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ABSTRACT
Model merging is widely recognized as an essential step in a variety
of software development activities. During the process of combining
a set of related products into a product line or consolidating model
views of multiple stakeholders, we need to merge multiple input
models into one; yet, most of the existing approaches are applicable
to merging only two models.

In this paper, we define the n-way merge problem. We show that
it can be reduced to the known and widely studied NP-hard problem
of weighted set packing. Yet, the approximation solutions for that
problem do not scale for real-sized software models. We thus eval-
uate alternative approaches of merging models that incrementally
process input models in small subsets and propose our own algo-
rithm that considerably improves precision over such approaches
without sacrificing performance.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Computer-aided software engineering (CASE); D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering, and reengineering

General Terms
Design, Management

Keywords
Model merging, combining multiple models, weighted set packing.

1. INTRODUCTION
Model merging – combining information from several models into

a single one – is widely recognized as an essential step in a variety
of software development activities. These include reconciling partial
(and potentially inconsistent) views of different stakeholders [20],
composing changes made in distinct branches of a software config-
uration management (SCM) system [13], and combining variants
of related products into a single-copy software product line (SPL)
representation [10, 7, 18].
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Merging is usually seen as a combination of three distinct op-
erators – compare, match and compose – all of which have been
extensively studied in the literature [4, 18]. Yet, while many afore-
mentioned activities require combining multiple sources of input
together, the existing work mostly focuses on merging just two in-
put models [21, 13, 16]. A straightforward approach to merging
multiple inputs is then to do so in the pairwise manner, i.e., merge n
models using n− 1 pairwise operations. A subset-based approach
further generalizes on that, allowing to fix a certain number of input
models that are processed in each iteration. However, the quality
of the result produced using subset-based approaches, as well as
the effect of the chosen subset size or the order in which the input
models are picked, remains unclear.

In this paper, we take a closer look at the problem of n-way merg-
ing. We refine existing compare, match and compose definitions to
consider tuples rather than pairs of elements from multiple distinct
input models. We focus on the matching step – the most challenging
among the three – and show that it can be reduced to the weighted
set packing problem which is known to be NP-hard [2]. We study
and compare the state-of-the-art approximations to that problem,
both theoretically and empirically, exploring their applicability to
merging real-life models of a reasonable size. We discover that the
scalability of these approximation algorithms is limited to a small
number of small models and thus that they cannot be directly applied
to real-life cases of model merging.

Further, we investigate the quality of the subset-based incremental
approaches and propose our own polynomial-time heuristic n-way
merging algorithm, NwM, that considers all input models simul-
taneously rather than processing them in any specific order. We
empirically evaluate the quality and the performance of NwM by
comparing it to the subset-based approaches, using as subjects two
real-life and 300 randomly generated models. We show that NwM
outperforms the alternative approaches in the majority of the cases,
without any significant performance penalty.

Contributions. This paper makes the following contributions:

1. We formally define the n-way model merging problem.
2. We provide a theoretical and an empirical evaluation of the

state-of-the-art approximation algorithms for n-way matching,
via the weighted set packing problem.

3. We describe a number of polynomial-time subset-based ap-
proaches for n-way matching, as well as contribute a novel
heuristic algorithm, NwM, that simultaneously considers all
n input models together.

4. We provide a theoretical and an empirical evaluation of the
proposed algorithms, showing cases where NwM significantly
outperforms the alternative approaches.

The rest of the paper is structured as follows. Section 2 describes
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Figure 1: Example UML Models.

the running examples and illustrates n-way merging. Section 3 gives
background on the classical merge problem. We define n-way merge
in Section 4 and study the applicability of existing solutions to this
problem, via reduction to the NP-complete weighted set problem,
in Section 5. We describe polynomial-time n-way matching ap-
proaches, including the novel NwM algorithm, in Section 6. We
evaluate these approaches theoretically and empirically in Section 7.
We discuss related work in Section 8 and conclude in Section 9.

2. EXAMPLE
We illustrate the n-way model merging problem using small UML

model fragments inspired by our health care case study (see Fig-
ure 1(a)). The first model fragment, M1, contains a single UML
class CareTaker (element #1) which has two attributes: id that
uniquely identifies the caretaker person and office that specifies
where the person can be found. The second fragment, M2, also
contains two classes: Physician (element #2) and Nurse (element
#3). Both classes have two attributes that help to identify and locate
the corresponding persons: name and office for Physician and
id and ward for Nurse.

When merging these two fragments, element #1 from M1 can be
combined either with element #2 or #3 from M2. In fact, we cannot
tell at this point which combination is better – in both cases, the
classes have one shared and one non-shared attribute. Thus, it is
conceivable to combine elements #1 and #3.

The third model fragment, M3, contains a single class Nurse

(element #4) that has two attributes: name and ward. As it was
already decided to combine elements #1 and #3 in the previous step,
element #4 can be combined either with the element that corresponds
to their union or with element #2. None of these results are desired
though: when considering all three fragments together, it becomes
apparent that nurses belong to wards while physicians have offices.
Thus, it seems more appropriate to combine element #1 with #2,
and #3 with #4, as shown by bold lines connecting these elements
in Figure 1(a). Figure 1(b) shows the result of the corresponding

merge, where elements are annotated by models from which they
originate: elements #5 and #6 represent the merge of element #1
with #2 and #3 with #4, respectively.

This example illustrates the need and the value of considering
multiple models simultaneously, as a decision made in a certain
iteration of a pairwise merging approach can impede reaching the
desired result in later iterations. It also illustrates the sensitivity of
the pairwise approach to the order in which the input models are
picked: in this case, considering inputs in a different order, e.g.,
merging M1 and M3 first, would produce the desired result.

a b

g

e f

c

d h

Figure 2: Optimal
matches “across”

models.

Fixing a particular order cannot guarantee
the desired result in the general case though,
as will be shown by our larger case stud-
ies. Intuitively, optimal matches are spread
“across” models, as schematically shown by
four model fragments in Figure 2. Pick-
ing any two models without considering the
global picture might result in “binding” el-
ements of the two models with each other,
instead of “keeping” some elements available
for later, more desired, combinations.

Figure 1(c) shows another set of model fragments inspired by
the health care case study. Models M4, M5 and M6 differ from
the previous ones because the CareTaker class of M4 (element #7)
now has attributes name and ward, making it more similar to the
Nurse class of M5 (element #9) than to Physician (element #8).
Also, the Nurse class of M5 now has the attribute name instead of
id. As the result, elements #7, #9 and #10 are combined together,
while element #8 is just copied over to the merged result, as shown
in Figure 1(d).

This example illustrates the case where the desired result is ob-
tained by combining elements from three distinct models instead of
producing pairs, like in Figure 1(b). Throughout the rest of the paper,
we use the above examples to showcase the merging approaches
being discussed.

3. BACKGROUND: MODEL MERGING
In this section, we review definitions for merging of two input

models, following the presentation in [18] which divided the process
into three steps: compare, match and compose.

compare :M1×M2 → [0..1] is a heuristic function that receives
as input a pair of elements from the distinct input models M1 and
M2 and calculates their similarity degree: a number between 0 and 1.
Numerous specific implementations, analyzing structural and behav-
ioral properties of the compared elements, exist. Most of these [21,
13, 16] calculate the similarity degree between two elements by
comparing their corresponding sub-elements and weighing the re-
sults using empirically determined weights. These weights represent
the contribution of model sub-elements to the overall similarity of
their owning elements. For example, a similarity degree between
two classes can be calculated as a weighted sum of the similarity
degrees of their names, attributes, operations, etc. Some works [16]
also utilize behavioral properties of the compared elements, e.g.,
dynamic behaviors of states in the compared state machines, similar
to checking bisimilarity.

match :M1 ×M2 × [0..1]→M1 ×M2 is a heuristic function
that receives pairs of elements from the distinct input models M1

and M2, together with their similarity degrees, and returns those
pairs of model elements that are considered similar. Most imple-
mentations of match use empirically assigned similarity thresholds
to decide such similarity. More advanced approaches, e.g., [6], rely
on bipartite graph matching [15] (a.k.a. the Hungarian algorithm)
to determine corresponding elements.
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Finally, compose :M1,M2,M1 ×M2 →M is a function that
receives two input models M1 and M2, together with pairs of their
matched elements and returns a merged model M that combines
elements of the input in a prescribed way. Specific compose algo-
rithms define how to treat the matched (overlapping) and unmatched
(non-overlapping) elements [4]. For example, the union-merge ap-
proach [20] assumes that matched elements are complementary and
should be unified in the produced result, while unmatched elements
are copied to the result without change. It is also possible for the
composition to include only the overlap. Another option is to an-
notate the union-merge with origins of each element, as we did in
Figures 1(b) and 1(d) by adding annotations like “[M1]” to indicate
that the attribute id came from model M1 (a.k.a. the annotative
software product line approach [12, 18]).

4. N-WAY MODEL MERGING
In this section, we generalize the definition of merging given in

Section 3 to n models. We formally specify the n-way counterparts
of the compare, match and compose operators and discuss issues
related to their implementation.

We assume n input models Mi, i ∈ [0..n], of size ki each. We
use k to denote the size of the largest input model. Each model
Mi contains uniquely identifiable elements e1 . . . eki . Elements
of distinct models form n-tuples. For an n-tuple t, we denote by
µ(t) the ordered list of input models from which the elements of t
originate.

DEFINITION 1. An n-tuple (a.k.a. a tuple) t is a set of elements
satisfying the following properties:

(a) It contains at least one element: |t| ≥ 1.

(b) No two elements belong to the same input model: |t| = |µ(t)|.

For the example in Figure 1(a), a possible tuple can consist of
elements #1, #2 and #4 from models M1, M2 and M3, respectively,
and is denoted by 〈1,2,4〉. µ(〈1,2,4〉)= {M1,M2,M3}. Other
possible tuples are 〈1,2〉 and 〈1,3,4〉 but not 〈1,2,3〉 since it contains
two elements, #2 and #3, from model M2.

In what follows, let T denote the set of all valid tuples for the

input models Mi, i ∈ [0..n]. The size of T is (
n∏
i=1

(ki + 1)) − 1,

accounting for choosing an element from each model, including
none, but disallowing an empty tuple.

4.1 Definition of the Operators
Compare assigns a similarity measure to a given tuple t ∈ T . We

refer to the result of this function as a tuple’s weight and denote it by
w(t). Thus, compare is a function that receives a tuple t ∈ T and
returns the similarity measure w(t) ∈ [0..1] for its elements. The
larger the value of w, the more similar to each other the elements of
t are considered to be.

Match considers the compared tuples and selects those that are
deemed similar. A validity function V decides whether a tuple is
eligible to be selected. It extends a simple threshold-based compar-
ison described in Section 3 to include more sophisticated validity
criteria.

The weight of the set of tuples T̂ ⊆ T produced by match is
defined as a sum of weight of all tuples in T̂ and is denoted by
w(T̂ ): w(T̂ ) =

∑̂
t∈T̂

w(t̂). The larger the value of w(T̂ ), the better

is the produced match. Further, match should produce a disjoint
set of tuples – in this work, we assume that an element can only be
matched with a single element of any given input model, leading to
the following definition:

DEFINITION 2. Let V be a boolean validity function. Then,
match is a function that returns a set of matches T̂ ⊆ T that satisfy
the following properties:

(a) All tuples are valid: ∀t̂ ∈ T̂ · V(t̂) = true.
(b) All tuples are disjoint: ∀t̂, t̂′ ∈ T̂ · t̂ ∩ t̂′ = ∅.
(c) The set T̂ is maximal: no additional tuples can be added to

T̂ without violating constraints (a) and (b).
For the example in Figure 1(a), match can output the tuples 〈1,2〉 and
〈3,4〉. It can also output either 〈1,2,4〉 or 〈1,3,4〉, but not both, since
otherwise elements #1 and #4 would be matched to both elements
#2 and #3 of M2. Tuple 〈1,3〉 only is not a valid result as it can be
augmented with the tuple 〈2,4〉.

Compose combines elements of each matched tuples in a par-
ticular way – any of the approaches discussed in Section 3 can be
applied. Figure 1(b) shows a possible result of merging the input
models in Figure 1(a), when compose assumes annotative software
product line union-merge semantics and match produces tuples 〈1,2〉
and 〈3,4〉.

4.2 Towards Implementation of the Operators
Compare and compose usually encapsulate domain-specific in-

formation, i.e., which elements of a specific domain are considered
similar and how such similar elements should be combined. Nu-
merous works, e.g., [21, 13, 16, 1, 19], proposed implementations
of these operators for both models and code, taking into account
syntactical properties of the considered artifacts. On the other hand,
match relies on the result of compare rather than domain-specific
knowledge and is the least explored operator, especially for a col-
lection of n inputs. Thus, the main focus of this paper is on the
implementation of the n-way match step.

Yet, while a discussion of different ways for performing compare
or compose is out of scope of this paper, we need to pick an oper-
ational definition of these operators which we describe below. We
assume that each model element contains a set of typed properties,
and we compare elements based on these. If model elements are
UML classes, as in the example in Figure 1(a), possible properties
can be class names, attributes, methods, associations to other classes,
generalization relationships, etc. For example, element #1 in Fig-
ure 1(a) is defined by properties id and office of type UML class
attribute and Care Taker of type UML class name. For simplicity,
in our presentation we do not consider elements of types other than
UML classes, although it is easy to extend the element / property
approach to other types as well.

For an element e, we denote by π(e) the set of all of its properties.
Similarly, for a tuple t =〈e1, . . . , em〉, we denote by π(t) the set of
distinct properties of all elements of t: π(t) =

⋃
ei∈t π(ei).

We assume, without loss of generality, that the goal of compare
is to assign high weight to tuples whose elements share similar
properties. For each tuple t and a property p, compare considers
the number of elements in t that have that property. Then, for each
tuple t, it calculates the distribution of properties: the number of
properties that appear in j elements of t. We denote this number
by npj . For the example in Figure 1(a), the property name appeared
twice in tuple 〈1,2,4〉 (in classes Physician and Nurse), as well as
the property office (in classes CareTaker and Physician). The
remaining properties, namely, attributes id and ward, as well as
class names CareTaker and Physician and Nurse are unique to
a single element in the tuple. Such properties “differentiate” tuple
elements from each other and compare should “penalize” for that.

We thus define the compare function to assign a high weight to
tuples with a large number of properties shared by a large number

of elements: w(t) =

∑
2≤j≤m

j2∗np
j

n2∗|π(t)| .
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The result is normalized by the number of input models n2 (rather
than the size of the tuple m2) so that tuples with elements from a
small subset of input models receive lower scores.

For example, the result of applying compare on the tuple 〈1,2〉
in Figure 1(a) is 22∗1

32∗5 = 4
45

: only the office attribute appears in
both elements of the tuple, while there are five distinct properties in
total – the class names CareTaker and Physician, and the class
attributes id, office and name. Applying compare on tuples 〈1,3〉
and 〈2,4〉 results in 22∗1

32∗5 = 4
45

as well. Compare on tuple 〈3,4〉
yields 22∗2

32∗4 = 2
9

; applying it to 〈1,3,4〉 also results in the same

value, i.e., 22∗3
32∗6 = 2

9
. The weight of a tuple containing a single

element, e.g., 〈1〉, as well as the weight of a tuple whose elements
are completely disjoint, e.g., 〈1,4〉, is defined to be zero.

Our validity criteria require that each element of a tuple share
at least one property with other elements. For example, the tuple
〈1,4〉 in Figure 1(a) is invalid, as classes CareTaker and Nurse

have no attributes in common. Indeed, such classes should never be
matched1. All of the remaining tuples in this example are valid.

Given the compare function and the validity criteria, the match
with the maximal weight is produced by a combination of two tuples:
〈1,2〉 and 〈3,4〉. The weight of this solution is 4

45
+ 2

9
= 14

45
, which

is higher than picking the tuples 〈1,3〉 and 〈2,4〉 instead or a single
tuple that combines three elements from distinct models: either
〈1,2,4〉 or 〈1,2,3〉. For the example in Figure 1(c), the best match
corresponds to the solution that has a single tuple 〈7,9,10〉 with the
weight 32∗2+22∗1

32∗4 = 11
18

. In this case, the value is higher than for
any other combination of tuples.

For compose, we assume the annotative SPL union-merge seman-
tics, aligned with our broader research agenda. Its implementation
is straightforward: elements of each tuple in the solution found by
match are merged by unifying their properties, and are annotated by
the corresponding source model for traceability purposes. Elements
of the input models that are not part of any tuple produced by match
are copied to the result as is. For the example in Figure 1(a), where
match produced two tuples 〈1,2〉 and 〈3,4〉, the two elements in the
merged model in Figure 1(b). i.e., elements #5 and #6, correspond to
the merge of elements in the first and the second tuple, respectively.
The merge of the models in Figure 1(c) is shown in Figure 1(d).
Here, element #11 corresponds to the single tuple 〈7,9,10〉 returned
by match. Element #12 corresponds to element #8 of the input
model M5 which is not part of any tuple and thus is copied to the
result as is.

5. N-WAY MATCHING VIA WEIGHTED
SET PACKING

In this section, we show that the n-way matching problem is
reducible to the well-known NP-hard problem of weighted set pack-
ing [2]. We then consider the applicability of the existing approxi-
mations of this problem to merging software models.

5.1 Weighted Set Packing and Its Approxima-
tion Algorithms

The reduction to the weighted set packing problem easily follows
from its definition: given a collection of weighted sets of cardinality
at most n (in our case, approximately kn tuples consisting of ele-
ments from n input models together with their weights as calculated
by compare), the weighted set packing produces a collection of
disjoint sets with the maximum total weight (in our case, the match).

1For tuples of size two, the similarity measure of invalid tuples is 0,
but that does not hold for larger tuples.

The problem is NP-hard [2], and thus no solution that is polynomial
in the size of the input (in our case, the set of tuples), exists.

There are a number of theoretically bounded approximations to
that problem, polynomial in kn (and thus exponential in n). Their
main properties, i.e., approximation factor and time complexity,
are summarized in the first four rows of Table 1. The simplest
approximation algorithm (Greedy) [5] picks tuples with the maximal
weight out of the set of all possible tuples, disregarding tuples that
contain the elements already picked in the previous iterations. This
algorithm can clearly miss the optimal result: picking a tuple with
the maximal weight without “looking ahead” can block selection
of combinations with a higher total weight. Since a selection of a
tuple t with the weight w can block the selection of up to n other
tuples whose weight cannot exceed w, the approximation factor
of Greedy is n [5], i.e., the weight that this algorithm computes
is within n times of the optimal. For the example in Figure 1(a),
Greedy might pick the tuple 〈1,3,4〉 with the weight 2

9
, preventing

the generation of the optimal solution with tuples 〈1,2〉 and 〈3,4〉
and weight 14

45
. For the example in Figure 1(c), Greedy does find the

optimal solution – the tuple 〈7,9,10〉.
A number of approaches improve on Greedy by combining it

with different types of local search [2, 5, 3]. They start from the
solution found by Greedy and iteratively attempt to improve it by
selecting s disjoint tuples that are not part of the current solution
and trying to swap them with a minimal set of tuples in the solution
so that tuples in the solution remain disjoint. The algorithms vary
by the selection criterion for swapping (either the total weight of
the solution increases or the square of the weight increases), the
selection of the swapping candidate (either the first set that satisfies
the swapping criterion or the best one) and by the size s of the
candidate set. For the example in Figure 1(a), if Greedy produced
the solution consisting of 〈1,3,4〉, such approaches can swap it with
the pair of tuples 〈1,2〉 and 〈3,4〉, producing the optimal result.
The approximation factors of these algorithms, as given by their
corresponding authors [2, 5, 3], are summarized in Table 1.

Both Greedy and local search-based algorithms have high runtime
and space complexity. In fact, even keeping all tuples in memory, let
alone the information about which tuples are disjoint, is not possible
for more than a few models with only around 30 elements each. In
the last two columns of Table 1, we list time complexity for two
version of each algorithm – the ones that keep all data in memory
and the ones that do not.

5.2 Preliminary Evaluation
The time complexity estimations given in Table 1 might be too

high for real-life scenarios. Also, our weight and validity functions
reduce the space of tuples considered by the algorithms by assigning
zero weight to a large set of tuples. We thus experimented with ap-
plying the proposed approximation solutions to the n-way matching
problem on real-life examples.

We implemented the algorithms in Java, introducing numerous op-
timizations, including multi-threading, to improve execution times.
We executed these algorithms on an Intel Core2Quad CPU 2.33GHz
machine using JVM version 7.

As subjects, we picked two sets of models reported in [17]. The
first consists of eight different variants of a Hospital system mod-
eled as UML class diagrams. The system handles services within
the hospital and describes the role of the hospital staff, its wards,
different types of patients, and more. A small snippet of the models
is shown in Figure 1(a). In total, there are 221 classes in all eight
models, with an average of 27.63 classes per model. The largest
model has 38 classes while the smallest has 18. Classes have 4.76
attributes on average (including name, associations, inheritance rela-
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Table 1: Matching algorithms.

Approximation factor Time complexity

In memory Memory efficient

Greedy (Gr) n O(k2∗n) O(n3 ∗ k2n+1)

Local Search Pick First n− 1 + 1/s O(kn∗s+2∗n+1 ∗ s ∗ n) O(kn∗s+2∗n+1 ∗ s ∗ n3)

Local Search Pick Best 2 ∗ (n+ 1)/3 O(k(n+1)2 ∗ n3) O(k(n+1)2 ∗ n5)

Local Search Squared
Pick Best

(n+ 1)/2 O(k(n+1)2+n ∗ n4) O(k(n+1)2+n ∗ n6)

Pairwise (PW) – O(n ∗ k3)

Greedy 3 (Gr3) – O(n ∗ n3 ∗ k7)

Greedy 4 (Gr4) – O(n ∗ n3 ∗ k9)

NwM – O(n4 ∗ k4)

Table 2: Execution time for Greedy on Hospital and Warehouse cases.
Hospital Warehouse

k1=26, k2=28, k3=38,k4=25, k5=22, k6=18 k1=18, k2=31, k3=27,k4=24, k5=25, k6=19

n=3 n=4 n=5 n=6 n=3 n=4 n=5 n=6

< 5s 1.86m 38.44m 10.9h < 2s 46s 20m 5.9h

tionships, etc.). The largest class has 15 attributes. Around 30% of
the attributes appear in more than 5 models.

The second set consists of sixteen different variants of a Ware-
house system, also modeled as UML class diagrams. The system
is designed to handle orders, track their status, provide computer
support for warehousing workers, keep track of inventory levels in
the warehouse, etc. Warehouse models have 388 elements in total,
with an average of 24.25 classes per model. The largest and the
smallest models have 44 and 15 classes, respectively. Classes have
3.67 attributes on average, with 11 attributes in the largest class.
Around 15% of the attributes appear in more than 5 models. A
complete description of both case studies can be found in [17].

Our experiment showed that none of the algorithms scaled to
operate on the complete set of the input models, i.e., none achieved
termination after 5 hours. Instead, we tried running the algorithms
on the first three, four, five and six models from each of the case
studies, in the order of their appearance in [17]. Algorithms based
on local search failed to terminate after 5 hours even on a three-
model subset. Execution times for Greedy are shown in Table 2. kis
capture the number of elements in each model.

Even though it might be possible to come up with more efficient
implementations of the algorithms than ours, the results indicate
that, generally, the algorithms do not scale well. Greedy seems to
be the only feasible approach, and only for merging up to five small
models (with 20-40 elements). This calls for a different solution
for the n-way merging problem, polynomial in both k and n. We
explore it in the remainder of the paper.

6. POLYNOMIAL-TIME APPROACH TO
N-WAY MATCHING

In this section, we discuss algorithms which are polynomial both
in the number of input models and in their size. First, we define
a set of solutions that incrementally combine all input models in
small subsets and discuss their properties (Section 6.1). We then
present a novel algorithm, NwM, that considers all input models
simultaneously (Section 6.2). Unlike the approximation algorithms
for the weighted set packing problem, the algorithms presented

in this section are not guaranteed to produce an answer within
a particular factor of the optimal. We empirically evaluate the
algorithms in terms of their quality and scalability in Section 7.

6.1 Subset-Based Approaches
A straightforward solution for merging n input models is to do

so in smaller subsets, e.g., in pairs, performing n − 1 pairwise
combinations. To do so, we maintain a pool of models, with all
input models initially in it. The algorithm iteratively selects and
removes a subset of models from the pool, merges them together and
puts the result back into the pool for further merging with additional
models.

Subsets of size two can be merged using the bipartite graph match-
ing algorithm [15] which produces a disjoint set of matches with
the maximal total weight. The algorithm is based on combinatorial
optimization techniques and solves the matching problem in time
polynomial in size of the larger input model, returning an optimal re-
sult [8]. Larger subsets, of three or four models, can be merged using
the Greedy algorithm described in Section 5.1. Applying Greedy on
more than four models, or applying additional, more sophisticated,
algorithms does not scale well, as shown in Section 5.2.

We thus define three subset-based algorithms: PW – pairwise
matching, Gr3 – Greedy on subsets of size 3 and Gr4 – Greedy on
subsets of size 4. These are summarized in Table 1. The quality
of the result produced by these algorithms, in terms of the total
weight of the solution, largely depends on the order in which the
models are picked. For the example in Figure 1(a), selecting models
M1 and M2 first can result in merging elements #1 and #3 with
each other, as this combination is indistinguishable from the more
desired combination of #1 and #2 since both pairs of elements have
the same weight. As the result of this selection, it is impossible to
generate the merged model shown in Figure 1(b) where element
#1 is combined with #2, while #3 is combined with #4. Picking
models M1 and M3 first could produce a better result if the highly
dissimilar elements #1 and #4 are not merged. Then, during the next
iteration, these elements could be combined with elements #3 and
#2 from M2, respectively, producing the desired combination. The
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above discussion also makes it clear that subset-based incremental
algorithms have no theoretical approximation factor since any merge
of two elements produced in a given iteration can prevent future,
more efficient, combinations.

To consider different orderings of input modes, we define and
evaluate three variants of each subset-based algorithm. The first
picks and processes the input models in the order of their appearance
(i.e., at random). We denote such algorithms by PW, Gr3 and Gr4.
The second variant arranges the input models by size in ascending
order, with the corresponding algorithms denoted by PW↑, Gr3↑
and Gr4↑. The third variant arranges them in descending order, with
the corresponding algorithms denoted by PW↓, Gr3↓ and Gr4↓. For
the example in Figure 1(a), algorithm PW picks models M1 and
M2 first, PW↑ picks models M1 and M3, while PW↓ picks either
M2 and M3, or M2 and M1. Gr3, Gr3↑ and Gr3↓ are equivalent
in this case, as there are only three input models in total, so the
ordering does not make any difference (and Gr4 algorithms are not
applicable at all).

We evaluate the relative effectiveness of these algorithms in Sec-
tion 7. We also experimented with the idea of ordering input models
by their cohesiveness, i.e., first merging those that are most similar,
but observed that there is a strong correlation between this approach
and the size-based ordering: larger models produce more matches
which increases the total weight of the overall result and thus the
similarity of these models.

6.2 The Algorithm NwM
In this section, we present a novel algorithm for n-way merging,

NwM, which considers all n input models together and thus does not
depend on any particular order of model selection (see Algorithm 1).
Its main idea is based on picking optimal matches from distinct
models and incrementally grouping them until a maximal set of
tuples is produced. The algorithm obtains as input a set of tuples
T̂ ∈ T and outputs either a set of tuples Ŝ ∈ T over the same
elements, with improved total weight: w(Ŝ) > w(T̂ ), or the input
set T̂ , if such improvement is not possible.

Brief overview of the algorithm. In the first iteration, elements of
all input models M1 . . .Mn are represented by individual, single-
element, tuples. For the example in Figure 1(a), the tuples are:
〈1〉, 〈2〉, 〈3〉 and 〈4〉. Pairs of input tuples are assigned weights
(Line 3) and matched using the bipartite graph match algorithm
(Line 5). For each input tuple, the algorithm selects either zero or
one matching counterpart, maximizing the total weight of the result.
For the example in Figure 1(a), tuples 〈1〉 and 〈2〉, as well as 〈3〉
and 〈4〉, are matched with each other after the first iteration of the
algorithm.

Matched tuples are further processed and unified (Lines 6-22),
producing tuples 〈1,2〉 and 〈3,4〉 in the above example. The uni-
fied tuples are used as input to the next iteration of the algorithm
(Line 27). The algorithm terminates when no matches of the in-
put tuples can be made and thus no improvements can be achieved
(Lines 24-25).

Detailed description of the algorithm. In every iteration, all pairs
of input tuples are assigned weights. These weights are further
used by the bipartite graph matching algorithm to produce an op-
timal match – a disjoint set of tuple pairs with the maximal to-
tal weight. Since matched tuples are further unified, we assign a
pair of tuples (t̂1, t̂2) the weight of the tuple that corresponds to
their union (see the otherwise clause in Line 3 of Algorithm 1):
w(t̂1, t̂2) = w(t̂1 ∪ t̂2). For the example in Figure 1(a), w(〈1〉,〈2〉)
= w(〈1〉,〈3〉) = w(〈2〉,〈4〉) = 4

45
and w(〈3〉,〈4〉) = 2

9
.

Some pairs correspond to tuples that should never be unified, e.g.,

Algorithm 1 NwM(T̂ ∈ T ): Ŝ ∈ T , w(Ŝ) ≥ w(T̂ )

1: loop
2: for all t̂1, t̂2 ∈ T̂ do

3: w(t̂1, t̂2)←





0 ¬V(t̂1 ∪ t̂2)
0 w(t̂1 ∪ t̂2) < w(t̂1) + w(t̂2)

0 µ(t̂1) ∩ µ(t̂2) 6= ∅
0 t̂2 <O t̂1

w(t̂1 ∪ t̂2) otherwise
4: end for
5: P̂ ← match(T̂ , T̂ , w)
6: Ĉ ← ∅
7: while (|P̂ | > 0) do
8: pick first (t̂, t̂′) ∈ P̂
9: P̂ ← P̂ \(t̂, t̂′)

10: if (∃c ∈ Ĉ | c = [c1, . . . , cn] ∧ cn = t̂) then
11: if (V([c, t̂′]) ∧ ∀ci ∈ Ĉ(µ(ci) ∩ µ(t̂′) = ∅)) then
12: c← [c, t̂′]
13: end if
14: else if (∃c ∈ Ĉ | c = [c1, . . . , cn] ∧ c1 = t̂′) then
15: if (V([t̂, c]) ∧ ∀ci ∈ Ĉ(µ(ci) ∩ µ(t̂) = ∅)) then
16: c← [t̂, c]
17: end if
18: else
19: c← [t̂, t̂′]
20: Ĉ ← Ĉ ∪ {c}
21: end if
22: end while
23: Ŝ ← optimize(Ĉ)
24: if (w(Ŝ) = w(T̂ )) then
25: return Ŝ
26: else
27: T̂ ← Ŝ
28: end if
29: end loop

Assign weights to pairs
of input tuples

Proceed with
chaining for all
matches

Can append t̂′?

if valid

Can prepend t̂?

if valid

Start a new chain

No further improvements?

Reiterate

when the unified tuple is invalid w.r.t. the validity function V. For
our example in Figure 1(a), the tuples 〈1〉 and 〈4〉 share no common
properties and thus we treat their combination as invalid. While it is
possible to filter such bad combinations after the matching is done,
preventing their generation in the first place is preferred since the
original tuples can then participate in more desired combinations.
We thus assign weight 0 to combinations that are a priori “illegal”,
relying on the bipartite graph matching algorithm’s ability to ignore
pairs of elements with zero weight. Four types of such illegal combi-
nations are described below (and encoded in Line 3 of Algorithm 1):
1. Pairs whose unification results in a tuple which is invalid w.r.t.
the validity function V, e.g., the pair (〈1〉, 〈4〉).
2. Pairs for which the weight of the union is lower than the sum of
input tuple weights – unifying such pairs is clearly not worthwhile.
This situation cannot occur when unifying single-element tuples as
their weight is zero and the unification can only increase it.
3. Pairs that contain elements from the same model, that is,
µ(t̂1)∩µ(t̂2) 6= ∅. For example, µ(〈1,2〉) in Figure 1(a) is {M1,M2},
while µ(〈3,4〉) is {M2,M3}. Unifying these tuples would result
in a tuple with two elements, #2 and #3, from M2, which is not
allowed.
4. Pairs introducing “circular” dependencies between tuples, i.e.,
if a tuple t̂1 is matched with t̂2, t̂2 is matched with t̂3, and t̂1 and
t̂3 contain elements from the same set of models, the unified tuple
would be illegal. To limit circular dependencies, we introduce a
partial order, O, on the set of all tuples, such that t̂1 <O t̂2 iff µ(t̂1)
is smaller than µ(t̂2) in the lexicographical order. For example,
〈1〉 <O 〈1,2,4〉 <O 〈2〉. A pair of tuples (t̂1, t̂2) for which t̂2 <O t̂1
is assigned zero weight, e.g., the pair (〈2〉, 〈1〉) but not the symmet-
ric pair (〈1〉, 〈2〉).

For the example in Figure 1(a), in the first iteration of the algo-
rithm, only four pairs of tuples get a non-zero weight: (〈1〉,〈2〉),
(〈1〉,〈3〉), (〈2〉,〈4〉), (〈3〉,〈4〉).
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Results of match are represented by the map P̂ which relates
matched tuples to each other (Line 5). We say that t̂1 is matched
with t̂2 if P̂ (t̂1) = t̂2. If a tuple t̂ is not matched with any element,
P̂ (t̂) is null. The map is ordered by the weight of the matches,
from the largest to the smallest, so that the “strongest” matches are
retrieved first. For the example in Figure 1(a), two matches are
produced in the first iteration of Algorithm 1: P̂ (〈3〉) = 〈4〉 and
P̂ (〈1〉) = 〈2〉, with the weights 2

9
and 4

45
, respectively. The exam-

ple in Figure 1(c) also results in two matches: P̂ (〈9〉) = 〈10〉 and
P̂ (〈7〉) = 〈9〉, with the weights 4

9
and 2

9
, respectively.

Pairs of matched tuples are subject to internal processing. First,
the tuples are “chained” towards possible unification that incor-
porates more than two tuples (Lines 10-17): if P̂ (t̂1) = t̂2 and
P̂ (t̂2) = t̂3, the tuples are grouped into an ordered set c consist-
ing of tuples t̂1, t̂2, t̂3. More generally, for the processed pair of
tuples (t̂, t̂′) and the existing chain c = [c1, . . . , cn], if t̂ = cn, the
last tuple of the pair can be appended to the chain, producing the
chain [c1, . . . , cn, t̂

′] (Lines 10-13). Otherwise, if t̂′ = c1, the first
tuple of the pair can be prepended to the chain, producing the chain
[t̂, c1, . . . , cn] (Lines 14-17). For our example in Figure 1(c), the
pair (〈9〉, 〈10〉) is processed first; then the tuple 〈7〉 from the pair
(〈7〉, 〈9〉) is prepended to it, producing the chain 〈7〉, 〈9〉, 〈10〉. The
chain corresponds to the tuple 〈7,9,10〉 which contains all three
elements.

During chaining, the algorithm checks whether the appended /
prepended tuple causes the union of the chained elements to be
invalid w.r.t. the validity function V. Similarly, it checks whether
the tuple intersects with at least one other tuple of the chain w.r.t.
their set of models: while we introduced a partial order on the set
of tuples, for the pairs of matches P̂ (t̂1) = t̂2 and P̂ (t̂2) = t̂3,
µ(t̂1) ∩ µ(t̂3) might not be empty, even though µ(t̂1) ∩ µ(t̂2) = ∅
and µ(t̂2)∩µ(t̂3) = ∅. In such cases, the tuple should not be added
to the chain (Lines 11 and 15).

When both tuples of the matched pair do not belong to any chain,
a new chain is started (Lines 18-21). That is the case for the first
pair of tuples (〈9〉, 〈10〉) in the example in Figure 1(c), as well as
for both pairs of tuples in the example in Figure 1(a), (〈1〉,〈2〉) and
(〈3〉, 〈4〉).

Every tuple added to a chain is removed from P̂ (Line 9); the
chaining process continues until all tuples in P̂ are processed (Line 7).

The chaining phase is followed by the optimization phase (Line
23), in which we check whether the chaining was inefficient, i.e.,
that it chained “too much” and splitting a chain c into smaller
“sub-chains” c1 . . . cp improves the weight of the result: w(c) <∑
1≤i≤p

w(ci). During the optimization step, we only verify whether

the chain can be broken into one or more parts, without trying to
reshuffle tuples of the chain and check their possible combinations.
This heuristic is reasonable as the chains are built while putting
optimally matched tuples close to each other.

Optimized chains form tuples that are used as input to the next
iteration of the algorithm (Line 27) and the process continues until
no further improvements can be achieved. For the example in Fig-
ure 1(a), the algorithm stops after the first iteration, producing tuples
〈1,2〉 and 〈3,4〉. No further unification is possible as the combina-
tion of these two tuples is invalid – it contains two elements from
the same model M2. The result produced by the algorithm in this
case corresponds to the desired solution in Figure 1(b). Likewise,
for the example in Figure 1(c), the algorithm stops after producing
the chained tuple 〈7,9,10〉, which also corresponds to the desired
solution in Figure 1(d).

Validity of the algorithm. By construction, the algorithm ensures
generation of valid matches, per Definition 2:

(a) All tuples are valid: Pairs of tuples that share elements from
the same model are assigned zero weight and thus cannot
be formed (see Line 3), while the chaining step ensures that
chains do not contain elements from the same model (see
Lines 11 and 15). Likewise, pairs of tuples that are invalid
w.r.t. the validity function V are assigned zero weight and thus
cannot be formed (see Line 3), while both the chaining and the
optimization steps ensure validity of tuples that correspond to
the produced chains (see Lines 11 and 15).

(b) All tuples are disjoint: In the first iteration, all input model
elements belong to separate tuples. In subsequent iterations,
a tuple can be added to one chain only (see Lines 9-19) and
thus becomes part of only one tuple. By induction, an element
cannot belong to more than one output tuple.

(c) The set T̂ is maximal: The algorithm starts with the set of all
input model elements, thus all elements are part of at least
one tuple. It is not possible to expand the solution without
violating the above disjointness constraint (b).

Clearly, the algorithm is heuristic and does not produce optimal
results in all cases. Yet, it is reasonable to believe that it has a
high chance of producing good matches because it simultaneously
considers best combinations across different models, rather than
limiting itself to any particular ordering. We evaluate the algorithm
and compare it to subset-based approaches in the next section.

7. EVALUATION
In this section, we discuss runtime and space complexity of the

polynomial algorithms described in Section 6 and then report on an
empirical evaluation of the effectiveness of these approaches.

7.1 Theoretical Evaluation
As can be seen in Table 1, the runtime complexity of our NwM

algorithm is bounded by O(n4 ∗ k4), making the algorithm polyno-
mial in both n (the number of input models) and k (the size of the
largest input model): there are a total of n ∗ k elements considered
by the algorithm and each iteration reduces the number of input
tuples by at least one. Bipartite graph matching of n ∗ k elements in
our implementation is bounded by (n ∗ k)3 [15] (even though more
efficient implementations are also possible [8]); the chaining phase
is quadratic in the size of the input; and the optimization phase is
quadratic to the maximal length of the chain. Since all tuples in a
chain contain elements from distinct models, the length of the chain
is bounded by n. The space complexity of the algorithm is bounded
by the maximal number of matched pairs, that is, n2 ∗ k2.

The runtime complexity of all PW algorithms is O(n ∗ k3): they
perform up to n iterations, each of which takes O(k3). The space
complexity of these algorithms is O(k2), making them more effi-
cient than NwM both w.r.t. time and memory.

The runtime complexity of algorithms Gr3 and Gr4 is O(n∗n3 ∗
k7) and O(n ∗ n3 ∗ k9), respectively, with the space complexity
of O(1) for both cases (we implemented the memory efficient ver-
sion of the algorithms). That is, the Gr3 algorithms have similar
complexity to NwM, while the Gr4 algorithms are more expensive.

As discussed earlier and indicated in Table 1, all of the above
algorithms do not have a theoretical approximation factor – any
selection they make can result in matches that, while reasonable in
the current iteration, “block” selected elements from participating
in tuples with a higher weight.
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Table 3: Weights and execution times of NwM compared to subset-based approaches.
For each case, the results of NwM and the best subset-based approach are boldfaced.

NwM
Subset-based approaches

PW PW↑ PW↓ Gr3 Gr3↑ Gr3↓ Gr4 Gr4↑ Gr4↓

Hospital Weight 4.595 4.473 4.475 4.514 4.268 4.017 4.453 4.356 4.382 4.566

Time 42.7s < 1s < 1s < 1s 16.1s 14.1s 19.6s 4.6m 4.2m 6.0m

Warehouse Weight 1.522 0.973 0.981 1.126 1.018 1.044 1.037 1.013 1.111 1.000

Time 2.9m 1.4s 1.2s < 1s 45.4s 34.9s 42.8s 13.9m 27.9m 12.1m

Random models Weight 0.979 0.835 0.756 0.842 0.849 0.795 0.857 0.863 0.836 0.853

Time 1.6m < 1s < 1s < 1s 19.5s 18.6s 23.7s 9.3m 12.8m 10.1m

“Loose” scenario Weight 0.980 0.772 0.695 0.832 0.845 0.772 0.855 0.848 0.809 0.837

Time 1.5m < 1s < 1s < 1s 29.3s 21.9s 31.2s 13.1m 16.6m 12.2m

“Tight” scenario Weight 0.941 0.947 0.900 0.954 0.930 0.897 0.940 0.941 0.920 0.957

Time 1.6m < 1s < 1s < 1s 23.7s 18.2s 25.3s 6.4m 6.9m 6.6m

7.2 Empirical Evaluation
We now report on an empirical evaluation of the polynomial-time

n-way merging approaches described in Section 6. Specifically, our
aim was to answer the following research questions:

RQ1. How does the performance of NwM compare to the subset-
based approaches? What are the conditions under which each algo-
rithm is better?

RQ2. How does the size of the selected subset affect the quality of
the results produced by the subset-based approaches?

RQ3. How does the order in which input models are picked affect
the quality of the results produced by these approaches?

Subjects. For our evaluation, we used the Hospital and Warehouse
examples from [17], described in Section 5.2. Before merging, we
performed a simple pre-processing step on the models, unifying
syntactically similar properties, e.g., “patient” and “patients”, since
implementing compare algorithms is out of scope of this work. We
augmented the set of subjects by 300 randomly generated models,
divided into 30 sets of 10 models each. The first 10 sets of 10 models
mimic the real-life examples in terms of the number of models and
their sizes, the number of properties for each element, the total
number of properties in all models and their distribution into shared
and unshared (see Section 5.2). We refer to those as the Random
case. Based on our experience with the Random case, and to gain
deeper insights in the qualities of the evaluated algorithms, as well
as the conditions that affect their performance, we generated two
additional random cases, containing 10 sets of 10 models each. The
cases, referred to as the “Loose” scenario and the “Tight” scenario,
vary in the number of classes in each model, the total number of
properties in all models, and the number of properties in each class,
as discussed below. All models are available at http://www.cs.
toronto.edu/~mjulia/NwM.

Methodology and Measures. We implemented all algorithms in
Java and executed them on an Intel Core2Quad CPU 2.33GHz
machine using JVM version 7. For fairness, we used the same
implementation of compare and the same validity criteria for all
algorithms (see Section 4.2): each element of a tuple in the solution
must share at least one property with other elements of the tuple,
and the more properties are shared the higher is the tuple weight.

For each algorithm, we measured the execution times and the
weights of the produced solution for each of the case studies. We fo-
cused our evaluation on the matching stage rather than the perceived
“appeal” of the result, which is largely domain-specific and depends
on the definition of compare. Hence, we considered an algorithm
to be better if it produces a solution with a higher total weight. We
represented the result returned by each subset-based approach as a
set of tuples, calculating the weight of each tuple and the weight of
the overall solution as if they were produced by NwM.

The results are summarized in Table 3. The first two rows show
the results for the Hospital and Warehouse cases, while the other
three show average results for the Random, the “Loose” scenario
and the “Tight” scenario. For those cases, we merged each set of
10 models individually and averaged the results for all sets within
a case. For comparison, we mark in bold the results produced by
NwM as well as the best result achieved by any of the subset-based
algorithms on the same case.

To compare NwM to each of the subset-based approaches further,
we calculated the percentage by which it improved (or degraded)
the weight of the solution, compared to the other algorithms. For
example, in the Hospital case, NwM found a match with the total
weight of 4.595, compared to 4.473 found by PW. This improves
the matching by 2.7%. Gr4↓ performed the best of the subset-based
algorithms, achieving the result of 4.566. NwM improves that by
only 0.6%. Gr4↑ performed the worst, and NwM improves its result
by 14%. For the Warehouse case, NwM finds a solution with the
total weight of 1.522 which improves the best result of 1.126 found
by PW↓ by 35%.

For the random cases, we calculated the percentage of weight
increase / decrease of each run individually and summarized the dis-
tribution of results as boxplots in Figure 3, separately for each case.
On the horizontal axis, we distinguish the nine algorithm variants
used for comparison. On the vertical, we show the percentage of
weight increase / decrease produced of our algorithm compared to
each variant. For instance, compared to PW, the results achieved by
NwM in the Random case (Figure 3(a)) range from 5.2% to 26.9%
improvement (indicated by the thin black vertical line); half of the
cases fall into a range between 17.3% to 20.9% improvement (indi-
cated by the grey box showing the upper and lower quartile). The
average improvement in this case is also 17.3% (indicated by a dia-
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(a) Random case.
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(b) “Loose” scenario case.
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(c) “Tight” scenario case.
Figure 3: Results of comparing NwM against subset-based

algorithms.

mond symbol) and the median is 18.2% (indicated by a horizontal
line within the grey box). In addition, we also plot the results of the
Hospital and the Warehouse cases (indicated by triangle and square
symbols, respectively). The Hospital and the Warehouse results
are also shown in Figure 3(b) and (c), together with the respective
results for the “Loose” and the “Tight” scenarios.

Analysis and Results. The results show that for both the Hospital
and Warehouse cases, NwM outperforms the existing approaches
w.r.t. the weight of the found solution, i.e., the relative values are
positive and appear above the 0% line in Figure 3. This result is also
seen in the Random case (see Figure 3(a)): NwM is able to achieve
30% improvement on average compared to PW↑ and at least 13.5%
on average compared to Gr4.

We also noticed that in the Warehouse case, NwM was able to
achieve a much more substantial improvement than in the Hospital
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Figure 4: Relative performance of Gr4↓ on the Random case.

case, with Random being “in the middle”. We analyzed the differ-
ences between these two cases in more detail. It appears they mostly
differ in the total number of properties in all input models (159
properties in total in the Hospital example, compared to 338 for the
Warehouse) and the average number of properties in each class (4.76
for the Hospital case and 3.67 for the Warehouse). Also, the range of
model sizes differs from 18-38 classes in each model in the Hospital
case to 15-44 classes in the Warehouse case. Thus, the Hospital case
appears to be more “tight” – the model size distribution is smaller,
there is a smaller number of properties in total, with more properties
that appear in each class. The Warehouse case, on the other hand, is
more “loose” w.r.t. these parameters.

We thus produced the “Loose” and “Tight” scenarios, varying the
number of the above discussed parameters. Indeed, our algorithm
was able to achieve much more substantial improvements in the
“Loose” case (see Figure 3(b)): more than 40% on average compared
to PW↑ and at least 14.3% on average compared to Gr3↓. In the
“Tight” case (see Figure 3(c)), the best improvement of 4.8% on
average was achieved compared to Gr3↑, while Gr4↓ outperforms
our algorithm by 1.7%.

It is not surprising that subset-based approaches perform reason-
ably well in “tight” combinations, with Gr4↓ being the best in most
cases: the merged elements are more similar to each other, thus
allowing these algorithm to form valid matches in each step. For
example, even if a subset-based algorithm makes a “wrong” selec-
tion, the remaining tuples still have a high enough weight as their
elements are close to each other. For such cases, NwM performs
similarly to the subset-based algorithms.

With respect to the execution time of the approaches, PW algo-
rithms are faster than the others, terminating in less than one second
(see Table 3), as expected. Execution times for G3 ranged between
14 and 40 seconds, while for NwM they were 43 seconds to 2.9
minutes. G4 was significantly slower than the other algorithms,
taking from 4.2 minutes on the Hospital case to 27.9 minutes in the
Warehouse case.
Conclusion – RQ1: Our experiments confirm that the NwM algo-
rithm produces better results the subset-based approaches in the
majority of cases, especially in the more “loose” combinations. This
includes the real-life models that we used as input. The weight
increases achieved by the algorithm are substantial while the de-
creases are rare and minor. Furthermore, the running time of NwM
is feasible.

Comparing the subset-based approaches to each other, it appears
that the Greedy approaches perform better than Pairwise. On aver-
age, Gr4↓ outperformed the other algorithms in the Hospital and
“Tight” cases, while Gr4 outperformed the others in the Random
case. Gr3↓ was better than the alternative subset-based approaches
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in the “Loose” case. Warehouse was the only case in which PW↓
outperformed the rest of the subset-based algorithms.

To investigate whether it is beneficial to take a more “global”
view, i.e., by combinig input models into larger subsets, we com-
pared Gr4↓ to the other approaches on the Hospital, Warehouse and
Random cases, presenting the results in the boxplot view in Figure 4.
The results appear inconclusive – most of the average improvements
are only slightly higher than 0%, so there appears to be no benefit
using this algorithm compared to the others. The figure also shows,
again, that NwM performs significantly better than Gr4.
Conclusion – RQ2: Selecting larger subsets of input models, e.g., 4,
to merge does not have a significant effect on the results.

For each of the subset-based approaches, we also evaluated the
correlation between the quality of the produced match and the order
in which the subset of input models is picked. As shown in Table 3,
in all but two cases the strategy of combining models by size in the
descending order, i.e., from the largest to the smallest, produced
better results than those using the ascending order. Intuitively, we
believe that handling larger models first produces a large model as
a result, providing more “choices” for subsequent iterations which
leads to better matches. While we saw some outliers, in the majority
of cases, arranging models by size in the descending order was a
more beneficial strategy.
Conclusion – RQ3: For subset-based approaches, the quality of the
produced result is sensitive to the order of input models, with arrang-
ing them by size in the descending order being more beneficial.

7.3 Threats to Validity
Threats to external validity are most significant for our work.

These arise when the observed results cannot generalize to other case
studies. We attempted to mitigate these threats by using two real-
life case studies and a considerable number of randomly generated
models that mimic the properties of the real ones.

Using automatically generated models as a basis for evaluation is
by itself a yet another threat to validity. We attempted to mitigate this
by basing our generator on characteristics taken from the real-life
models and using a combination of generated and real-life models
for evaluation.

We experimented with a particular weight function, described in
Section 4. Thus, the results might not generalize to other possible
weight calculations. Yet, we believe that specific calculations of
weights are orthogonal to our work, as they have a similar effect on
all of the compared approaches.

8. RELATED WORK
Numerous approaches for model merging focus on merging two

inputs with each other [21, 13, 16]. Similarly, model and code
differencing approaches [11, 9, 1] focus on identifying differences
in two, usually subsequent, versions of the input artifacts. Some
works, e.g., [14], propose techniques for detecting many-to-many
matches between the elements of two input models. Our work differs
from those by addressing the problem of merging n input models
together, for any n > 2.

Duszynski et al. [7] emphasize the need for simultaneous analysis
of multiple source code variants, identify commonality and variabil-
ity of those variants, and propose an approach for comprehensible
visualization of the analysis results. This work does not attempt to
study and optimize the matching step though, but rather greedily
finds a match for each input element.

Approximation algorithms for the weighted set packing problem,
applicable for the n-way matching step, are the most relevant to
our work (see also Section 5.1). Arkin and Hassin [2] propose an

algorithm based on local search. The algorithm starts from any
solution, e.g., an empty set or a solution found by Greedy algorithm.
It then iteratively attempts to improve the solution by selecting
2 ≤ s ≤ n disjoint tuples that are not part of the it, and trying the
swap them with a subset of tuples in the solution, if that increases
the solution’s weight while still keeping it disjoint.

Chandra and Halldorsson [5] further improve that algorithm: in-
stead of doing any local improvement that increases the weight of
the solution, the authors propose to find and use the best possible
improvement. The algorithm also assumes that all improvements
are of size n, which makes it more expensive computation-wise.

Berman [3] proposes a yet another improvement to the above
algorithm: instead of performing the swap with the best possible
improvement, the algorithm performs a swap if the square of tu-
ple weights is improved. Again, this increases the computational
complexity of the algorithms.

The exact approximation factors and time complexity of the above
algorithms are shown in Table 1. As discussed in Section 5.2, these
algorithms do not scale for more than a small number of small
models, while we aim to provide a practical solution that can be
applied for merging real-life software models.

9. CONCLUSIONS AND FUTURE WORK
Merging multiple inputs together is an important task in several

software development activities. These include combining over-
lapping views of different stakeholder or unifying multiple related
products into a single-copy software product line representation. Yet,
most of the existing works focus on merging two inputs together,
providing little guidance on how to handle multiple inputs.

In this paper, we extended the model merging problem to consider
n inputs. We focused on the most challenging step of the merging
process – matching – and showed that the problem is NP-hard. We
surveyed and evaluated state-of-the-art approximations developed in
the literature, as well as current practices of incrementally merging
n input models together in smaller subsets. Based on this experience,
we proposed a novel, polynomial-time heuristic algorithm NwM that
considers all n input models simultaneously. We evaluated our ap-
proach on a large set of cases, including two real-life examples, and
showed that it achieves substantial improvements over approaches
that merge input models in subsets, without a substantial degradation
in performance. However, our approach, as well as other available
scalable approaches, does not provide any theoretical approximation
guarantees.

There are several directions for continuing this work. First, we
are interested in exploring additional heuristics that could further
improve the quality of the merge produced by NwM while keeping
its execution time reasonable. For example, one could experiment
with the idea of reshuffling chained tuples (rather than only breaking
the chain into pieces) or even reshuffling elements from distinct
tuples of the chain. We also plan to augment the work by integrating
it with domain-specific compare and compose approaches and by
extending it beyond numerical definition of matching quality, e.g.,
providing means to differentiate between match solutions with iden-
tical total weight. Further analyzing subset-based approaches, e.g.,
comparing all input models to each other and merging them in the
order induced by an algorithm for finding a spanning tree, is a yet
another direction for possible future work.
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