

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 361–376, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using MDA for Integration of Heterogeneous
Components in Software Supply Chains

Herman Hartmann1, Mila Keren2, Aart Matsinger1,
Julia Rubin2, Tim Trew1, and Tali Yatzkar-Haham2

1 Virage Logic, Eindhoven, The Netherlands
{herman.hartmann,aart.matsinger,tim.trew}@viragelogic.com

2 IBM Research, Haifa, Israel
{Keren,mjulia,tali}@il.ibm.com

Abstract. Software product lines are increasingly built using components from
specialized suppliers. A company that is in the middle of a supply chain has to
integrate components from its suppliers and offer (partly configured) products
to its customers. To cover the whole product line, it may be necessary for inte-
grators to use components from different suppliers, partly offering the same fea-
ture set. This leads to a product line with alternative components, possibly using
different mechanisms for interfacing, binding and variability, which commonly
occurs in embedded software development.

In this paper, we describe a model-driven approach for automating the inte-
gration between various components that can generate a partially or fully con-
figured variant, including glue between mismatched components. We analyze
the consequences of using this approach in an industrial context, using a case
study derived from an existing supply chain and describe the process and roles
associated with this approach.

1 Introduction

Software product line engineering (SPLE) aims to create a portfolio of similar soft-
ware systems in an efficient manner by using a shared set of software artifacts. SPLE
is usually separated into two phases: domain engineering and application engineering,
and a variability model is used to capture the commonality and variability and to con-
figure a variant [1]. When implementing SPLE using model-driven architectures
(MDA), it is conventional to create a domain-specific language (DSL) during domain
engineering. During application engineering this DSL is used to create specific appli-
cations [2]. In component-based software development, a domain-specific component
technology is used to create reusable artifacts, and a particular application is created
by selecting components and binding variation points [3,4].

Due to the growing influence of software supply chains, an increasing portion of a
product line is developed using commercial components [5]. In a supply chain, each
of the participants uses components containing variability, combines them with in-
house developed components, and delivers components containing variability to the
next party in the supply chain [6,7].

362 H. Hartmann et al.

In an earlier paper we analyzed the consequences of integrating heterogeneous
components in a software supply chain for resource constrained devices [8]. When
software components from different suppliers have to be integrated, there may be
mismatches between their interfaces, which have to be bridged by glue code. For in-
stance, a set of interfaces might contain different numbers of methods (interface split-
ting), method parameters can be passed in different forms, e.g., as a struct vs. a list of
separate parameters, methods having the same name might have different functional-
ity implemented (functional splitting), etc.

A product line must be able to satisfy the requirements of its potential customers.
Often, no single supplier can cover the full range of variability needed to achieve this,
so it is frequently necessary to use components from several suppliers for a particular
functional area. This leads to a product line that contains alternative components, only
one of which can be used in a particular implementation [9], and a large number of
glue components. In current practice there are three different approaches for integra-
tion and configuration of components, each with their limitations, as described below.

1. The possible glue components are created during domain engineering and con-
figured during application engineering using a variability management tool.
However, the manual creation of, possibly, a large number of glue components
will require an unacceptably high development effort.

2. The required glue component is created during application engineering, at the
moment that the specification of that glue component is known. This introduces
an increase of throughput time which would be unacceptable in many situations.

3. A common standard interface and component technology is defined for a set of
non-matching components. Glue components are created for each component to
match these interfaces. Many components will therefore be bound through two
glue components. This approach has the drawback that the glue components
might become unnecessary complex if the standard interfaces have to cater for
the interactions between any combination of components, thereby leading to ad-
ditional development effort in comparison with the creation of custom glue.

To solve this problem we exploit the power of model-driven code generation to create
custom glue between the combinations of supplied components that are actually used.

For resource constrained devices, some component technologies use static binding,
rather than dynamic binding, and reachability analysis to exclude unnecessary code
[3] and to create optimal system performance. The challenge that arises from a soft-
ware supply chain is the ability to deliver a partly configured product to the next party
in the supply chain. Components that have to be bridged may contain optional sub-
components. The glue components should only bridge between the components that
are actually present so glue components should only be generated when the presence
of those optional components is known. This can only be determined when the final
configuration choices are known. In a supply chain, these final configuration choices
could be made by a downstream participant. Furthermore, each supplier and the re-
ceiving parties may all use different build environments, which complicates the crea-
tion of the complete software stack. Other challenges from a supply chain relate to the
protection of Intellectual Property and commercial interest, which means that, in
many cases, the customer should neither receive source code, nor be aware of varia-
tion points that are offered to other customers.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 363

We therefore address the following research questions:

1. Can MDA be used to bridge mismatches between components from alterna-
tive suppliers and can this method be used to support staged configuration?
The set of mismatches we address in this paper is given in section 2.

2. What is the development process that is associated with this approach and
what level of MDA expertise is required by the engineers?

Paper overview: In the paper, section 2 introduces a case study, Section 3 describes
our approach and how it is supported with MDA and variability management tools.
The management of the expertise expected of engineers is presented in section 4.
Section 5 contains a discussion and identifies areas for future research, with Section 6
making a comparison with related art, followed by our conclusions in Section 7.

2 ZigBee Case Study

We demonstrate the applicability our approach by a realistic case study. In order to
restrict the complexity of the first evaluation, the capabilities of the glue code in our
tools are restricted to adapting between syntactic differences and the differences be-
tween component technologies. This caters for cases in which the semantics of inter-
faces are standardized, independently of the tech-
nology that may be used to implement them. As a
case, we chose a heterogeneous ZigBee stack.
ZigBee is a specification for a suite of high level
communication protocols using small, low-power
digital radios for wireless personal area networks
[10]. The ZigBee stack is defined as a layered pro-
tocol (see Fig. 1). The standard is platform-
independent, so implementers make their own
choices for the exact form of the APIs between the
layers. We focus on the lower layers, i.e. Physical,
MAC, and Network. There is considerable varia-
tion between the network layers for different appli-
cation profiles, e.g. “Plant Monitoring”, “Home
Automation” and “Smart Metering”, so software
suppliers usually only support a few such profiles.
The MAC layer is independent of the application
profiles, but has to be configured for the particular
integrated circuit (IC). Therefore, in order to serve
a range of customers, an IC vendor has to integrate ZigBee implementations from al-
ternative suppliers, each of whom made their own software implementation technol-
ogy choices (in our case nesC [11] and tmCom, a precursor to that used in the MPEG
Multimedia Middleware standard [12]).

The supply chain consists of IC vendors, software vendors, and the manufacturers
that create the final product. In the supply chain, we found multiple parties for each
link (typically more than five), each offering different sub-sets and extensions of the
ZigBee standard. For each layer, a set of required, alternative and optional features is

P
lant M

onitoring

H
om

e A
utom

ation

S
m

art M
etering

Application Framework

Application Objects

Network Layer

Medium Acces Control (MAC) Layer

Physical (PHY) Layer

P
lant M

onitoring

H
om

e A
utom

ation

S
m

art M
etering

Application Framework

Application Objects

Network Layer

Medium Acces Control (MAC) Layer

Physical (PHY) Layer

Fig. 1. Layers in the ZigBee protocol
stack with profiles

364 H. Hartmann et al.

specified, together with the dependencies between them. Examples of optional fea-
tures are: power-saving, guaranteed time slot, and security mechanisms.

In this case study, we take the position of an IC vendor that is using software from
specialized suppliers. We investigated the source code of three ZigBee stacks. Table 1
gives a subset of the features of these stacks, whose suppliers we will identify as A, B,
and C. For a particular customer, the IC vendor selects the most suitable supplier and
creates a partly configured product. For instance, a product can be configured with the
components of Supplier C, where “Beaconing” and “Guaranteed Time Slot” are pre-
configured, leaving “Power Saving” and “Security” to be configured by the customer.

In Table 1, Man stands for manda-
tory, Opt stands for optional, and No
stands for not supported. We also
listed the implementation technol-
ogy. For the MAC layer, an
Open-ZB implementation was used
[13], based on nesC technology [11].
The differences between the technol-
ogy choices of the Open-ZB imple-
mentation and those of the other
suppliers were studied. In order to
demonstrate the requirements for

glue code generation, a dummy ZigBee Network layer was created, whose interfaces
exhibited the union of the differences that had been found, thereby covering all the
differences that we encountered in practice. The main differences between the tech-
nologies used in the Network component and the Open-ZB MAC are summarized in
the Table 2.

Table 2. Differences between the technologies used in the ZigBee case study

 Network layer Open-ZB MAC layer
Component technology tmCom nesC
Binding Dynamic Static
Interfaces Uni-directional Bi-directional
Naming convention tmI<port>NXP<interface>[Ntf]

<method>
<port>_<interface>
 .<method>

Calling convention Referencing structure Individual parameters
Specific keywords STDCALL command, event

Both components have two ports (for data and control), which are connected corre-

spondingly. To bridge the technology difference, an additional glue component must
be added, as shown in Fig.2. The role of this glue component is to exhibit tmCom
style interfaces toward the Network component and nesC style interfaces toward the
MAC component. The glue component translates each down-call (command) that it
receives from the Network component into a corresponding call to the MAC compo-
nent. In this translation, it deals with naming and parameter-passing conventions. For
the up-calls (events) originating from the MAC component, nesC uses static binding,
based on a configuration description, whereas the tmCom Network layer employs

Table 1. Feature set of selected suppliers

Feature\ Suppliers A B C
Network layer No Opt Opt
Beaconing Opt No Opt
Guaranteed Time Slot Opt No Opt
Security No Opt Opt
Mesh-configuration No Man No
Power Saving No No Opt
Impl. Technology nesC C C

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 365

run-time binding, with a subscription pattern at the granularity of its interfaces [14].
Therefore the glue component implements the notification subscription management,
which uses a table to map between the nesC functions called by the MAC and the
tmCom functions in the Network layer. The glue code must provide the additional
subscription management functions.

During development, staged con-
figuration may be required. Once the
supplier has been selected, the re-
maining choices for optional features
shown in the table can either be made
in-house or by the customer. For ex-
ample, when Supplier C is selected,
the optional feature “Power Saving”
can be selected in-house and the
choice for “Security” can be handed
over to the customer. In this case, the
customer receives code in which “Se-
curity” is still a variation point but
“Power Saving” is already configured.

3 MDA for the Integration of Heterogeneous Components

This section begins with an overview of our approach and then elaborates on each
step. The overview of our approach is described with respect to the transformations
illustrated in Fig. 3.

Fig. 3. Model transformations for integration and configuration of components

The presented model-driven approach uses the new variability pattern introduced
in [8]. In this approach, an initial reference architectural model is defined containing
conceptual components and their composition. These conceptual components repre-
sent architectural variation points, each of which describes the alternative suppliers of

Glue

Network (tmCOM)

MAC (OpenZigbee - nesC)

Data

Data Control

Notification
Subscription
Management

nesC module

nesC
configurations

tmCOM
interfaces

nesC
interfaces

Control

Fig. 2. Integration of Network and MAC layers

366 H. Hartmann et al.

that component. Later, this model is transformed into one in which the conceptual
components are substituted by models of components from the selected suppliers.

We term the initial model a supplier-independent component model (SICM). This
model, which is represented in terms of a new UML profile, consists of supplier-
independent (SI) components and their dependencies. When the application engineer
selects suppliers for the SI components, model-to-model transformations create a new
model. In this new model, the SI components have been substituted by supplier-
specific (SS) components that contain the interface descriptions for the corresponding
development artifacts, which are tagged with their component technology.

Now, glue components are inserted by a second model-to-model transformation
wherever a pair of incompatible interfaces is found. Then, a combination of model-to-
code transformations and reusable code snippets is used to create the required glue
code and other auxiliary files, such as build scripts, which can be transferred to the
next participant in the supply chain.

To evaluate this approach, tool support for glue modeling was implemented as an
extension to the IBM Rational toolset [15], including a new UML profile for model-
ing the supplier variability and glue specification, and model-to-code transformations
for generating code artifacts. For feature modeling, a commercially available variabil-
ity management tool was used [16], for which no extensions where needed. The proc-
ess of using this approach, is illustrated in Fig. 4, and is further elaborated in the
following subsections.

Fig. 4. Process description

3.1 Creation of a Feature Model and a Reference Architecture

As the first step in the process, the domain engineer defines the feature model that
represents the product line variability, using a variability management tool. A distinc-
tion can be made between variation points that relate to product features, denoted as
functional variation points (FVP), and variation points that describe alternative sup-
pliers, denoted as supplier variation points (SVP), according to [9].

Then the SICM is created using the new UML profile. The SICM contains the SI
components with their ports and variation points, as well as the dependencies between
these components (left hand side of Fig. 3).

As potential component suppliers are identified during domain engineering, models
of the SS components are defined. These components contain the interface descrip-
tions for the supplied development artifacts. Subsequently, an implement connection
with variability conditions is used to connect the SS components to their correspond-
ing SI component, as shown in Fig. 5 for the ZigBee case study.

To complete the product line domain definition, the domain engineer activates va-
lidation rules to check that the SICM is legal and complete (e.g., each SI component
must have a corresponding SS component to implement it).

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 367

The conceptual model of the entities used in this approach is shown in Fig. 6. It
shows how the SS Components implements the SI components and their relation to
the glue components. It also shows the relations between the components and the
variation points (FVP, SVP). The different variability conditions for a particular SI
component represent the SVP and are linked to the feature model in the variability
management tool. The feature model is also linked to the FVPs of the SI components.
Additionally, since different suppliers can implement the same FVP differently, and
with different binding times, the SS components contain the configuration mappings
of their FVPs to the FVPs of the SI components that they implement.

Fig. 5. SVP’s of the case study Fig. 6. Conceptual model of entities used

In the Zigbee case study the domain engineer modeled a subset of the ZigBee pro-
tocol architecture with two SI components, NWK_vp and MAC_vp, connected by two
ports. Two alternative SS components are modeled for each SI component, Nwk and
tmNwk for the NWK_vp SI component, and tmMac and Mac for the MAC_vp SI com-
ponent (Fig. 5).

3.2 Configuration for Supplier Selection

During application engineering, an early step is the selection of the suppliers for each
component, based on the different features that each supplier provides, together with
non-functional criteria, such as cost. This choice is made using a variability manage-
ment tool, which assigns values to the SVPs. A model-to-model transformation cre-
ates a new model in which any SI components with assigned SVPs are replaced by the
selected SS component, corresponding to the middle model in Fig. 3. This transforma-
tion naturally supports staged configuration without any other measures being re-
quired to keep the partially configured feature and component models synchronized.

3.3 Identification of the Need for Glue

When resolving supplier variation points, the conceptual components of the initial model
are replaced by the selected specific components, possibly from different suppliers. Here
we consider the case in which alternative SS components associated with the same SI

368 H. Hartmann et al.

component are implemented differently. Yet they should have similar functionality and
equivalent ports. Glue components are required wherever connected ports have mis-
matched interfaces or where they have been implemented in different technologies.
These conditions are detected automatically by validation of the UML model, based on
the following criteria:

1. For each pair of SS components with connected ports, a required interface of an SS
component does not match a provided interface, or any interface from which it in-
herits. Here, interface matching relates to the interfaces names and their method
signatures (i.e. method names and the number, order and type of their parameters).

2. The components use different component technologies.

The model component elements are checked for the conditions above. Wherever the
validation fails, a glue component is inserted between mismatched components by a
model-to-model transformation, resulting in the right hand model in Fig. 3. At this
point, the inserted component provides a specification for the glue, with its implemen-
tation still to be generated, as described in Section 3.4. Some component technolo-
gies, such as Koala [3] and nesC [11], require a top-level component to specify the
composition of the components that use that technology, as illustrated in Fig. 2.
Where required, the top-level component is also generated at this point.

When all SVPs have been resolved and all glue components have been added, we
obtain the final, supplier-specific component model (SSCM).

3.4 Configure and Generate Glue Components

This section starts with a description of the meta-model for glue components. We then
proceed with a description of tool support for the application engineer, who can inter-
actively generate the glue code without being exposed to mechanisms of code genera-
tion, i.e. the model to text transformations.

Modeling of Glue Components
A glue component should resolve mismatches between interfaces, methods, method
parameters and other mismatches between the glued components. Furthermore, it may
also supply additional functionality that some component technologies may require.
For example, in the case study, the nesC MAC expects that its notification interfaces
will be bound statically at build time, whereas the tmCom NWK expects that the
server provides a dynamic subscription management facility, which must now be pro-
vided by the glue. Other inconsistencies of supplier's implementation that must be re-
solved within the glue component are initialization, debugging, logging, and power
management.

In order to create the glue components most efficiently during application engi-
neering, their implementation is fully-generated from a model. This is in contrast to
generating the skeleton of the code and completing it manually. The model combines
information from the SSCM with parameterized code snippets created during domain
engineering, and is configured interactively during application engineering using a set
of wizards, which will be elaborated in the remainder of this section.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 369

A meta-model for glue component models is defined in Fig. 7. Each glue compo-
nent is associated with two SS components to be glued (the “TargetEnd” association),
one of them may also be specified as "WrappedEnd' for cases where a top-level wrap-
per component is needed. The glue component contains ports according to the con-
nected ports of the replaced SI components. For each such port it holds a number of
interface maps. The glue component also has indicators for whether initialization and
subscription management are to be included.

The relationships between the provided and required interfaces of the glue compo-
nents are addressed at three levels of component integration: interface maps, method
maps and parameter maps. Each kind of map has its specific attributes and snippets.
This arrangement is able to support component integration even when different sup-
pliers group methods into interfaces in different ways.

Fig. 7. Meta-model for a Glue Component

These relationships between interfaces are represented in the meta-model as fol-
lows. It contains an InterfaceMap for each interface provided by the glue. Each inter-
face map contains a set of method maps that have one caller entity and a number of
callee entities. This 1:n relationship caters for cases where the methods of the client
and server are not matched, so that a single client call must result in a sequence of
calls to the server. Each callee entity contains a set of parameter maps, which are used
to control the transformations between those parameters that are passed in different
forms by the caller and callee methods. Parameterized code snippet templates, stored
in a library, are used for generating snippet instances inside of all these maps; these
snippets are essential part of the generating glue code.

The code that is generated from the glue model consists of a set of methods for
each provided interface of the glue component. The core of the caller method's body
is a sequence of calls to the methods in the CalleeMethodsInfo list, together with the
necessary parameter transformations. This sequence is contained within prerun and
postrun code snippets, which can support other functionalities, such as memory man-
agement for temporary parameter structures or logging. When the application engi-
neer has populated all the maps, a model-to-code transformation is used to generate
the software artifacts, such as glue code, wrapper component, and build scripts.

370 H. Hartmann et al.

Tool Support for Glue Code Generation:
To make the glue specification process faster with an effective use of the snippet tem-
plates tool support was developed on top of IBM RSA [15]. The implemented tool in-
cludes a set of wizards and dialogs to support the application engineer during glue
configuration. These wizards hide the mechanics of code generation from the applica-
tion engineer. For illustration, screen shots of the Interface Map Wizard, applied to
the ZigBee case study, are shown in Fig. 8.

The Interface Map Wizard assists the user in specifying the mapping between pro-
vided and required interfaces that need gluing. Central part of the wizard is the Inter-
face Map Editor, which allows to select one or more callee methods for each caller
method, and to specify the transformations between the parameters of the methods.
These transformations are captured as code snippets. The code for a snippet can be
entered by the user either explicitly or by selecting a predefined snippet from a snip-
pet library. The snippet library allows snippets to be reused across different interface
maps and glue components. The snippet text can also be parameterized by predefined
parameters such as interface name, callee or caller method name, etc. Parameter val-
ues can automatically be substituted by the model attributes taken from SSCM.

Fig. 8. Screenshots of the wizard for the Interface Map Configuration process

In addition, to reflect technology naming conventions, the tool allows usage of
naming hints, which may significantly automate the method and parameter name
matching process. We characterize the name's structure as a combination of the part
that identifies the specific method or parameter, and additional parts (prefix, suffix
and delimiters), e.g. the identifier of the interface, that together comprise the full iden-
tifier. In this way the additional parts may be stored for each supplier or technology,
and used during the glue configuration process.

For the ZigBee case study we first created examples of glue methods manually,
from which a library of parameterized code snippets was extracted. They are used lat-
er to configure numerous glue component maps in conformance with the meta-model
described in Section 3.4. Code generation was implemented using the extensible JET-
based Rational Software Architect transformation framework. A fragment of the code
generated by our prototype is shown in Fig. 9.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 371

Static void STDCALL _tmIMCPS_Data_Request (ptmThif thif, NXPDataRequest_t* pdata)
{

//BEGIN PRERUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_ENTER, MCPS_DATA.request));
//END PRERUN SNIPPET

uint8_t SrcAddrMode = pData.SrcAddrMode;
uint8_t SrcPANId = pData.SrcPANId;
uint32_t SrcAddr = pData.SrcAddr;
uint8_t DstAddMode = pData.DstAddMode;
uint16_t DstPANId = pData.DstPANId;
uint32_t DstAddr = pData.DstAddr;
uint8_t msduLength = pData. msduLength;
uint8_t msduHandle = pData. msduHandle;
uint16_t TXOptions = pData.TXOptions;

call MCPS_Data_Request (SrcAddrMode, SrcPANId, SrcAddr, DstAddMode, DstPANId,
DstAddr, msduLength, msduHandle, TXOptions)

//BEGIN POSTRUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_LEAVE, MCPS_DATA.request));
//END POSTRUN SNIPPET

}

Caller signature

Callee signature

Parameter mappings

Static void STDCALL _tmIMCPS_Data_Request (ptmThif thif, NXPDataRequest_t* pdata)
{

//BEGIN PRERUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_ENTER, MCPS_DATA.request));
//END PRERUN SNIPPET

uint8_t SrcAddrMode = pData.SrcAddrMode;
uint8_t SrcPANId = pData.SrcPANId;
uint32_t SrcAddr = pData.SrcAddr;
uint8_t DstAddMode = pData.DstAddMode;
uint16_t DstPANId = pData.DstPANId;
uint32_t DstAddr = pData.DstAddr;
uint8_t msduLength = pData. msduLength;
uint8_t msduHandle = pData. msduHandle;
uint16_t TXOptions = pData.TXOptions;

call MCPS_Data_Request (SrcAddrMode, SrcPANId, SrcAddr, DstAddMode, DstPANId,
DstAddr, msduLength, msduHandle, TXOptions)

//BEGIN POSTRUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_LEAVE, MCPS_DATA.request));
//END POSTRUN SNIPPET

}

Caller signature

Callee signature

Parameter mappings

Fig. 9. Example of the generated glue code for the ZigBee case

3.5 Building the Components and Delivery to the Customer

Prior to the final build of the product, all the FVPs must have been configured, but we
require flexibility in the configuration time for any FVP. The integrator makes an ini-
tial configuration, e.g. to protect intellectual property of other customers and suppliers
and each customer receives a specialized configuration space containing only the re-
maining unconfigured variation points.

At the point that the code is validated and delivered, the mappings from the SI
components’ unconfigured FVPs to the corresponding variation points in the devel-
opment artifacts are added to the generated build script. Subsequently, this mapping is
used to translate the customer’s configuration description. To address these two is-
sues, we adopt a two-stage approach. For each programming language:

1. The components are passed through the early stages of the build process for their
respective component technologies, to the point where standard language source
and header files are generated. For example, Koala [3] identifies which source files
will be required and generates macros to rename functions to permit static binding.

2. Having transformed all components to a standard form of source file for their lan-
guage, build scripts are generated. These files include the FVP settings, such as the
definition of pre-processor symbols used in the realization of variation points. Ad-
ditional build scripts are generated for each glue component and a further, top-level
build script identifies all the required components and validation is performed.

Where the customer only receives binary code, or where it is not possible to separate
the two stages above, the final build is performed remotely on the supplier’s site (e.g.,
by exposing the complete configuration and build process as a web service).

4 Development Roles

Given the small proportion of software developers who have experience with MDA
technology, to be deployable in the short term, it is essential that only a few develop-
ers need to be familiar with the more esoteric aspects of MDA, such as defining UML

372 H. Hartmann et al.

profiles and model transformations [2]. This section describes the development roles
involved in the approach and the different levels of knowledge that each role requires
in performing the activities, as illustrated in Fig. 4 and described in section 3.

The task Create Feature Model is performed by the requirements manager and re-
quires a working knowledge of feature modeling. The task Create Reference Architec-
ture is performed by the domain architect, who defines the product line architecture,
represented by the SICM, and who also identifies the potential suppliers and creates
the SS component models. This role requires a working knowledge of MDA.

The tasks Configure for Supplier Selection, Identify need for Glue and Configure and
Generate Glue are performed by the COTS engineer. The COTS engineer is responsi-
ble for the integration of components from different suppliers and creating glue com-
ponents. The COTS engineer should be familiar with the component technology and
development environments used by the suppliers but he does not need specific knowl-
edge of MDA since his tasks are assisted by the set of wizards that hide underlying
MDA complexities. The tasks Build Components and Deliver to Customer are per-
formed by the customer support engineer. The customer support engineer liaises with
customers and determines what configuration is required prior to delivery. He will use
the variability management tool to define a specific product configuration and uses
the MDA tool to create the SSCM and to perform the final export. These tasks do not
require knowledge of MDA principles. The customer, being the next link in the sup-
ply chain, requires no specific technical skills. He uses the variability management
tool to make the final configuration of the received product artifacts, but is not ex-
posed to any MDA technology.

As part of domain engineering team we recognize additional tasks, not described in
Fig 4, to support the domain architect. The COTS engineer provides the requirements
to the transformation developer, e.g. when a new component technology is used, who
defines the transformations to generate the glue code and related artifacts. Here, the
transformation developer requires very specific skills related to the transformation
tooling. The COTS engineer has tasks during domain engineering as well as applica-
tion engineering.

Finally, we identified the Language Designer [2] who is responsible for the defini-
tion of the meta-model and the model-to-model transformations. This work requires
an in-depth knowledge of MDA. Since the meta-model and transformation can be re-
used for any component composition, these activities would typically be done by the
MDA tool vendor.

5 Discussion and Further Research

The approach described in this paper allows components from different suppliers to
be integrated, despite syntactic differences in interfaces and semantic differences re-
lated to component technologies that are based on a common programming language
and variability mechanisms. It also supports staged configuration, where some varia-
tion points are resolved by the next participant in the supply chain.

The approach addresses the application engineering phase of SPLE, abstracting from
the variability mechanisms used by each supplier and supporting the creation of glue
components where they are required. It aims to make that glue generation as efficient as

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 373

possible, without making speculative investments during domain engineering. Once the
glue snippet templates have been created for a few exemplars they are reused for nu-
merous glue components.

The approach recognizes the limited experience of MDA available in the industry
and restricts the number of development roles that need to be familiar with it. This is
achieved by using a balance of reusable model-to-code transformations and param-
eterized code snippets, with a development environment that provides guidance to the
applications engineer. Furthermore, our approach supports the export of standard pro-
gramming languages and makefile technology, thereby avoiding exposure of the cus-
tomer to unfamiliar technology.

The approach retains the sophisticated feature modeling techniques and supporting
variability management tools developed for SPLE. For instance, these support staged
configuration through the ability to present the engineer with a specialized configura-
tion space, in which choices made at earlier stages are no longer accessible, although
the constraints resulting from these choices are still in effect. However, the links to
the development artifacts and, in particular, the mapping to the different variability
mechanisms used by different suppliers, is now passed to the component models. The
variability management tool is no longer required to determine where glue compo-
nents will be required; this is now determined by a single model validation rule, pro-
viding a scalable solution. Hence, the variability model is now not directly connected
to development artifacts [1], or model transformations [17], but the choice of the SVP
now, indirectly, may lead to the generation of a glue component.

One of the challenges for further research is in the ability to deliver to customers
partially-configured development artifacts while preserving the full capabilities of
component technologies, such as nesC [11] and Koala [3], that minimize the memory
requirements of the code through their reachability analyses of their components. The
current approach converts all components into standard source files and generates a
uniform style of build script, which propagates the remaining FVPs, thereby avoiding
the customer from being confronted with multiple build environments. Currently, the
creation of standard source files uses the native build process for each component
technology. However, the build process for some component models, such as nesC
[11], only creates conventional C files once the C pre-processor has been run, by
which time all variation points with design-time binding will have been instantiated.
However, by developing new build environments that are aware of variation points,
both staged configuration and reachability analysis can be supported for these models.

A principal area for further research is the bridging of greater semantic gaps be-
tween components. This would allow the approach to be applicable to a much larger
range of glue code generation. The current approach supports moderate mismatches
because of the ability to map one caller function to a sequence of callee functions.
This is sufficient for the ZigBee case, whose standard defines the semantics of mes-
sages within the communication stack, but there are many standards for embedded
products that only consider the interaction between the product and its environment,
with no consideration for the APIs of the software within the product. Egyed and Bal-
zer [18] have proposed a reference architecture for stateful glue components, which
may form the basis of more capable glue components for COTS integration. Here fur-
ther research is required to extend the automated support to be able to guide creation
of this style of wrapper. A related issue is that the current approach only inserts glue

374 H. Hartmann et al.

components between pairs of components. However, there are cases, such as the gen-
eration of code to map from the operating system abstraction layers (OSAL) of each
supplier to the actual OS, that cannot be done in a pairwise manner, because of the
need for common book-keeping for shared OS resources. Therefore, a more general
model of glue code must be developed for these cases.

6 Comparison with Related Art

From the perspective of staged configuration in software supply chains [6], we ad-
dress organizations in the middle of the chain, which must both integrate components
from different sources and pass partially-configured artifacts on to downstream cus-
tomers. The problem of the use of feature models for coordinating the configuration
of artifacts using different variability mechanisms is addressed by Reiser et al. [19].
However, they do not consider the creation of glue components. We have previously
discussed merging feature models from alternative suppliers for a particular feature
area [14], but that paper did not consider how glue components would be addressed.

Gomaa [20] addressed the use of UML to represent feature models. While doing so
would have resulted in only a single tool being used, UML must be heavily profiled
for this purpose.

Voelter and Groher describe the integration of a variability management tool with a
model-based software development environment [17]. However, they address the
links to transformations for in-house developed components, rather than the needs of
a software supply chain.

The definition of the SICM for the ZigBee case study was straightforward, given
the reference model in the standard. Where there is no pre-existing reference mode,
the architectural reconciliation approach, proposed by Avgeriou et al. [21], to defin-
ing a COTS-based architecture can be used. However, while their approach aims to
avoid architectures that require excessive amounts of glue code, they do not address
how the essential glue code would be created efficiently.

Zhao et al. [22] address the combinatorial explosion of potential glue components
when bridging between different component technologies. They use a generic gram-
mar to specify the implementation of glue, but they avoid having to handle hybrid
build processes by using SOAP as a common communication format between all
technology types. This is approach is unacceptable for resource-constrained devices,
in which code size and performance remain critical. Smeda et al. [23] address the cre-
ation of the specification of glue components from the composition of parameterized
templates in the context of an architectural description language and address the crea-
tion of a modeling tool for this language. However, they do not address how auto-
mated support could be given to developers to assist in template composition.

Stahl et al. [2] and Krahn et al [24] describe the different roles needed in MDA and
the skills required. Where they provide a classification for the roles during domain
engineering, we additionally provide the different roles and skills, associated with our
approach, during application engineering and for the customer’s organization.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 375

7 Conclusions

In this paper, we presented a model-driven approach for automating the integration of
heterogeneous components from different suppliers, covering syntactic mismatches
and semantic mismatches related to different component technologies. We exercised
our approach on a case study that is derived from an existing supply chain, for which
we used a commercially available variability management tool [16], and a prototype
was implemented as an extension to IBM Rational MDA tool [15]. We described the
process and roles that are associated with our approach.

In this paper we showed that the approach has the following benefits compared to
prior art and current practice:
• Glue components are generated efficiently only when they are required, thereby

avoiding unnecessary development effort during domain engineering.
• Staged configuration is supported; offering the next party in the chain to do the

final configuration, while providing a route to preserving the capabilities of com-
ponent technologies in this domain to minimize code size.

• The additional skills required to deploy MDA are localized in the organization by
providing tool support for configuration and glue code generation, which ensures
that only a limited group of developers are exposed to unfamiliar technology.

Finally, we identified how our approach can be extended to support specialized com-
ponent technologies and to bridge greater semantic differences.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering. Springer,
Heidelberg (2005)

2. Stahl, T., Voelter, M.: Model-Driven Software Development. Wiley, Chichester (2005)
3. van Ommering, R.: Building Product Populations with Software Components. PhD.

Rijksuniversiteit Groningen (2004)
4. Atkinson, C., et al.: Component Based Product Line Engineering with UML. Addison-

Wesley, Reading (2002)
5. Wallnau, K., Hissam, S., Seacord, R.: Building Systems from Commercial Components.

Addison-Wesley, Reading (2002)
6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specialization and

Multi-Level Configuration of Feature Models. Software Process Improvement and Prac-
tice 10, 143–169 (2005)

7. Hartmann, H., Trew, T.: Using Feature Diagrams with Context Variability to Model Mul-
tiple Product Lines for Software Supply Chains. In: 12th International Software Product
Line Conference (2008)

8. Hartmann, H., Keren, M., Matsinger, A., Rubin, J., Trew, T., Yatzkar-Haham, T.: Integrat-
ing Heterogenous Components in Software Supply Chains. To be published in 1st ICSE
workshop on Product Line Approaches in Software Engineering (2010)

9. Hartmann, H., Trew, T., Matsinger, A.: Supplier Independent Feature Modeling. In: 13th
International Software Product Line Conference (2009)

10. ZigBee Alliance, http://www.zigbee.org/

376 H. Hartmann et al.

11. Gay, D., Levis, P., van Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language:
A Holistic Approach to Networked Embedded Systems. In: Conference on Programming
Language Design and Implementation ACM 2003 (2003)

12. ISO/IEC 23004-3:2007, Information Technology – Multimedia Middleware – Part 3:
Component Model. International Organization for Standardization (2007)

13. Cunha, A., Koubaa, A., Severino, R., Alves, M.: An Open-Source Implementation of the
IEEE 802.15.4/ZigBee Protocol Stack on TinyOS. Polytechnic Institute of Porto (2007)

14. ISO/IEC 23004-1:2007, Information Technology – Multimedia Middleware – Part 1: Ar-
chitecture. International Organization for Standardization (2007)

15. IBM Rational Software Architect for WebSphere software, http://www-
01.ibm.com/software/awdtools/swarchitect/websphere/

16. Pure::Variants, Variability Management Tool, http://www.pure-systems.com
17. Voelter, M., Groher, I.: Handling Variability in Model Transformations and Generators.

In: 7th OOPSLA Workshop on Domain-Specific Modeling (2007)
18. Egyed, A., Balzer, R.: Integrating COTS Software into Systems through Instrumentation

and Reasoning. Automated Software Engineering 13, 41–64 (2006)
19. Reiser, M., Tavakoli Kolagari, R., Weber, M.: Unified Feature Modeling as a Basis for

Managing Complex System Families. In: 1st International Workshop on Variability Mod-
eling of Software-intensive Systems (2007)

20. Gomaa, H.: Designing Software Product Lines with UML. Addison-Wesley, Reading
(2005)

21. Avergiou, P., Guelfi, N.: Resolving Architectural Mismatches of COTS through Architec-
tural Reconciliation. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp.
248–257. Springer, Heidelberg (2005)

22. Zhao, W., Bryant, B., Burt, C., Raje, R., Olson, A., Auguston, M.: Automated
Glue/Wrapper Code Generation in Integration of Distributed and Heterogeneous Software
Components. In: 8th IEEE International Enterprise Distributed Object Computing Confer-
ence (2004)

23. Smeda, A., Oussalah, M., ElHouni, A., Fgee, E.-B.: COSABuilder: an Extensible Tool for
Architectural Description. In: 3rd International Conference on Information and Communi-
cation Technologies (2008)

24. Krahn, H., Rumpe, B., Völkel, S.: Roles in Software Development using Domain Specific
Modeling. In: 6th OOPSLA Workshop on Domain-Specific Modeling (2006)

	Using MDA for Integration of Heterogeneous Components in Software Supply Chains
	Introduction
	ZigBee Case Study
	MDA for the Integration of Heterogeneous Components
	Creation of a Feature Model and a Reference Architecture
	Configuration for Supplier Selection
	Identification of the Need for Glue
	Configure and Generate Glue Components
	Building the Components and Delivery to the Customer

	Development Roles
	Discussion and Further Research
	Comparison with Related Art
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

