-and-Prune
Model. J. of Soft. Maintenance and Evolution,
21(2):143–169, 2009.

[22] T. Mens and T. Tourwé. A Survey of Software Refactoring.
IEEE TSE, 30(2):126–139, 2004.

[23] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard.
Separating Features in Source Code: an Exploratory Study.
In Proc. of ICSE’01, pages 275–284, 2001.

[24] K. Pohl, G. Boeckle, and F. van der Linden. Software
Product Line Engineering : Foundations, Principles, and
Techniques. Springer, 2005.

[25] B. Ray and M. Kim. A Case Study of Cross-System Porting
in Forked Projects. In Proc. of FSE’12, 2012.

[26] J. Rubin and M. Chechik. A Framework for Managing
Cloned Product Variants. In Proc. of ICSE’13 NIER track,
pages 249–252, 2013.

[27] J. Rubin and M. Chechik. Quality of Merge-Refactorings for
Product Lines. In Proc. of FASE’13, pages 83–98, 2013.

[28] J. Rubin and M. Chechik. A Survey of Feature Location
Techniques. In I. Reinhartz-Berger et al., editor, Domain
Engineering: Product Lines, Conceptual Models, and
Languages. Springer, To appear.

[29] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik.
Managing Forked Product Variants. In Proc. of SPLC’12,
pages 156–160, 2012.

[30] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic
Variation-Point Identification in Function-Block-Based
Models. In Proc. of GPCE’10, pages 23–32, 2010.

[31] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Extraction of
Feature Models from Formal Contexts. In Proc. of SPLC’11,
pages 4:1–4:8, 2011.

[32] D. Schmidt. Guest Editor’s Introduction: Model-driven
engineering. IEEE Computer, 39(2):25, 2006.

[33] S. She, K. Czarnecki, and A. Wasowski. Usage Scenarios for
Feature Model Synthesis. In Proc. of VARY’12, pages 13–18,
2012.

[34] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. Reverse Engineering Feature Models. In Proc.
of ICSE’11, 2011.

[35] M. Staples and D. Hill. Experiences Adopting Software
Product Line Development without a Product Line
Architecture. In Proc. of APSEC’04, pages 176–183, 2004.

[36] M. Stephan and J. R. Cordy. A Survey of Methods and
Applications of Model Comparison. Technical report,
Queen’s University, Kingston, Canada, 2011.

[37] C. Thao, E. Munson, and T. Nguyen. Software Configuration
Management for Product Derivation in Software Product
Families. In Proc. ECBS’08, pages 265–274, 2008.

[38] J. van Gurp and C. Prehofer. Version Management Tools as a
Basis for Integrating Product Derivation and Software
Product Families. In Proc. of VaMoS’06, pages 48–58, 2006.

[39] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno.
FAVE: Factor Analysis Based Approach for Detecting
Product Line Variability from Change History. In Proc. of
MSR’08, pages 11–18, 2008.

[40] P. Zave. FAQ Sheet on Feature Interaction. http:
//www2.research.att.com/~pamela/faq.html,
2004.

