
Model traceability

&

N. Aizenbud-Reshef

B. T. Nolan

J. Rubin

Y. Shaham-Gafni

Traceability relationships help stakeholders understand the many associations and

dependencies that exist among software artifacts created during a software

development project. The extent of traceability practice is viewed as a measure of

system quality and process maturity and is mandated by many standards. This paper

introduces model traceability, reviews the current state of the art, and highlights open

problems. One issue that impedes wide adoption of traceability is the overhead

incurred in manually creating and maintaining relationships. We review the latest

research advancements that address this issue through the automatic discovery of

trace relationships. Model-driven development provides new opportunities for

establishing and using traceability information. We discuss automatic generation of

trace information through transformations and the use of traceability relationships to

maintain consistency and synchronize model artifacts. We conclude with a discussion

of the implementation and utilization challenges that lie ahead.

INTRODUCTION
Models are used in software development to manage

complexity and communicate information to many

stakeholders. There are models for business pro-

cesses, system requirements, architecture, design,

and tests. Each model has its own notation,

representation, tools, and users. Thus developers,

tools, artifacts, and processes are largely isolated

and only weakly integrated. Interconnections are

largely implicit, opening the door for inconsistencies

and making it difficult to propagate change. End-to-

end integration can make these relationships explicit

and maintain traceability information throughout.

Model-driven development (MDD) provides an

opportunity to automate both the creation and

discovery of traceability relationships, and to

maintain consistency among the heterogeneous

models used throughout the system-development

life cycle. The formality or semiformality of models

makes it possible to apply analysis methods, which

may then serve as a basis to automate traceability.

In addition, model transformations (forward, like

code generation, or backward, like reverse engi-

neering) can be the source of generated links or

mappings.

OVERVIEW

The IEEE Standard Glossary of Software Engineering

Terminology
1

defines traceability as follows:

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 515

(1) The degree to which a relationship can be

established between two or more products of the

development process, especially products having

a predecessor-successor or master-subordinate

relationship to one another; for example, the

degree to which the requirements and design of a

given software component match; (2) The degree

to which each element in a software development

product establishes its reason for existing; for

example, the degree to which each element in a

bubble chart references the requirement that it

satisfies.

This definition is strongly influenced by the origi-

nators of traceability—the requirements manage-

ment community. Gotel and Finkelstein
2

define

requirements traceability as follows:

. . . the ability to describe and follow the life of a

requirement, in both a forward and backward

direction; i.e., from its origins, through its

development and specification, to its subsequent

deployment and use, and through periods of

ongoing refinement and iteration in any of these

phases.

We suggest a much broader definition of trace-

ability. We regard traceability as any relationship

that exists between artifacts involved in the soft-

ware-engineering life cycle. This definition includes,

but is not limited to the following:

� Explicit links or mappings that are generated as a

result of transformations, both forward (e.g., code

generation) and backward (e.g., reverse engi-

neering)
� Links that are computed based on existing

information (e.g., code dependency analysis)
� Statistically inferred links, which are links that are

computed based on history provided by change

management systems on items that were changed

together as a result of one change request

Traceability is achieved by defining and maintaining

relationships between artifacts involved in the

software-engineering life cycle during system de-

velopment. In this paper, we use the words

relationship and link interchangeably to denote a

traceability relationship.

Traceability is mandated by many standards, such

as MIL-STD-498, IEEE/EIA 12207, and ISO/IEC

12207. These standards derive from the waterfall

methodology in which the role of traceability

stemmed from the need to show that the resulting

system met contractual agreements. Such standards

reflect the view that traceability practice is a

measure of system quality and software process

maturity. This view is illustrated by the Software

Engineering Institute’s concept of Capability Matur-

ity Model**.
3

Different stakeholders in the software development

process have different traceability goals. The project

manager
4

perspective is that traceability supports

demonstrating that each requirement has been

satisfied and that each system component satisfies a

requirement. From the perspective of requirements

management, traceability facilitates linking require-

ments to their sources and rationales, capturing the

information necessary to understand the evolution

of requirements, and verifying that the requirements

have been met. During design, traceability enables

designers and maintainers to keep track of what

happens when a change request is implemented

before a system is redesigned.
5

With complete

traceability, more accurate costs and schedules of

changes can be determined, rather than depending

on the programmer to know all the areas that will be

affected by these changes.

Although the advantages are well documented,

traceability practice is not widespread. The com-

monly stated reason is the high cost of manual

creation and maintenance of traceability informa-

tion.
6

In addition, the lack of guidance as to what

link information should be produced and the fact

that those who use traceability are commonly not

those producing it also diminishes the motivation of

those who create and maintain traceability infor-

mation.

The development and use of techniques to trace

requirements originated in the early 1970s to

provide the means to answer a range of questions,

such as: Is this requirement necessary? Why is the

design implemented this way, and what were the

other alternatives? What is the impact of changing a

requirement?

The first method used to express and maintain

traceability was cross-referencing. This involves

embedding phrases like ‘‘see section x’’ throughout

the project documentation. Since those days, many

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006516

different techniques have been used to represent

traceability relationships including standard ap-

proaches such as matrices,
7,8

databases,
9

hypertext

links,
10

graph-based approaches,
11

formal meth-

ods,
12

and dynamic schemes.
13

Automated support for traceability began with

general-purpose tools such as word processors,

spreadsheets, or database systems and became

easier to use with the advent of hypertext technol-

ogy. Still, the major drawback of this method

remains: The traceability information is created and

maintained manually, as is the responsibility for

managing its validity with respect to change. Thus,

the traceability information quickly becomes out-

dated as the system evolves.

Special-purpose requirements management tools,

such as IBM RequisitePro*
14

and Telelogic

DOORS**,
15

introduced more advanced traceability

solutions, which support the management of trace-

ability information validity by monitoring changes

of linked elements and indicating suspect links.

They also support integration with other software

development tools to facilitate traceability from

requirements to other products of the software life

cycle. Despite these advances, the burden of keeping

traceability information current remains a manual

task because requirements, most commonly ex-

pressed as informal text, require a human to

understand and determine link validity. In addition,

most tools do not provide rich traceability schemes,

thus allowing only simple forms of reasoning about

traces.

STATE OF THE ART

In this section, we review the state of the art of

traceability technology and methodology and the

potential that MDD brings to the field. We discuss

technologies to implement traceability, the latest

advancements in the automatic discovery of trace

relationships, and the complexities of managing

traceability relationships as software artifacts

evolve.

Technology
When building traceability support into their tools

tool developers face several challenges. Some of the

major issues stem from the need to reference

software artifacts that are external to the tool. We

next discuss issues in the representation, persis-

tence, and maintenance of traceability relationships.

Metamodel

The most basic traceability solution provides the

ability to link artifacts but does not provide

semantics for these relationships; the link merely

represents the fact that there is some relationship

between the artifacts and allows the user to trace

from one to the other. Many papers discuss the need

to distinguish between different types of relation-

ships with specific semantics in order to facilitate

and support richer analysis and reasoning about

& Model-driven development
provides new opportunities
for establishing and using
traceability information &

traces. There are two approaches to supporting

richer semantics. The first is to allow users to add

attributes to relationships; they can define relation-

ship types that are aligned with their process and the

types of artifacts they use. Then they can perform

queries based on those attributes. This approach is

taken by some commercial tools such as DOORS,

but its limitation is that the tool treats all attributes

uniformly and cannot provide specialized behavior

for different types of relationships.

The second approach is to provide a predefined

standard set of relationship types that can be

supported by the tool. This approach is presented by

Ramesh and Jarke.
16

They made extensive obser-

vations of traceability practice in several organiza-

tions, and their analysis revealed that participants

fell into two distinct groups, which the authors refer

to as low-end and high-end. Low-end users view

traceability simply as a mandate from project

sponsors and use simple traceability schemes to

model dependencies among requirements, system

components, and compliance verification proce-

dures. High-end users view traceability as an

important component of a quality systems engi-

neering process and employ much richer traceability

schemes, thereby enabling more precise reasoning

about traces.

The authors propose two levels of reference models.

The first level, aimed at low-end users, provides a

handful of relationship types. The second level

provides a richer set of link types for high-end users.

Some examples of relationship types are satisfies,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 517

justifies, describes, depends on, and validates.

Additional authors have also proposed traceability

metamodels.
11,17,18

The limitation of this approach

is that the types of relationships are fixed, while

organizational needs and practices vary. We believe

an optimal solution should provide a predefined link

metamodel, allow customization, and allow exten-

sibility to define new link types.

Linkage information

Most existing traceability solutions are provided by

requirement management tools and support tracing

requirements to other products of the software life

cycle. Examples of such commercial tools are

DOORS, Tcp Sistemas e Ingenierı́a IRqA**, Igatech

Systems RDT, Reqtify, IBM RequisitePro,
14

and

Verocel VeroTrace**.
19

Typically, these tools store

link information within the artifacts themselves.

This limits the types of related artifacts to only those

the tool can recognize and manipulate. Links to

artifacts external to the tool are achieved by specific

integration with other tools or by treating all

artifacts as text artifacts and making the user

responsible for understanding artifact semantics and

knowing where to position links in the text. Keeping

the link information with the artifacts is problematic

for several reasons: Each artifact has its own

representation and semantics, which makes per-

forming an analysis difficult; each new type of

artifact or tool requires a special integration effort;

and if the link is directed and stored only in the

source artifact, it is not visible from the target

artifact. If link information is stored in both artifacts,

it adds to the burden of maintaining consistency

when changes to the link are made.

MDD places new demands on such traceability

tools, which must now be capable of dealing with

different types of models—such as business, data,

design, and test—and their artifacts. In addition, the

need to support collaborative and multisite devel-

opment adds new types of artifacts, such as team-

room documents, chat discussions, and e-mails.

In one approach to this problem all artifacts are kept

in a metadata repository.
20

This solution, although

attractive from the traceability point of view, is less

appealing to tool vendors because it requires tight

integration and strong coupling. A compromise

leaves the responsibility for the management of

artifacts to the tool while keeping some replicated

artifact information in a shared repository. Rela-

tionships are kept either as properties in the

representation of artifacts in the repository or as

‘‘first-class citizens,’’ having their own representa-

tion in the repository. Examples of solutions that

follow this approach are given in References 11, 21,

and 22.

Keeping link information separate from the artifacts

requires the ability to uniquely identify artifacts

across space and time. Tool artifacts may not always

have a unique identifier, especially if their gran-

ularity is smaller than physically stored artifacts

(e.g., a method in a Java** class). Technologies

such as link anchors and bookmarks can be used to

identify such artifacts, but more research is required

to make such anchors robust when artifacts are

edited, cut, and pasted.

Automated creation

The increased burden of manually specifying and

maintaining traceability information is a major

impediment to the general acceptance of traceability

practice.
6

Much of the recent research has focused

on finding ways to automate both the creation and

maintenance of traceability information. One re-

search direction is to employ text mining and

information retrieval techniques to infer relation-

ships between artifacts. Alexander
10

describes a

semiautomatic method for creating links between

use cases and use-case references and between

terms and their definitions in a glossary. Markup is

used to mark the terms that users are interested in

linking. Automatic tools then search for the related

artifact and generate hypertext documents. Huffman

Hayes et al.
23

have studied a method for improving

candidate link generation by applying information

retrieval techniques. They focus on improving recall

and precision to reduce the number of missed

traceability links and to reduce the number of

irrelevant potential links that an analyst has to

examine when performing requirements tracing.

Several information retrieval algorithms were eval-

uated by comparing their results to those of a senior

analyst who traced both manually and with an

existing requirements tracing tool. Initial results

suggest that information-retrieval methods can

retrieve a significantly higher percentage of the links

than analysts can, even when they use existing

tools, and do so in much less time while achieving

comparable ratios of meaningful to irrelevant links.

Antoniol et al.
24

propose a method based on

information retrieval to recover traceability links

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006518

between source code and free text documents. They

apply both a probabilistic and a vector space

information retrieval model in two case studies to

trace Cþþ source code onto manual pages and Java

code to functional requirements. Marcus and Mal-

etic
25

use latent semantic analysis, an advanced

information retrieval technique, to extract the

meaning (semantics) of the documentation and

source code, and then use this information to

identify traceability links based on similarity

measures.

Another research direction involves the analysis of

existing relationships to obtain implied relations.

For example, the work of Sherba et al.
22

builds on

techniques from open hypermedia and information

integration. These techniques provide generic ser-

vices that enable the discovery, creation, mainte-

nance, viewing, and traversal of relationships. Users

of this system can define new derived relationships

as a chain of existing relationship types (rel
1
!rel

2
!

. . . !rel
n
), and the system automatically discovers

instances of the derived relationships. Eyged and

Grünbacher
26

present an approach that requires

minimal initial trace information between scenarios

and the tests that validate them and between tests

and design elements. Trace dependencies between

requirements and code can be automatically inferred

by checking which code classes were activated as a

result of running a test scenario for a specific

requirement. Once this information is available,

analysis methods are applied to find additional trace

dependencies among requirements and between

requirements and model elements (e.g., state

transitions).

Analyzing change history may also provide a source

of automatically computed links. Ying et al.
27

and

Zimmermann et al.
28

apply different data mining

techniques to the change history of a code base to

determine change patterns, that is, sets of files that

were changed together frequently in the past. Files

in the same change set are related and can be used

to recommend potentially relevant source code to a

developer performing a modification task.

Relationship management

One of the most challenging aspects of traceability is

how to maintain the correctness and relevance of

relationships while the artifacts continue to change

and evolve. This is especially critical for links that

are maintained manually because the traceability

process is unclear and an imbalance between the

amount of work involved and the perceived benefits

often results in insufficient resources being devoted

to traceability maintenance. Thus, traceability in-

formation gradually erodes.

The manner in which a relationship is managed

depends on its nature and origin. Both manual effort

and computation time need to be invested to

manage relationships. The goal is to minimize

manual effort at the expense of increasing compu-

tation resources, but this approach is a bit simplistic.

The number of relationships may be huge and the

computation solution may not scale. The following

definitions can help clarify relationship management

trade-offs.

An imposed relationship is a relationship between

artifacts that exists by volition of the relationship

creator. For example, a verifies relationship can be

created between a test and a requirement. The

relationship exists until the creator decides to

remove it. When the requirement changes, it is not

& A well-defined, automated
method of accomplishing
traceability would be of value in
any domain, on any project,
with any methodology &

clear if the relationship is still valid; thus, it becomes

suspect, and the tester can check the test and

determine if the relationship is still valid or if the test

no longer verifies the requirement, in which case the

relationship becomes invalid.

An inferred relationship between artifacts is one that

exists because the artifacts satisfy a rule that

describes the relationship. This inference can be

done either automatically by a computer or man-

ually. For example, if method m1 calls method m2,

then there is a call-dependency relationship between

m1 and m2. An inferred relationship cannot be

invalid, because if the rule is not satisfied, the

relationship simply does not exist. An inferred

relationship is suspect if one of its related artifacts

has changed and it is not clear if the rule is still

satisfied. To determine if the relationship still exists,

some action needs to be taken to reestablish the

relationship existence.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 519

A manual relationship is a relationship that is

created and maintained by a human user. This

relationship can be either imposed or inferred. If a

manually related artifact changes, the relationship

becomes suspect, and a person needs to check if the

relationship still exists or to reestablish its validity.

A computed relationship is one created and main-

tained automatically by a computer. There are two

basic types of computed relationships: derivation

and analysis.

A derivation relationship denotes that, given the

content of one artifact, it is possible to compute

valid content for the related artifact. This kind of

relationship is typically created when code gener-

ation or model transformations are run. A derivation

relationship is a type of imposed relationship that is

valid at the time of generation. If a source artifact is

later changed, the relationship becomes suspect and

requires reapplying the derivation (transformation

or code generation) to assure its validity. If a derived

(target) artifact is changed, again the relationship

becomes suspect. In this case, the course of action

depends on the directionality of the relationship.

(Unidirectional transformations can be executed in

one direction only, in which case a target model is

computed or updated, based on a source model.

Bidirectional transformations can be executed in

both directions, which is useful in the context of

synchronization between models.
29

) If the relation-

ship is directed, then there needs to be a check

whether the changed artifact still satisfies the

derivation relationship, and the relationship is either

valid or invalid according to the result. If the

relationship is bidirectional, then we assume the

existence of a reverse derivation function that is

applied from the target to the source and can change

the source so that the derivation relationship is

again valid.

An analysis relationship is a type of inferred

relationship created by analysis programs that

examine code or models against a set of rules.

Discovering dependency relationships between a

Java class and the classes it depends on through

import is an example. Typically, analysis programs

are computation-intensive. Because a change in one

of the related artifacts makes the relationship

suspect, the analysis program needs to be rerun. If

there are many such relationships, a small change

can trigger a huge amount of computation. Thus, in

these kinds of relationships it makes sense to use

lazy computation. The analysis is reapplied only

when a relationship is needed but has been marked

suspect.

Several researchers have proposed ways to improve

the maintenance of manual relationships. Huang-

Cleland et al.
30

propose event-based traceability, in

which requirements and other software engineering

artifacts are linked through publish-subscribe rela-

tionships: Requirements and other change instiga-

tors take on the role of publishers, and dependent

artifacts act as subscribers. When requirements are

changed, events are published to an event server

and related notifications sent to all dependent

subscribers. Messages carry sufficient information

to provide meaningful semantics about each event

to support the update process. Olsson and Grundy
31

describe an approach in which all changes are

tracked. Some changes can be resolved automati-

cally, and for the rest, developers are informed so

that they can take appropriate action.

Marcus and Maletic
25

propose a way to deal with

relationship validity in an automated way by

defining a validity scale. They define the notion of

causal conformance relationships that represent

logical semantic dependencies among documents

with an implied logical ordering over time. These

relationships are represented by using a hypertext

model, and a conformance analysis method com-

pares node-modification time stamps and link-

validation time stamps to produce a heuristic

conformance rating of the likely seriousness of

conformance problems.

Freude and Königs
32

propose an approach for

automating consistency management among related

artifacts using reference objects and consistency

relations. Each element in any of the models is

referenced by a reference object. Consistency

relations are defined between reference objects and

provide conditions that must be fulfilled. The

relations can be used to navigate between refer-

enced objects, detect consistency violations, and

maintain consistency.

The introduction of configuration management

makes relationship management more complicated.

In addition to relationship validity, relationship

versions need to be managed. Watson
33

describes

the complex issues of managing requirements and

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006520

respective traceability relationships across versions

and their connection to project milestones.

Methodology
The system development methodology can signifi-

cantly impact the ease or difficulty of producing

traceability artifacts and performing analyses. All

methodologies describe what work products need to

be produced, and many include a traceability matrix

as one of their work products. Usually no guidance

is given as to how this should be produced, and

most end up being produced manually, with the

attendant costs and issues.

One can create a system model that includes a

requirements metamodel. In fact, this is the intent of

Systems Modeling Language. The requirements

metamodel and the resulting model that includes a

requirements model explicitly provide for trace-

ability from the requirements to the other artifacts

that implement or realize them. The existence of

such a model, however, again provides no guidance

on how to produce (preferably automatically) the

trace relationships between the requirements and

their realization. In other words, the fact that we are

able semantically to produce meaningful trace

relationships gets us no further along the road to an

effective traceability strategy. The relationships still

need to be built and maintained manually. It would

be better if we could generate the artifacts, or at least

the skeleton of them, produce the traceability links

as we generate them, and then fill in details as

needed. As discussed below, Model Driven Archi-

tecture** (MDA**) strategies provide the promise of

being able to do this.

The utilization of a use-case-centric methodology,

such as the IBM Rational Unified Process*,
34

can

facilitate traceability and provide an effective basis

for an MDA. Use cases, a concept developed by

Jacobson et al.,
35

provide a unifying and often

simplifying concept for a system and can drive

development, testing, and documentation efforts.

A use case is defined as a sequence of actions that

returns value back to an actor. The collection of use

cases that represents all the significant interactions

between the system and the outside world (between

the system and its actors) constitutes the system-

level functional requirements. Other important

requirements exist, but they can be expressed as

either constraints on the whole system or con-

straints on the system use cases. This distinction is

not meant to devalue other requirements, for very

often these constraints and requirements determine

the very nature of the system. It is a matter of focus:

By concentrating on the use cases, one can provide

context for nonfunctional requirements and can

organize them around the use cases. This facilitates

traceability. The nonfunctional requirements can be

traced to the use cases, but this is likely to be

manual, although it could be facilitated by some of

the techniques discussed earlier.

Each use case is a thread through the system that

returns significant value back to an actor or the

domain in which it exists. It can be thought of as a

horizontal slice through the system, which usually

exercises architecturally significant portions of the

system. Development efforts can therefore be

organized around the use cases. Each completed use

case provides significant value, facilitating iterative

development, reducing risk, and enhancing stake-

holder satisfaction.

Because a use case, by definition, returns a value,

that value can be tested. Testing can be organized by

use cases, and the test cases can be associated with

the use cases. This continues to simplify the

organization of artifacts and provides another

dimension of traceability. This traceability can be

done either manually, with its drawbacks, semi-

automatically by using a naming convention and a

script or program to generate traceability informa-

tion, or automatically by generating a test-case

skeleton from the use case with a transformation.

Once a use case has been defined, at least the

skeleton of a test case for it should be generated

automatically.

The IBM Rational* Unified Process for Systems

Engineering (RUP SE),
36

a variant of the RUP*, was

developed to address the needs of large-scale

systems and the systems engineers who develop

them. The RUP SE facilitates traceability through a

technique called use-case flowdown, based on a

logical decomposition of the system. The RUP SE

activity of architectural analysis posits a set of

subsystems that collaborate to fulfill the responsi-

bilities of the system. Use-case flowdown describes

the collaborations among subsystems and derives

subsystem requirements through those collabora-

tions. Each subsystem can then be considered a

system in itself, and use-case flowdown can be

recursively applied.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 521

A use-case realization describes how a set of entities

collaborate to ‘‘realize’’ a use case. Use cases may be

realized through three types of models: collabora-

tion of subsystems and classes, state machines, or

activity models. Again, once a use case is identified,

a use-case realization for it can be generated using a

transformation. The use case can be traced to the

realization, either manually or preferably automati-

cally, through the transformation. The realization

contains a set of participants, which can therefore be

traced to the use case (requirement). In some cases,

this level of traceability is sufficient. In other cases,

it is necessary to trace further; each participant is

considered a system in its own right, and the process

is recursively applied.

Each participant in the realization requires infor-

mation or services from the other participants. In an

object-oriented paradigm, they obtain these services

by sending messages to the other participants by

calling the operations of the other participants.

& An optimal solution should
provide a predefined link
metamodel, allow customization,
and allow extensibility to define
new link types &

These operations are analogous to finer-grained use

cases in the context of the participants; there are

certain requirements imposed on them, and it is

expected that values will be returned. These use

cases or operations will have their own realizations

with a different set of participants.

This chain of use case ! use case realization !
participant ! operation provides a basis for trace-

ability through an arbitrary number of levels of

decomposition. In effect, by following a rigorous

development process, a logical call tree can be

developed. A significant part of system traceability

can be obtained by tracing through the call tree. It is

very difficult to trace this manually, less difficult to

do so if an appropriate naming scheme is applied

and a traceability script or program written, and

easier yet if traces are generated by transformations.

Traceability and MDD
The model-driven approach focuses on models as

the primary artifacts. MDD recognizes the necessity

of having several kinds of models to represent the

system as it progresses from early requirements

through final implementation. These models may

represent different aspects of the system (e.g.,

structural or behavioral), or they may represent the

system at varying levels of abstraction (e.g., an

analysis model or a design model). In this section,

we discuss the role of traceability in maintaining

consistency among models and in model

transformations.

Inconsistencies among models representing different

viewpoints of a system, or among specifications at

differing levels of abstraction, can arise during or

between phases of software development, raising

the compelling issue of how to manage consistency

among different models and between models and

code.
37

Grundy et al.
38

provide an excellent review

of various tools and different approaches to incon-

sistency management. According to their view,

some inconsistencies may be automatically cor-

rected; however, many inconsistencies cannot, or

should not, be automatically corrected. Hence,

mechanisms are required to inform developers of

inconsistencies and facilitate the monitoring and

resolution of inconsistencies.

Desfray believes that traceability is an essential part

of the solution.
39

Several recent papers have

proposed to use traceability as the basis for detecting

and informing related stakeholders about inconsis-

tencies.
30,31,40

As it is usually impossible to keep a

software system consistent at all times, tools need to

have different policies for consistency enforcement.

Future work in this area is needed to define a

traceability model that supports detecting, repre-

senting, storing, and propagating a wide range of

inconsistencies, and tying these with appropriate

inconsistency management policies.

MDA,
41

the Object Management Group approach to

MDD, is based on modeling and automated mapping

of models to implementations through model

transformation. Two standardization efforts are

underway to realize model transformations: the

MetaObject Facility (MOF**) 2.0 Query/Views/

Transformations (QVT)
42

and the MOF Model-to-

Text Transformation Language.
43

Transformations

may be unidirectional or bidirectional. Updating

unidirectional transformations and synchronizing

bidirectional transformations require the means to

identify the existing target model element related to

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006522

a given source model element. Thus, such trans-

formations need to create and maintain mappings

between source and target models.

Technologies to perform model transformations

range from conventional programming languages to

specific transformation languages.
44

Czarnecki and

Heslen
29

propose a taxonomy for the classification

of model transformation approaches. The genera-

tion of traceability links is one of the dimensions of

this classification. According to Czarnecki and

Heslen, transformation approaches divide into those

that provide dedicated support for traceability and

those that depend on the user to encode the

generation of traceability, using the same mecha-

nisms as those for generating any other kinds of

model elements. In the case of automated support,

the approach may still provide some control over

how many traceability links are created (in order to

limit the amount of traceability data). Finally, there

is the choice of the location at which the links are

stored, for example, in the source and target, or

separately.

Jouault
45

distinguishes between internal traceabil-

ity, which is maintained by the transformation

engine during the transformation to assist with the

transformation algorithm, and external traceability,

which is a persistent mapping kept beyond the

transformation execution. Many approaches allow

the serialization of internal traceability information.

The main drawback is that the format and gran-

ularity in which such traceability is stored are

predefined and may not be compatible with the

representations used by other tools that make use of

traceability information.

The QVT standard from OMG aims to provide a

general-purpose language for achieving model

transformations. The second revised submission of

the QVT-Merge Group defines a hybrid declarative/

imperative transformation language, with the de-

clarative part being split into a two-level architec-

ture: a high-level relational language and a low-level

core language, where the relational language is

compiled into the core language.
46

Traceability

relationships between model elements involved in a

transformation are created implicitly for the rela-

tional language and are defined explicitly as trace

classes in the core language. Transformations have

been designed to support incremental updating:

Once a relationship (a set of trace instances) has

been established between models by executing a

transformation, small changes to a source model

may be propagated to a target model by reexecuting

the transformation in the context of the trace,

causing only the relevant target model elements to

be changed without modifying the rest of the model.

Although much progress has been done in the area

of model transformations, the integration with

traceability is still weak. Transformation solutions

tend to define their own internal traceability and do

not integrate well with existing traceability solutions

that provide analysis and query capabilities on the

traceability information.

CONCLUSION
We have reviewed the traceability landscape, with

emphasis on issues relevant to the software life

cycle and MDD. One of the main concerns is the lack

of integration among the various environments and

tools that need to share traceability information. A

necessary step toward better integration is the

definition of a standard traceability metamodel.

Such a model should provide a definition of

reference objects representing traceable artifacts and

specify different types of traceability relationships

with standardized semantics. The traceability

metamodel should provide for customization and

support extensibility mechanisms. In addition, a

standard format for exchanging traceability infor-

mation is needed.

Another issue that needs to be addressed is the

ability to uniquely identify artifacts across space and

time. Tools typically do not do this, but future tools

will need to create and maintain globally unique

identifiers for artifacts of different granularities.

Several approaches to automatically discover trace-

ability relationships were discussed. These initial

efforts are promising, yet they are still preliminary.

More research is needed to discover additional and

better techniques for automatic traceability creation.

One approach that may be promising is to monitor

user gestures to infer relationships. Each method for

automatic relationship discovery provides one piece

of the puzzle, but to obtain a complete picture, we

still need to fit the pieces together and develop

methods to integrate them to provide a complete

solution.

We introduced the complexity and trade-offs in-

volved in automated relationship management.

Future work in this area is needed to define a

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 523

traceability model that supports detecting, repre-

senting, storing, and propagating a wide range of

inconsistencies, and tying these together with

appropriate inconsistency management policies.

One of the concepts introduced was a validity scale.

Future investigation may help determine if the

concept of varying degrees of confidence can help

with prioritizing resource utilization (manual and

computational).

The technology used to support traceability is only

half the story. Equally, if not more important, is the

relationship of traceability with the software devel-

opment process and methodology. Traceability

techniques originated in the 1970s when the water-

fall methodology dominated. Since then, there have

been many innovations in software development

methodology, for example, agile and iterative

processes. It may be interesting to revise traceability

practice in light of these novelties.

Finally, we discussed the major role that traceability

plays in model-driven engineering and the current

state of the art. Even though much progress has

been made, there are still many challenges that lie

ahead. The integration of transformations and

traceability needs improvement, possibly through a

definition of a standard traceability metamodel.

ACKNOWLEDGMENTS
We thank Geoffrey Clemm for many interesting and

enlightening e-mail discussions; his ideas served as

the basis for the section on traceability relationship

management. We thank Peri Tarr and Kim Letkeman

for their insights and contribution to this paper, and

also the anonymous reviewers whose comments

helped us better focus the paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Carnegie Mellon University Software Engineering Institute,
Telelogic AB, Tcp Sistemas e Ingenierı́a, Verocel, Inc., Sun
Microsystems, Inc., or Object Management Group, Inc. in the
United States, other countries, or both.

CITED REFERENCES
1. IEEE Std 610.12-1990, ‘‘IEEE Standard Glossary of

Software Engineering Terminology,’’ � IEEE, New York
(September 1990).

2. O. C. Z. Gotel and A. C. W. Finkelstein, ‘‘An Analysis of
the Requirements Traceability Problem,’’ Proceedings of

the First International Conference on Requirements
Engineering, Utrecht, The Netherlands (1994),
pp. 94–101.

3. Capability Maturity Model Integration (CMMI), http://
www.sei.cmu.edu/cmmi/.

4. G. Stehle, ‘‘Requirements Traceability for Real-Time
Systems,’’ Proceedings of EuroCASE II, London, England
(April 1990), pp. 1–27.

5. M. Edwards and S. Howell, A Methodology for System
Requirements Specification and Traceability for Large
Real-Time Complex Systems, Technical Report, U.S. Naval
Surface Warfare Center Daahlgren Division, Dahlgren,
VA 22448 (1991).

6. P. Arkley, P. Mason, and S. Riddle, ‘‘Position Paper:
Enabling Traceability,’’ Proceedings of the 1st Interna-
tional Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, Scotland (September
2002), pp. 61–65.

7. A. M. Davis, Software Requirements: Analysis and
Specification, Prentice-Hall, Upper Saddle River, NJ
(1990).

8. M. West, ‘‘Quality Function Deployment in Software
Development,’’ IEE Colloquium on Tools and Techniques
for Maintaining Traceability During Design 180, 5/5–5/7
(December 2, 1991).

9. J. Jackson, ‘‘A Keyphrase Based Traceability Scheme,’’
IEE Colloquium on Tools and Techniques for Maintaining
Traceability During Design 180, 2/1–2/4 (December 2,
1991).

10. I. Alexander, ‘‘Toward Automatic Traceability in Indus-
trial Practice,’’ Proceedings of the 1st International
Workshop on Traceability in Emerging Forms of Software
Engineering, Edinburgh, Scotland (September 2002),
pp. 26–31.

11. F. A. C. Pinheiro and J. A. Goguen, ‘‘An Object-Oriented
Tool for Tracing Requirements,’’ IEEE Software 13, No. 2,
52–64 (1996).

12. J. Cooke and R. Stone, ‘‘A Formal Development Frame-
work and Its Use to Manage Software Production,’’ IEE
Colloquium on Tools and Techniques for Maintaining
Traceability During Design 180, 10/1 (December 2, 1991).

13. E. Tryggeseth and O. Nytrø, ‘‘Dynamic Traceability Links
Supported by a System Architecture Description,’’ Pro-
ceedings of the IEEE International Conference on Software
Maintenance, Bari, Italy (1997), pp. 180–187.

14. Rational RequisitePro, IBM Corporation, http://
www-306.ibm.com/software/awdtools/reqpro/.

15. DOORS, Telelogic, http://www.telelogic.com/products/
doorsers/index.cfm.

16. B. Ramesh and M. Jarke, ‘‘Toward Reference Models for
Requirements Traceability,’’ IEEE Transactions on Soft-
ware Engineering 27, No. 1, 58–93 (January 2001).

17. J. Dick, ‘‘Rich Traceability,’’ Proceedings of the 1st
International Workshop on Traceability in Emerging
Forms of Software Engineering, Edinburgh, Scotland
(September 2002), http://www.soi.city.ac.uk/;zisman/
WSTPapers/Dick.pdf.

18. P. Letelier, ‘‘A Framework for Requirements Traceability
in UML-Based Projects,’’ Proceedings of the 1st Interna-
tional Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, Scotland (September
2002), pp. 30–41.

19. VeroTrace, Verocel Inc., http://www.verocel.com/
verotrace.htm.

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006524

20. European Computer Manufacturers Association (ECMA),
Reference Model for Frameworks of Software Engineering
Environments, ECMA TR/55, Third Edition, (June 1993),
http://www.ecma-international.org/publications/files/
ECMA-TR/TR-055.pdf.

21. P. A. Wilcox, M. J. Smith, A. D. Smith, R. J. Pooley, L. M.
MacKinnon, and R. G. Dewar, ‘‘OPHELIA: An Architec-
ture to Facilitate Software Engineering in a Distributed
Environment,’’ Proceedings of the 15th International
Conference on Software and Systems Engineering and
Their Applications, Paris, France (2002), Volume 2,
pp. 1/7–7/7.

22. S. A. Sherba, K. M. Anderson, and M. Faisal, ‘‘A
Framework for Mapping Traceability Relationships,’’
Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering,
Montreal, Canada (September 2003), http://www.soi.
city.ac.uk/;gespan/paper5.pdf.

23. J. Huffman Hayes, A. Dekhtyar, and J. Osbourne,
‘‘Improving Requirements Tracing via Information Re-
trieval,’’ Proceedings of the 11th IEEE International
Requirements Engineering Conference, Monterey Bay, CA
(2003), p. 138–150.

24. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.
Merlo, ‘‘Recovering Traceability Links between Code and
Documentation,’’ IEEE Transactions on Software Engi-
neering 28, No. 10, 970–983 (October 2002).

25. A. Marcus and J. I. Maletic, ‘‘Recovering Documentation-
to-Source-Code Traceability Links Using Latent Semantic
Indexing,’’ Proceedings of the 25th IEEE/ACM Interna-
tional Conference on Software Engineering, Portland, OR
(May 2003), pp. 125–136.

26. A. Egyed and P. Grünbacher, ‘‘Automating Requirements
Traceability: Beyond the Record & Replay Paradigm,’’
Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, Edinburgh, Scotland
(September 2002), pp. 163–171.

27. A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-
Carroll, ‘‘Predicting Source Code Changes by Mining
Change History,’’ IEEE Transactions on Software Engi-
neering 30, No. 9, 574–586 (September 2004).

28. T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
‘‘Mining Version Histories to Guide Software Changes,’’
Proceedings of the 26th International Conference on
Software Engineering, Edinburgh, Scotland (2004)
pp. 563–572.

29. K. Czarnecki and S. Helsen, ‘‘Taxonomy and Catego-
rization of Model Transformation Approaches,’’ IBM
Systems Journal 45, No. 3, 621–646 (2006, this issue).

30. J. Huang-Cleland, C. K. Chang, and M. Christensen,
‘‘Event-Based Traceability for Managing Evolutionary
Change,’’ IEEE Transactions in Software Engineering 29,
No. 9, 796–810 (September 2003).

31. T. Olsson and J. Grundy, ‘‘Supporting Traceability and
Inconsistency Management Between Software Artifacts,’’
Proceedings of the IASTED International Conference on
Software Engineering and Applications, Boston, MA
(November 2002), http://serg.telecom.lth.se/research/
publications/docs/99_sea_information_tool.pdf.

32. R. Freude and A. Königs, ‘‘Tool Integration with
Consistency Relations and Their Visualization,’’ ESEC/
FSE Workshop on Tool Integration in System Develop-
ment, Helsinki, Finland (September 2003), pp. 6–10.

33. R. Watson, Smarter Requirements Management with
Intelligent Traceability, White Paper, Telelogic North
America Inc., Irvine, CA (July 2003).

34. P. Kruchten, The Rational Unified Process—An Introduc-
tion, Second Edition, Addison-Wesley-Longman, Read-
ing, MA (2000).

35. I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard, Object-Oriented Software Engineering: A Use-Case
Driven Approach, Addison-Wesley, Boston, MA (1992).

36. M. Cantor, ‘‘Rational Unified Process for Systems
Engineering,’’ The Rational Edge (August 2003), http://
www-128.ibm.com/developerworks/rational/library/
content/RationalEdge/aug03/f_rupse_mc.pdf.

37. R. Paige and Y. Shaham-Gafni, Model Composition:
Development of Consistency Rules, Modelware Report
D1.5 (September 2005), http://www.modelware-ist.org/
index.php?option¼com_remository&Itemid¼79&func¼
fileinfo&id¼11.

38. J. Grundy, J. Hosking, and W. B. Mugridge, ‘‘Incon-
sistency Management for Multiple-View Software Devel-
opment Environments,’’ IEEE Transactions on Software
Engineering 24, No. 11, 960–981 (November 1998).

39. P. Desfray, MDA—When a Major Software Industry Trend
Meets Our Toolset, Implemented Since 1994, White Paper,
Softeam (2001), http://www.omg.org/mda/mda_files/
MDA-Softeam-WhitePaper.pdf.

40. N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-
Gafni, and D. S. Kolovos, ‘‘Operational Semantics for
Traceability,’’ ECMDA Traceability Workshop, Nurem-
berg, Germany (November 2005), pp. 7–14.

41. MDA Guide Version 1.0.1, OMG Document omg/
2003-06-01, Object Management Group, Inc. (June 2003).

42. MOF 2.0 Query/Views/Transformations RFP, OMG
Document ad/2002-04-10, Object Management Group,
Inc. (revised on April 24, 2002).

43. MOF Model to Text Transformation Language RFP, OMG
Document ad/2004-04-07, Object Management Group,
Inc. (revised on May 27, 2004).

44. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt, ‘‘Model
Transformations in Practice,’’ ACM/IEEE 8th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica (October
2005), http://sosym.dcs.kcl.ac.uk/events/mtip05/
long_cfp.pdf.

45. F. Jouault, ‘‘Loosely Coupled Traceability for ATL,’’
Proceedings of the European Conference on Model Driven
Architecture Workshop on Traceability, Nuremberg,
Germany (November 2005), http://www.sciences.
univ-nantes.fr/lina/atl/www/papers/
ECMDATraceability05.pdf.

46. Revised Submission for MOF 2.0 Query/View/Transfor-
mations RFP (ad/2002-04-10), QVT-Merge Group, Version
2.1, OMG Document ad/05-07-01, Object Management
Group, Inc. (August 2005).

Accepted for publication December 2, 2005.

Netta Aizenbud-Reshef
IBM Haifa Research Lab, Haifa University Campus, Mount
Carmel, Haifa 31905, Israel (neta@il.ibm.com). Ms.
Aizenbud-Reshef works in the Software Asset Management
Group on a research project in application analysis and
understanding, with a focus on service-oriented architecture
transformation. She has B.A. and M.S. degrees in computer
science from the Technion–Israel Institute of Technology.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 AIZENBUD-RESHEF ET AL. 525

Published online July 11, 2006.

Brian T. Nolan
IBM Software Group, 83 Hartwell Avenue, Lexington,
Massachusetts 02421 (bnolan@us.ibm.com). Dr. Nolan is a
course developer at Rational University, specializing in model-
driven development. Prior to his current position, he was the
regional practice lead for the Rational Unified Process for
Systems Engineering. Dr. Nolan holds a Ph.D. degree in the
classics from Ohio State University.

Julia Rubin
IBM Haifa Research Lab, Haifa University Campus, Mount
Carmel, Haifa 31905, Israel (mjulia@il.ibm.com). Ms. Rubin
works in the Model Driven Engineering Technologies Group
on a research project in the area of model understanding and
analysis. She has an M.S. degree in computer science from the
Technion–Israel Institute of Technology.

Yael Shaham-Gafni
IBM Haifa Research Lab, Haifa University Campus, Mount
Carmel, Haifa 31905, Israel (yaelsg@il.ibm.com). Ms.
Shaham-Gafni works in the Model Driven Engineering
Technologies Group, leading in the area of integrated solution
engineering. She has an M.S. degree in computer science from
the Technion–Israel Institute of Technology. &

AIZENBUD-RESHEF ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006526

