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Abstract. In this paper, we consider the problem of refactoring related software
products specified in UML into annotative product line representations. Our ap-
proach relies on identifying commonalities and variabilities in existing products
and further merging those into product line representations which reduce duplica-
tions and facilitate reuse. Varying merge strategies can lead to producing several
semantically correct, yet syntactically different refactoring results. Depending on
the goal of the refactoring, one result can be preferred to another. We thus pro-
pose to capture the goal using a syntactic quality function and use that function
to guide the merge strategy. We define and implement a quality-based merge-
refactoring framework for UML models containing class and statechart diagrams
and report on our experience applying it on three case-studies.

1 Introduction

A software product line (SPL) is a set of software-intensive products sharing a common,
managed set of features that satisfy the specific needs of a particular market segment [4].
SPL engineering practices capitalize on identifying and managing commonalities and
variabilities across the whole product portfolio and promote systematic software reuse.
SPL commonalities represent artifacts that are part of each product of the product line,
while SPL variabilities — those specific to some but not all products. Benefits of apply-
ing SPL engineering practices include improved time-to-market and quality, reduced
portfolio size, engineering costs and more [4,9]. Numerous works, e.g., [9], promote
the use of SPL practices for model-based development of complex embedded systems.
Often, variants of such systems are developed for different customers and are repre-
sented and implemented using visual structural and behavioral models.

In reality, however, SPLs often emerge ad-hoc, when companies have to release
a new product that is similar, yet not identical, to existing ones. Under tight project
scheduling constraints, development teams resort to copying artifacts from one of the
existing products and later modifying them independently from the original version [15,
18] (the clone-and-own approach).

Cloned artifacts require synchronization: changes in one artifact might need to be
repeated for all variants. In addition, it is difficult to propagate a new feature imple-
mented in one variant into another or to define a new product by selectively “pick-
ing” some, but not all, features from the existing variants. As the result, when product
variants are realized via cloning, development and maintenance efforts increase as the
number of products grows. To deal with the complexity of SPL development, some
approaches, e.g., [2], advocate refactoring legacy cloned products into “single-copy”
representations, eliminating duplications and explicating variabilities.



Numerous works provide guidelines and methodologies for building product line
representations out of legacy systems, e.g., [14, 8]. Most of such approaches, however,
involve a manual review of code, design and documentation of the system aiming at
identifying the set of product line features, as well as the set of components which
implement these features. This manual step is time-consuming, and, in many cases,
impedes adoption of SPL techniques by organizations.

Automated approaches for mining legacy product lines and refactoring them into
feature-oriented product line representations have also been proposed [7, 18, 30, 25]. In
our earlier work [22,24], we focused on refactoring model-level cloned product vari-
ants and proposed a configurable merge-refactoring algorithm, merge-in, applicable to
refactoring models of different types (e.g., UML, EMF and Matlab/Simulink). Our al-
gorithm identifies similar and different elements of the input models using parameter-
izable compare and match operators, and then constructs a refactored model using a
merge operator. The resulting product line model contains reusable elements represent-
ing corresponding merged elements of the original models. In [24], we formally proved
that merge-in produces semantically correct refactorings for any set of input models and
parameters: a refactored model can derive exactly the set of original products, regard-
less of particular parameters chosen and implementations of compare / match | merge
used, if they satisfy well-defined correctness properties (e.g., “each element produced
by merge originates from an element of at least one input model”).

Varying merge-in parameters allows producing different syntactic representations
of the resulting product line due to different possible ways to match input model ele-
ments. All these representations are semantically equivalent and derive the same set of
products. However, not all possible syntactic representations are desirable. Moreover,
depending on the goal of the refactoring, one representation might be preferable to an-
other. For example, a goal of the refactoring can be to highlight the variability points
between the products, eliminating the “unnecessary” variability and creating a more ho-
mogeneous product portfolio. Another can be to maximize the comprehensibility of the
resulting model by minimizing variability annotations for elements of a certain type.
Yet another can be to reduce the size of the resulting refactoring — this might happen
if the models are used for execution or code generation rather than human inspection.
These different goals induce different product line representations.

Example. Consider the UML model fragments in Fig. 1(a,b) depicting two representa-
tive parts of real-life products developed by an industrial partner (since partner-specific
details are confidential, we move the problem into a familiar domain of washing ma-
chines). Fig. 1(a) shows the Controller, Washer and Dryer classes of a washing
machine, together with snippets of Controller’s and Dryer’s behaviors specified by
UML statechart models. The wtrLevel attribute of Controller is used to specify
the desired water level. When the water is filled to that level and heated to 30°C, the
washing machine controller notifies Washer that it can start operating and transitions
from the Locking to the Washing state. After finishing washing, the controller initiates
Dryer and transitions to the Drying state. Dryer operates for 45 minutes and returns
the control to the Controller’s statechart (by sending an appropriate signal which is
omitted from the picture to save space). Then, the washing machine is unlocked, and
the wash cycle stops. Fig. 1(b) shows a similar washing machine model which lacks the
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Fig. 1: Fragments of Washing Machine models and some of their refactorings.

dryer but has a beeping function indicating the end of the wash cycle by signalling for
1 minute. In addition, in this model, the temp and waterLevel attributes control the
desired water temperature and water level, respectively.

These two products have a large degree of similarity and can be refactored into
annotative SPL representations, where duplications are eliminated and variabilities are
explicated. We consider only those refactorings that preserve the behavior of existing
products rather than allowing novel feature combinations (e.g., a product with both
the dryer and the beeper). Even with this simplification, several choices emerge. For
example, the two input models in Fig. 1(a, b) can be combined as shown in Fig. 1(c)
where the Controller classes of both input models are matched and merged together,
while the Dryer and the Beeper classes are unmatched and thus both copied to the
result “as is”, together with their corresponding statecharts. Another choice is shown in




Fig. 1(d) where these two classes are matched and merged together, producing either a
representation in Fig. 1(g) or in (h). Combining statecharts of Controller classes can
also result in two possible representations, as shown in Fig. 1(e) and (f). That is, there
are six possible refactoring options: Fig 1(c,e), (c.f), (d,e,g), (d,e,h), (d,f,g) and (d,f,h).

In each of the cases, the created models are controlled by a set of features, depicted

in the middle upper part of each figure. Since the refactored product line in our exam-
ple encapsulates only the original input products, we have just two alternative features
representing these products — f4 and fp. Product line model elements are annotated
by these features, as shown in a table on the left-hand side of each figure. The set of an-
notations specifies elements to be selected given a particular feature selection: selecting
fa filters out all elements annotated with fp, which derives the original input model
shown in Fig. 1(a) from each of the refactorings. Likewise, selecting feature fp derives
the original model shown in Fig. 1(b). For a refactoring that aims at maximizing the
comprehensibility of the resulting model, the best representation is the one shown in
Fig. 1(c, e) since it has the least number of classes and states with variable names and
the least number of variable statecharts. However, for a refactoring that aims at reducing
the size of the result, the best representation is the one in Fig. 1(d, f, h), as it contains
three classes and six states only, compared to the refactoring in Fig. 1(c, e) which has
four classes and nine states.
Contributions. We consider the problem of integrating several distinct products spec-
ified in UML into an annotative product line representation using merge-refactorings.
(1) We argue that there can be multiple syntactically different product line models that
represent the same set of products. All such models are valid, but not all are desired.
Explicating the goal of the refactoring can help produce those that better fit the user in-
tention. (2) We propose to capture the goal of the refactoring using a quantitative quality
function, comprised of a set of measurable syntactic metrics. This function is used to
evaluate the produced refactorings and to guide the merge-refactorings process towards
a desired result. (3) We present an approach for exploring the set of different refac-
torings with the goal of identifying the one that maximizes the value of a given qual-
ity function. (4) We report on an implementation of a quality-based merge-refactoring
framework for UML models containing class and statechart diagrams, which realizes
the merge-in algorithm introduced in our earlier work [24]. We use the implemented
framework for evaluating the effectiveness of our approach using several example prod-
uct lines specified in UML, including one contributed by an industrial partner.

The remainder of this paper is organized as follows. The details on annotative prod-
uct line representations and the merge-in refactoring algorithm are given in Sec. 2. Our
quality-based merge-refactoring framework is described in Sec. 3. In Sec. 4, we present
an implementation of the framework. We describe our experience applying it to three
case studies in Sec. 5. A discussion and a description of related work are given in Sec. 6.
Sec. 7 concludes the paper and outlines future research directions.

2 Refactoring Software Product Lines

In this section, we describe software product line models annotated by features. We also
give the necessary background on model merging, used as a foundation of our merge-in
product line refactoring algorithm, and summarize the merge-in algorithm itself.



Software Product Lines. SPL approaches can largely be divided into two types: com-
positional which implement product features as distinct fragments and allow generat-
ing specific products by composing a set of fragments, and annotative which assume
that there is one “maximal” representation in which annotations indicate the product
features that a particular fragment realizes [11,3]. A specific product is obtained by
removing fragments corresponding to discarded features. Similarly to [3], our experi-
ence is that the annotative approach, which reminds code-level #ifdef statements, is
easier to adopt in practice, as it does not require a paradigm shift in the way software
is being commonly developed, especially in the embedded domain. We thus follow this
approach here.

A feature model is a set of elements that describe product line features and a propo-
sitional formula defined over these features to describe relationships between them. A
feature configuration, defining a product of a product line, is a sub-set of features from
the feature model that respect the given relationships. An annotative product line is a
triple consisting of a feature model, a domain model (e.g., a set of UML classes and
statecharts), and a set of relationships that annotate elements of the domain model by
the features of the feature model. Fig. 1(c-h) present snippets of domain models (right-
hand side of each figure) whose elements are connected to features from a feature model
(top-middle part of each figure) using annotation relationships (left-hand side of each
figure). In this case, features f4 and fp are alternative to each other, i.e., the proposi-
tional formula that specifies their relationship is (fa V f5) A =(fa A fp). Thus, the
only two valid feature configurations are {f4} and { f5}.

A specific product derived from a product line under a particular configuration is
the set of elements annotated by features from this configuration. For example, the class
diagrams in Fig. 1(a) and Fig. 1(b) can be derived from the product line in Fig. 1(d)
under the configurations { f4} and {f5}, respectively.

Model Merging. Model merging consists of three steps: compare, match and merge.

Compare is a heuristic function that calculates the similarity degree, a number be-
tween 0 and 1, for each pair of input elements. It receives models M, M and a set of
empirically assigned weights which represent the contribution of model sub-elements
to the overall similarity of their owning elements. For example, a similarity degree be-
tween two classes is calculated as a weighted sum of the similarity degrees of their
names, attributes, operations, etc. Comparing Washer classes in Fig. 1(a, b) to each
other yields 1, as these classes are identical in the presented model fragment. Compar-
ing Controller classes yields a lower number, e.g., 0.8, as the classes have different
owned properties and behaviors.

Match is a heuristic function that receives pairs of elements together with their sim-
ilarity degree and returns those pairs of model elements that are considered similar.
Match uses empirically assigned similarity thresholds to decide such similarity. Con-
sider the above example, where Washing classes had a calculated similarity degree of 1
and Controller classes had a similarity degree of 0.8: setting class similarity thresh-
old to 0.75 results in matching both pairs of classes, while setting it to 0.85 results in
matching only the Washing classes.

Finally, merge is a function that receives two models together with pairs of their
matched elements and returns a merged model that contains all elements of the input,



such that matched elements are unified and present in the result only once. For exam-
ple, Controller classes in Fig. 1(a, b) can be unified as shown on the right-hand side
of Fig. 1(e): matched states Locking, Washing and Unlocking are unified, while un-
matched states Drying and Beeping are just copied to the result together with their
corresponding transitions. While the compare and match functions rely on heuristically
determined weights and similarity degrees, merge is not heuristic: its output is uniquely
defined by the input set of matched elements.

Merging-in Product Lines. We now describe the merge-in refactoring algorithm [24]
that puts together input products into an annotative product-line representation. Con-
structing an annotative product line model consists of three steps: creating a domain
model, creating a feature model, and specifying annotation relationships between the
features and the domain model elements. For creation of a domain model, merge-in re-
lies on model merging, described above. Feature models are created using an approach
where features represent the original input products and are defined as alternatives to
each other, so only the original products can be derived from the constructed product
line model. Domain model elements are annotated by these features according to the
product(s) that contributed them. For the example in Fig. 1(e), state Drying is anno-
tated by feature f, while state Beeping is annotated by fp. State Washing is common
(it exists in both input models) and thus is annotated by both features. Annotations of
common elements are not shown in the figure to save space.

Any input product M can be seen as a “primitive” product line with only one feature
far, one feature configuration { fys }, and a set of annotations that relate all model ele-
ments to that feature. This representation can derive exactly one product — M. Thus, the
most generic form of the merge-in operator obtains as input two (already constructed)
product lines, each of which can be a “primitive” product line representing one input
model. For example, when combining the two products in Fig. 1(a, b), we implicitly
convert each of them into a product line and then merge-in them together. One possi-
ble outcome of that process is shown in Fig. 1(c, e), where the features representing
the original models are denoted by f4 and fp and defined as alternatives. In this case,
Dryer and Beeper classes are unmatched.

Varying compare and match parameters, as well as varying the order in which input
models are combined, defines the exact shape of the refactoring outcome. Two products
in Fig. 1(a, b) can also be combined as shown in Fig. 1(d, f), where a lower class
similarity threshold results in Dryer and Beeper classes being matched and merged.

All possible refactorings constructed by the algorithm are semantically “correct”,
each deriving the exact set of input models, regardless of the parameters chosen and
regardless of the order in which input products are merged-in. The correctness of the
merge-in operator relies on “reasonable” behavior of model compare, match and merge
algorithms. Formal correctness properties of those algorithms are specified in [24].

3 Quality-Based Merge-Refactoring Framework

Even though all refactorings produced by the merge-in algorithm are semantically equiv-
alent and correct, not all refactorings are desirable: depending on the goal of the refac-
toring, one representation can be preferred to another. The main objectives of our gual-
ity-based product line merge-refactoring framework are thus to (1) allow the user to



explicate the goal of the refactoring process and (2) drive the refactoring process to-
wards the result that best fits the user intention. We depict our approach in Fig. 2 and

describe it below.
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Fig. 2: Merge-Refactoring Framework.

where V = vy, ..., v, is a set of measurable metrics that, given P L, produce a number
between 0 and 1, and Q = ¢y, .. ., gy, is a set of metrics’ weights.

Examples of Possible Quality Functions. We discuss two specific quality functions.
The goal of the first one, (01, is to minimize the size of the resulting model. Since we
assume that there is a large degree of similarity between input models that represent
related products of a product line, aiming to reduce the total number of elements in
the result leads to a reduction of duplications which, in turn, helps avoid repeating
modifications for all variants.

We define our notion of model size using the number of classes, attributes, states
and transitions. Specifically, the metrics v1-v4 listed in the first four rows of Table 1
measure the overall reduction of the size of the produced model when compared to
the inputs. To construct ()1, we assign these metrics equal weights, considering them
equally important, as specified in the second to last column of Table 1. Q); prefers
models that are as compact as possible, e.g., the refactoring in Fig. 1(d, f, h).

Our second goal is to produce refactorings that are the easiest for the user to compre-
hend. The work of [6, 5] makes an argument that an increase in the size of UML models
(specifically, the number of classes, aggregations, states and transitions) leads to an
increase of cognitive complexity. The authors validate this claim using controlled ex-
periments involving human subjects. However, neither these experiments nor our early
work [22] considered variability aspects of the annotative product line representations.
For example, while they minimize the size of the model, both possible merges of the
Dryer and the Beeper classes in Figures 1(g) and (h) contain 66% and 50% variable



Table 1: Quality metrics.

Metric Objective Weight
Q1 Q2

v1|% of reduction |Reduce the number of classes. 0.25 | 0.125
in # of classes (out of the total number of classes in input.)

vz |% of reduction  |Reduce the number of class attributes. 0.25 | 0.125
in # of attributes |(out of the total number of attributes in input.)

v3|% of reduction |Reduce the number of states. 0.25 | 0.125
in # of states (out of the total number of states in input.)

v4|% of reduction |Reduce the number of transitions. 0.25 | 0.125
in # of transitions|(out of the total number of transitions in input.)

v5|% of common  |Reduce the percentage of variable class attributes 0.0 0.17
attributes (out of the total number of the class attributes.)

ve|% of common  |Reduce an average percentage of variable states 0.0 0.17
states (out of the total number of states in a statechart.)

v7|% of common  |Reduce an average percentage of variable transitions | 0.0 0.16
transitions (out of the total number of transitions in a statechart.)

states (i.e., states annotated by features), respectively. The merge of the Controller
classes in Fig. 1(f) contains 50% variable states as well.

We believe that the higher is the number of common elements in a merged model,
the easier it is to understand. We thus define a second guality function, ()2, to combine
size minimization with encouraging those refactorings which result in models with a
high degree of commonalities: classes with a significant number of common attributes
and statecharts with a significant number of common states and transitions. The metrics
vs-vy of Table 1 are designed for that purpose. They are calculated by counting the
percentage of common sub-elements for a certain element in the model, i.e., those sub-
elements that are annotated by all product line features. To achieve a reasonable degree
of merging while discouraging too much variability, Q) gives the combination of four
size-based metrics v1-v4 and the combination of three variability-based metrics v5-v7
equal importance (see the last column of Table 1). This quality function prefers the
refactoring in Fig. 1 (c, e).

We use both Q1 and @5 to evaluate refactorings of our case-study models in Sec. 5.

3.2 Constructing the desired refactorings

Since a quality function captures the criteria that are to be used when performing the
merge-refactoring process, it could also be used to guide the process towards the desired
result. As stated in Sec. 2, refactorings produced by the merge-in algorithm differ by the
way input model elements are matched and merged, which is controlled by the merge-
in configuration parameters. Modifying these parameters, e.g., increasing weight of
state name similarities during compare, can result in the refactoring shown in Fig. 1(e).
Instead, if we give more weight to the structural similarity of states, i.e., their distance to
the initial and the final states and, recursively, the similarity of their neighbors [19], we
get the result in Fig. 1(f). Likewise, lowering the class similarity threshold can result in a
refactoring where the Dryer and the Beeper classes are matched and merged together,
in addition to merging the Controller classes, as shown in Fig. 1(d).

Obviously, merge-in parameters cannot be decided universally because their values
depend on the nature of the refactored product line and the objective of the quality func-
tion. It is also unreasonable to assume that the user can set and adjust these parameters



manually. Moreover, generating all possible refactorings and evaluating them based on
the given quality function is not a feasible approach as it does not scale well.

We thus need a systematic way for identifying those values of merge-in parameters
that result in an optimal refactoring w.r.t. the given quality function ). In our work,
we propose doing so by treating parameter selection as a classical optimization prob-
lem [21], using the chosen quality function as an objective function for an optimization
technique. The process (1) uses an optimization heuristic to set values of merge-in pa-
rameters, (2) produces the corresponding refactoring, subject to these parameters, (3)
evaluates it using (), and repeats until a result of the desired quality is reached (or a
certain fixed number of iterations is performed). That is, different refactorings are gen-
erated by the merge-in algorithm based on the values of compare weights and similarity
thresholds that are set using an optimization algorithm aimed to maximize the value
of (. Only the resulting “optimal” refactoring is returned to the user. The overall ef-
ficiency of the approach is as good as the chosen optimization algorithm because the
latter selects the values of parameters for the next iteration.

4 Implementation

In this section, we describe our implementation of the merge-in algorithm, used as a
foundation of the merge-refactoring framework, as well as our approach for setting the
merge-in parameters. We focus our work on systems represented and implemented with
UML models containing class and statechart diagrams — a common choice in automo-
tive, aerospace & defense, and consumer electronics domains, where such models are
often used for full behavioral code generation (e.g., using IBM Rhapsody').

The core part of the merge-in algorithm is the compare function which receives two
UML elements of the same type and returns their similarity degree — a number between
0 and 1. To implement compare, we started with existing comparison algorithms for
UML classes [29, 13] and statecharts [19]. These algorithms calculate the similarity
degree recursively, using formulas that assign empirically defined weights to similarity
degrees of appropriately chosen sub-elements.

None of the existing algorithms combined information obtained by analyzing both
structural and behavior models together: comparing classes did not take into account
information about similarity of their corresponding statecharts. We thus extended class
comparison by considering behavior information, obtained by comparing statecharts to
each other, and combining it with structural information by giving them equal weights.
We also extended the statechart comparison algorithm proposed in [19] to consider state
entry and exit actions, state do activities and actions on transitions, as those were
used in the real-life model provided by the industrial partner.

Based on elements’ similarity degrees generated by compare, our implementation
of match “greedily” selects similar elements that are above a given threshold. Merge
further combines elements deemed similar while explicating variabilities. We use the
union-merge [26] approach to implement the merge function. It unifies matched ele-
ments and copies unmatched elements “as is” to the result. Our merge implementation
is an adaptation of static union merge of TReMer+-2, extended to deal with annotations

! http://www-01.ibm.com/software/awdtools/rhapsody/
% http://se.cs.toronto.edu/index.php/TReMer+



of domain model elements by features, as discussed in Sec. 2. We use IBM Rational
Software Architect® (RSA) as our modeling environment, allowing us to reuse existing
Java-based algorithms. Rhapsody models supplied by our industrial partner were first
exported into UML 2.0 XMI format and then imported into RSA.

For adjusting merge-in parameters, we have implemented a version of the local
search optimization technique [21] where the space of possible refactorings is explored
by changing one parameter value at a time (hill-climbing). After evaluating the resulting
refactoring and adjusting this value, we move to the next one, until all values are set.
While this algorithm can miss the best result (global maximum) because it does not
revisit the decisions that were already made, it is shown to be quite effective in practice
for finding a “good” result (local maximum) in an efficient manner. We demonstrate the
effect of adjusting the class similarity threshold in Sec. 5.

We merge-in the most similar models first: similarity degrees of all inputs — models
of individual products or already constructed intermediate product lines — are evaluated,
and those with the highest similarity degrees are combined first. Intuitively, merging
more similar models first helps decrease the size and the number of variable elements
in the result.

During our experiments, we noted that different values of compare weights and sim-
ilarity thresholds can produce the same refactoring and thus the same quality measure-
ments. Since our goal is to maximize a given quality function, any of the assignments
that produce the desired result is appropriate.

S Experience

In this section, we report on our experience applying the quality-based merge-refac-
torings. Our goal is to validate the feasibility of the approach for UML models in the
embedded domain. In particular, we are interested in demonstrating the applicability
and effectiveness of the proposed methodology for adjusting merge-in parameters for
realistic models containing UML class and statechart diagrams, based on a given quality
function. In what follows, we describe our subject product lines and present our results.

Subjects. We applied our refactoring approach to three sets of related products. The
first is the Washing Machine example, built by us to mimic a partner’s model and to
highlight its characteristics. A snippet of this example is presented in Fig. 1 and the full
version is available in [23]. The Washing Machine product line contains three different
products, with a high degree of overlap in the set of classes comprising them. Specif-
ically, each product has six classes, out of which three are identical across products
(Motor, Faucet and Detergent Supplier), two are similar to each other in all three
products (Controller and Washer), and one class in each product carries a unique
product-specific functionality (either Dryer, Beeper or Timer). Also, statecharts of
similar classes have similar structures.

The second example, Microwave Oven, has been introduced by Gomaa in [9]. It
includes four different, although very similar, variants of the timer control class and
their corresponding statecharts.

The final example comes from the Consumer Electronics (CE) space, contributed by
an industrial partner. Here, we focus on seven behavior-intensive product components

3 http://www-01.ibm.com/software/awdtools/swarchitect/



Table 2: Varying Class Similarity Threshold S,.

H ‘Washing Machine H Microwave Oven H CE Product Line
metrics __||orig] 0.7 0.75 0.78 0.8 0.85 0.9 [lorig] 0.7 0.75-0.85 0.9 [lorig] 0.6 0.65 0.7 0.75 0.8
1 [#classes Bl 6 7 8 9 11 12]8]2 3 5 [45]14 15 17 20 27
s |#attributes 25|10 12 14 20 25 25 | 4 | 1 2 4 ||104| 56 56 75 84 80
V5 |#var.attributes - 3 4 5 6 4 0 - 0 2 4 - 43 43 26 32 8
3| #states 4318 20 22 28 38 43 | 18| 7 9 18 ||448| 177 151 211 374 412
vg | #var.states - 6 6 5 4 0 0 - 1 0 0 - 56 64 31 13 4
v4 |#transitions 56|28 31 34 40 51 56 || 44| 16 24 44 ||944| 245 260 402 573 640
vr|#varransitions|| - | 19 19 18 12 0 0 || - | 2 4 0| -]77 8 31 19 38
Ql [[ - 0587 0.528 0.469 0.333 0.148 0.083]] - [0.686 0.505 0.065]] - [0.646 0.635 0.496 0.351 0.284
Q2 [[ - 05650560 0.572 0.533 0.523 0.541]| - [0.797 0.561 0.372]] - [0.640 0.650 0.678 0.601 0.623

which together contain 45 classes, 104 attributes, 448 states and 944 transitions. The
number of classes implementing each component ranges between 2 and 14. The number
of statecharts in each component ranges between 1 and 3, with the number of states and
transitions for a statechart ranging between 20 and 66 states, and 31 and 81 transitions,
respectively. Of the seven components, three have a similar structure and a similar set
of elements; another pair of components also contains elements that are similar to each
other (but less similar to the components of the first cluster), and the remaining two
components are not similar to the rest.

Space limitations and verbosity of UML models do not allow us to include pictorial
illustrations of the examples. Thus, we limit the presentation to the statistical data about
the case studies. The complete models for the first two examples are available in [23].
Since we cannot share details of the CE model, we built our first example, the Washing
Machine, to be similar.

Results. To evaluate the effectiveness of our guality-based merge-refactoring approach,
we analyzed different refactorings produced by varying compare weights and similarity
thresholds, and evaluated them using quality functions ()1 and ()5 introduced in Sec. 3.
As a starting point, we used empirically determined weights specified in [29, 13, 19]. We
updated the weights to combine structural and behavior information when comparing
classes and to take into account additional statechart elements, as described in Sec. 4.
For the similarity thresholds, we started with the assumption that elements with the
similarity degree lower than 0.5 are significantly different and should not be combined.
For statecharts, we refined these estimates using the thresholds empirically determined
in [19]. The values of weights and thresholds that we used are summarized in [23].

For illustration purposes, in this section we vary the class similarity threshold be-
tween 0.4 and 1, iteratively incrementing its value by 0.01, and evaluate the produced
results using our quality functions. Table 2 presents the total number of elements as
well as the number of variable elements of each type in the resulting refactoring. To
save space, we show only distinct refactorings, omitting those that are equivalent to the
presented ones. For example, in the Washing Machine case, all refactorings produced
with class similarity thresholds between 0.4 and 0.7 are identical, and we only show
the latest. In addition, the orig column reports the total number of input elements for
each of the case studies. It is used to compare the result of the refactoring to the orig-
inal models and to normalize the collected metrics during guality computation. A full
description of the refactored product line models that were produced for each step of
the first two case-studies is available in [23].

The results demonstrate that increasing the value of the class similarity threshold
results in decreasing the value of ()1 in all case studies because this function prefers



refactorings that are as compact as possible: as the class similarity threshold increases,
fewer classes are matched and merged, and the number of elements in the result grows.
@2, however, does not exemplify such linear behavior because it balances the reduction
in size with the goal of merging only those elements that are indeed similar. For exam-
ple, when refactoring the Washing Machine, the result preferred by () is obtained by
setting the class similarity threshold to 0.7 or lower, which causes merging of as many
classes as possible, including those that are dissimilar (e.g., the one in Fig. 1(d)). This
produces state machines with a large percentage of variable states and transitions. ()2
prefers the solution produced when the similarity threshold is set to 0.78, which merges
only elements with a high degree of commonality (e.g., see Fig. 1(c)). When the class
similarity threshold is high (0.9), only identical classes got merged. A large number of
classes, states and transition in the resulting model is captured by a low calculated value
for both 1 and )2, since both of them are designed to minimize the size of the result.

For the Microwave Oven example, both 1 and Q)5 prefer the solution found when
the class similarity threshold is set to 0.7 or lower (see Table 2). Since all four variants
of the timer control class in this example are very similar, these classes are all merged
together in the resulting refactoring. The percentage of variable states and transitions in
this solution remains small, and the overall reduction in their total number is significant.

Recall that our third example had two clusters of similar components (and two other
components, different from the rest). The refactoring that identifies and merges compo-
nents in these clusters is produced when the class similarity threshold is set to 0.7. This
refactoring also maximizes the value of Q5. Similarly to the Washing Machine case,
lower threshold values produce more merges resulting in a high number of variable at-
tributes, states and transitions (and thus, lower values of ()2), while higher thresholds
result in a large number of elements in the resulting model (and thus, lower values of
both @ and Q5).

In summary, we found that in all of the above cases, quality functions were able to
distinguish between different refactorings as desired and thus were appropriate to help
“drive” the refactoring process towards the preferable result. Our third case study also
showed that differences in the computed quality values became more pronounced as
models got bigger. Furthermore, the refactorings that were produced in our examples
under the strategy that maximizes the value of ()2 were identical to those constructed
manually by a domain expert. This encouraging result makes us believe that our quality-
based merge-refactorings approach is effective for the creation of annotative product
line representations from a set of existing systems.

Threats to Validity. Threats to external validity are most significant for our work. These
arise when the observed results cannot generalize to other case studies. Because we used
a limited number of subjects and quality functions, our results might not generalize
without an appropriate tuning. However, we attempted to mitigate this threat by using
a real-life case study of considerable size as one of our examples. Thus, even though
preliminary, our results show that the approach, perhaps with some additional tuning, is
effective for finding good refactorings of large-scale systems.

In addition, we limit the scope of our work to physical systems in the embedded
domain, where number of product variants usually does not exceed tens. The approach
might not scale well to other domains, where hundreds of product variants are possible.



However, we believe that the scalability issue mostly relates to the annotative product
line representation itself, rather than to our attempt to distinguish between different
representations.

6 Discussion and Related Work

Product Line Refactoring Approaches. Several existing approaches aim at building
product lines out of legacy artifacts, e.g., [8]. These approaches mainly provide guide-
lines and methodologies for identifying features and their related implementation com-
ponents rather than build tool-supported analysis mechanisms. Some works also re-
port on successful experience in manual re-engineering of legacy systems into feature-
oriented product lines, e.g., [14].

Koschke et al. [15] present an automated technique for comparing software variants
at the architectural level and reconstructing the system’s static architectural view which
describes system components, interfaces and dependencies, as well their grouping into
subsystems. Ryssel et al. [25] introduce an automatic approach to re-organize Matlab
model variants into annotative representations while identifying variation points and
their dependencies. Yoshimura et al. [30] detect variability in a software product line
from its change history. None of the above approaches, however, takes into account
quality attributes of the constructed results nor attempt to distinguish between the dif-
ferent refactorings based on the refactoring goal.

Product Line Quality. Oliveira et al. [20] propose a metric suite to support evaluation
of product line architectures based on McCabe’s cyclomatic complexity of their core
components, which is computed using the control flow graph of the program and mea-
sures the number of linearly independent paths through a program’s source code. Her
et al. [10] suggest a metric to measure reusability of product line core assets based on
their ability to provide functionality to many products of the same SPL, the number of
SPL variation points that are realized by an asset, the number of replaceable compo-
nents in a core asset and more. Hoek et al. [28] describe metrics for measuring service
utilization of SPL. components based on the percentage of provided and required ser-
vices of a component. While these works allow measuring reusability, extensibility and
implementation-level complexity of product line core assets, they do not discuss the
structural complexity of annotative SPL models nor allow comparing different anno-
tative product line models and distinguishing between them based on their representa-
tion properties. Trendowicz and Punter [27] investigate to which extend existing quality
modeling approaches facilitate high quality product lines and define requirements for an
appropriate quality model. They propose a goal-oriented method for modeling quality
during the SPL development lifecycle, but do not propose any concrete metrics.

Numerous works, e.g., [6,5], propose software metrics for evaluating quality of
UML models. While we base our approach on some of these works, they are not de-
signed for UML models that represent software product lines and do not take variability
aspects into account.

Finally, some works discuss characteristics of feature implementations in code, such
as feature cohesion and coupling [1] or granularity, frequency and structure of prepro-
cessor annotations [12, 16]. However, these works are not easily generalizable to ad-
dress the issue of structural complexity of models.



7 Conclusions and Future Work

Understanding and refactoring existing legacy systems can promote product line adop-
tion by industrial organizations which have made a significant investment in building
and maintaining these systems, and are not ready to abandon them for “starting from
scratch”. Since these systems are usually very large, automation becomes a necessity.

In this paper, we focused on integrating distinct products specified in UML into an
annotative product line representation. We argued that multiple syntactically different
yet semantically equivalent representations of the same product line model are possi-
ble, and the goal of the refactoring induces which one is preferable. We suggested an
approach for guiding the refactoring process towards a result that fits best the user’s
intention, as captured by a syntactic guality function. We implemented a refactoring al-
gorithm based on model merging and used it as the foundation of our merge-refactoring
framework. We evaluated the proposed qguality-based merge-refactoring approach on a
set of case-studies, including a large-scale example contributed by an industrial partner.
We believe that our work promotes automation of product line refactoring and reasoning
about refactoring alternatives.

For future work, we are interested in enhancing our understanding of product line
quality considerations which can help with assessing different product line model rep-
resentations, produced either automatically or manually. The guality functions can be
extended to consider additional quality attributes, allow the user to set and/or interac-
tively choose different quality goals for different regions within the model, incorporate
user feedback and more. Performing user studies for evaluating quality of annotative
product line models can also be a subject of future work.

In addition, we are interested in exploring more sophisticated refactoring techniques
that are able to detect fine-grained features in the combined products. This will allow
creating new products in the product line by “mixing” features from different original
products, e.g., the dryer and the beeper features from the models in Fig. 1. We also plan
to further improve our match algorithms by allowing the user to affect results of this
function, e.g., by setting negative matches. Exploring the use of more advanced opti-
mization techniques, such as cross-entropy for adjusting compare and match parameters
is also a subject for possible future work.
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