
What is a Feature?
A Qualitative Study of Features

in Industrial Software Product Lines

Thorsten Berger1, Daniela Lettner2, Julia Rubin3, Paul Grünbacher2, Adeline Silva4,
Martin Becker4, Marsha Chechik5, Krzysztof Czarnecki1

1University of Waterloo, 2Johannes Kepler University Linz, CD Lab MEVSS, 3Massachusetts Institute of Technology,
4Fraunhofer IESE, 5University of Toronto

ABSTRACT
The notion of features is commonly used to describe the
functional and non-functional characteristics of a system. In
software product line engineering, features often become the
prime entities of software reuse and are used to distinguish the
individual products of a product line. Properly decomposing
a product line into features, and correctly using features in
all engineering phases, is core to the immediate and long-
term success of such a system. Yet, although more than ten
different definitions of the term feature exist, it is still a very
abstract concept. Definitions lack concrete guidelines on how
to use the notion of features in practice.

To address this gap, we present a qualitative empirical
study on actual feature usage in industry. Our study cov-
ers three large companies and an in-depth, contextualized
analysis of 23 features, perceived by the interviewees as
typical, atypical (outlier), good, or bad representatives of
features. Using structured interviews, we investigated the
rationales that lead to a feature’s perception, and identified
and analyzed core characteristics (facets) of these features.
Among others, we found that good features precisely describe
customer-relevant functionality, while bad features primarily
arise from rashly executed processes. Outlier features, serv-
ing unusual purposes, are necessary, but do not require the
full engineering process of typical features.

1. INTRODUCTION
Software Product Line Engineering (SPLE) approaches rely

on identifying and explicitly managing commonalities and
variabilities of a product portfolio. These commonalities and
variabilities are often captured in an abstract manner using
entities called features. The use of features is motivated
by the fact that customers and engineers often speak of
product characteristics in terms of features a product has
or delivers. A feature is usually defined as “a logical unit of
behavior specified by a set of functional and non-functional
requirements” [7] or “a distinguishable characteristic of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2791060.2791108

concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [9]. In fact, many additional
definitions of the term feature can be found in the literature [1,
17, 32, 15, 25, 18, 23, 20, 8, 31].

Yet, companies still face difficulties in deciding when to
introduce a feature, determining the right level of granularity
for a feature, and defining the aspects that should be taken
into consideration when engineering features. Without this
knowledge, using SPLE concepts and the numerous existing
tools for managing product line features is problematic. In
fact, all authors of this paper—when presenting feature-
related engineering or analysis techniques—are commonly
faced with the question: “What is a feature?”

In this paper, we aim to address this issue by empirically
investigating the experiences of three successful industrial
companies that develop software product lines (SPLs) and
explicitly manage features. We conducted a qualitative study
to elicit, understand, and describe features managed by the
companies. We also describe the companies’ perspective on
their successes and failures in managing features.

Our main goal is to improve the empirical understanding
of the notion of features in industry, by providing insights
into the range of real-world feature definitions and usages.
We rely on semi-structured interviews, whose design and
analysis was guided by two main research questions:

RQ1: What reasons cause companies to perceive a fea-
ture as typical, atypical, good or bad? We studied concrete
examples of features by asking our interviewees for typical,
atypical (outlier), good, and bad exemplars, and by diving
into the reasons for such classification. Our intention was
to be as open as possible, trying to disambiguate existing
perceptions of features among our interviewees.

RQ2: What are important characteristics of features?
When discussing each feature, we asked the interviewees
to describe its different facets: intrinsic qualities of a feature,
such as its purpose within the software lifecycle or its binding
time. Using feature facets as the basic terminology allowed
us to structure the discussion, to compare the features across
companies, and to organize our findings.

We present first-hand opinions of industrial practitioners
on practices contributing to the development of features that
are perceived as typical, successful or failing. In addition
to narrative descriptions of features and their classification
rationales, we provide an in-depth cross-case analysis of
all the features. In summary, we contribute: (i) a set of
facets that can be used as a terminology for describing and
comparing features (Table 2); (ii) reasons (rationales) for

http://dx.doi.org/10.1145/2791060.2791108

Table 1: Interview participants
part.1 role exp.2 features

K
eb

a

A developer 12 LINMovement, Oscilloscope, Euromap,
SilentMode

B product
manager

19 ProfiNetSlave, Wizard,
ManualConfiguration, UserGuidance

C developer 3 LanguageTranslation,
ProductionOverview, DataManager,
HeatUpOptimization

O
pe

l

D team lead/
architect

5 LaneKeeping, ParkAssist,
EmergencyBraking

D
an

fo
ss E architect 4 Torque, CascadeController, ProductG,

PowerUpFastFuncs
F team lead 8.5 Wobbler, FieldBus, ResetFix,

BoardSupportPackage

1 participant (interviewee) 2 experience with the product line in years

a feature being classified as typical, outlier, good, or bad
(Table 4); (iii) a range of values for different facets of concrete
features engineered in industry (Sec. 6); and (iv) a set of core
observations from the cross-case analysis that have practical
impact on engineering features for SPLs.

We proceed by outlining our research methodology in Sec. 2.
We then introduce the subject companies and their product
lines in Sec. 3. We address RQ1 in Sec. 4 and 5, where we
present features and their classification rationales. In Sec. 6,
we address RQ2 with the cross-case analysis of the feature
facets. Finally, we discuss threats to validity in Sec. 7 and
related work in Sec. 8, and conclude in Sec. 9.

2. RESEARCH METHODOLOGY
We describe how we selected the companies for our study

and present our approach to designing and conducting the
interviews and analyzing the results.

2.1 Company Selection
To conduct our study, we focused on companies that (i) de-

velop SPLs; (ii) explicitly record, track, and manage features—
both common and variable ones; and (iii) maintain an active
collaboration with at least one of the authors of this paper.
Our selection criteria ensured that we consider “meaningful”
examples that are of general interest to the SPL community,
and that allowed us to reliably interpret the findings based
on our understanding of the companies’ product lines and
their organizational context.

We selected the three companies Keba, Opel, and Dan-
foss from the domains of industrial automation, automotive,
and power electronics. For each company, we selected up to
three interviewees, covering a range of roles, such as product
manager, architect, and developer. For Opel, we interviewed
a single person. Overall, we collected data about 23 fea-
tures: twelve from Keba, three from Opel, and eight from
Danfoss. Table 1 summarizes our interviewees, their roles,
their experience with the product line, and the features they
described.

2.2 Interview Design
Feature Facets. The goal of our study was to collect

examples of features developed in industrial practice, and
to outline the reasons for specific features being considered
good, bad, typical, or outliers. To gain insights into these
questions, we conducted a set of semi-structured interviews
with employees of the studied companies.

We structured our interviews around feature facets—quali-
ties of features that we aimed at exploring, such as lifecycle
purpose and binding time. These facets were initially defined

by consulting the existing literature [19, 7, 8, 10], and then
further refined based on our previous collaborations with the
studied companies. More specifically, three of the authors
created within-case writeups of the general architecture and
the organizational structure of each company, which were
then used to guide the definition of the facets. The resulting
set of facets, along with their description and clarifying
examples, are given in Table 2.

Interview Process. We started the interview with ques-
tions about our interviewees themselves, including (i) their
professional background, (ii) how long they have been work-
ing in the current profession, (iii) how long they have been
involved with the product line, (iv) their role in the product
line, and (v) the number of features they were involved with.

We then asked each interviewee to describe three to four
features, providing guidance in the selection process. We
asked for one typical, one outlier, one good, and one bad
feature. Our goal was to be as open as possible, leaving
it to our interviewees’ judgment which criteria to use for
selecting a feature for each type. Yet, to provide some
guidance, we gave some hints, for instance, that a good
feature could be one that is well-received and popular with
customers, commercially successful, or on time, on budget,
easily reusable, or has a low defect count. For a bad feature,
we said it could be one that is problematic, troublesome,
difficult to develop, confusing, buggy, or one that destroyed
user confidence, damaged the brand, or showed unexpected
behavior. An outlier is a feature whose properties are rarely
observed in other features. Finally, a typical feature is neither
especially good nor bad, and not an outlier in any sense.

For each feature described by the interviewees, we asked
about the reasons why they considered it to be typical, good,
bad, or outlier. We then asked to discuss the feature from the
perspective of each facet. When interviewees had difficulties
answering our questions, we used a “by example” strategy,
providing possible answers to our facet questions, as described
in Table 2. In the case of surprising responses, we dug deeper
by asking specific questions, trying to elicit the underlying
reasons for such responses.

2.3 Data Collection and Analysis
Each of the conducted interviews was fully recorded, with

the obtained recordings lasting between 68 and 117 min-
utes. In addition to these, core answers to our facet-related
questions were summarized by the interviewer during the
interview itself. These summaries were further cross-checked
against the recording by an author who did not participate in
the corresponding interview. Such reviews were used to verify
the summaries and to augment them when needed. The ob-
tained information was used to describe the company-specific
features in terms of their facets in Sec. 6.

Moreover, we created full transcripts for parts of the inter-
views that discuss the rationale behind considering a feature
as good, bad, typical, or outlier. We applied open coding [2]
to identify the main concepts related to this classification,
which are discussed and exemplified in Sec. 4 and 5.

3. SUBJECT COMPANIES
We now provide background information about our subject

companies and the product lines they develop.

3.1 Keba: Industrial-Automation Provider
Keba AG is a medium-scale company producing injection

Table 2: Variety of feature facets elicited in interviews

facet question examples

Rationale Why does the feature exist? Business reasons (e.g., customer request, market demand), regulatory needs (e.g., export
restriction, country codes), aspects of the technical environment (e.g., platform, OS, library,
installation environment) or social aspects (e.g., usage context, user needs)

Level At what organizational level does the feature exist? Customer-facing features (e.g., those managed by product managers) or technical features
(e.g., logical and physical architecture, or implementation-level features)

Nature What is the nature of the feature? Primarily a unit of functionality (e.g., to characterize system capabilities, behavior, or data),
a unit of variability (e.g., an optional functionality) or a configuration/calibration parameter

Scope What is the scope of the feature? Local to one component of a system or cross-cutting (i.e., scattered across architectural
components)

Architectural
responsibility

What is the architectural responsibility of the feature? Addresses user-interface requirements, encapsulates some application logic, or
infrastructure-level tasks

Lifecycle Does the feature have a purpose for the lifecycle of a
system?

Testing, debugging, build, optimization, packaging, deployment, simulation, or monitoring

Definition and approval How has the feature been defined and approved? Feature elicitation workshops with customers, systematic studies of similar system, or
market analyses

Representation Which artifacts/tools are used to define the feature? Feature models, configuration tools, code-level configuration options, product maps, or
spreadsheets

Use In what ways is the feature used in the organization? Defining a product line’s scope, explaining a system to a customer, changing behavior at
runtime, or supporting software composition

Dependencies What are the dependencies to other features? Dependencies between features (e.g., require or exclude), dependencies across levels (e.g.,
to logical and physical components)

Implementation and
deployment

Which languages and technologies have been used to
implement and deploy the feature?

Programming languages used, build-time integration of libraries, feature deployment in app
stores

Inclusion/Exclusion Which mechanisms are used for including or
excluding the feature?

Configuration tool, configuration file, user preferences at runtime

Binding time At what stage is the feature included into the product? Compile, build, load, or run time
Responsibility Which people, roles, or teams are in charge of the

feature?
Application engineers developing customer-specific features, platform engineers
developing core functionality

Position in hierarchy What are the features above (if any) and the features
below (if any)?

Concrete feature names or not applicable

Testing Which methods and tools are used for testing the
feature?

Automated component test suites or manual system integration tests

Evolution How did the feature change over time? Changed frequently (e.g., daily, weekly or monthly), mostly stable, rolled out, or retired
Metrics Which metrics are used to characterize the feature? Number of products in which a feature exists, number of feature instances per product
Quality and performance Which non-functional characteristics are important

for the feature?
Reaction time, power consumption, or efficiency of a feature implementation

molding machines, energy appliances, and robotics solutions
used for industrial automation [22]. Around 700 people are
employed at the head office in the company’s home coun-
try Austria, while a branch in China exists for the Chinese
market. Keba’s industrial-automation solutions include hard-
ware, software, and tools. We focus on the software product
lines for injection-molding and robotics solutions. Keba ships
about 7,000 injection-molding solutions to 25 customers per
year. Four resellers are available for the injection-molding
branch. Furthermore, Keba sells about 1,800 robotics so-
lutions to about 30 customers per year and works with six
resellers related to the robotics branch.

Architecture. Layered technological platforms exist in
diverse variants to meet requirements in different market
segments. Keba’s automation platform is organized as a
product line, and different variants are derived to develop
domain solutions for injection molding, robotics, and energy
automation. The platform for injection-molding machines
provides an application framework, while the robotics plat-
form uses a DSL-based approach for programming robots.
The different layers and their interfaces strongly influence the
development process: multiple system platforms are derived
from a system platform architecture to support multiple
runtime systems. Domain solutions are built on top of each
system platform, by exploiting the interfaces of the platform.
Products are defined by adding new functionality on top of
the domain solutions using cloning. Products are fine-tuned
using configuration parameters during installation and setup.

Keba uses a wide range of variability mechanisms to sup-
port product derivation: Platform and product variants are
created by exploiting interfaces to hook in new functionality;
by adding, exchanging or reloading modules; by defining spe-

cific I/O-ports; by modifying parameters to influence program
behavior; by adapting configuration files to change system
behavior and performance as well as by pre-processing code
to integrate specific product variants during compilation.

Organizational Structure. Dedicated teams maintain
the automation platform and the domain-solution platforms.
Project teams then work with customers on individual prod-
ucts. There are also external developers contributing code—
for example, domain engineers working for OEMs, and appli-
cation engineers working for resellers. This has a significant
impact on Keba’s development process, challenging platform
evolution in particular. Domain-solution engineers regularly
review and prioritize features for upcoming releases.

3.2 Opel: Car Manufacturer
Opel is a German subsidiary of GM—a large car manu-

facturer operating across 157 countries, comprising 202,000
employees, and having sold 9 million vehicles in 2011.

Opel has software product lines aligned with the mechani-
cal product lines and the engineering culture of cars. The
product lines discussed in this paper are part of an initiative
at GM called Next Generation Tools (NGT) [14], created
to handle the complexity introduced as a by-product of new
technologies, such as hybrid and alternative-fuel engines.
SPLE plays a major role in the NGT and is implemented
following the Second Generation PLE (2GPLE) approach, in
which features are treated as first-class citizens. Vehicles can
now be described in terms of a bill-of-features, which facili-
tates the communication between business, marketing, and
engineering units. The tool used for modeling the features
is BigLever GEARS. The development process is organized
in five different levels covering feature model, requirements,

logical architecture, technical architecture, and deployment.
Development activities correspond to the “V-Model”: The
process starts with defining requirements and architecture
for the future vehicle, and at the bottom of the V-Model
is the creation of hardware and software components that
correspond to the requirements specification.

Architecture. Opel uses a system-of-systems architec-
ture managed as a hierarchical product line of product lines.
It covers domains, subsystems, functions, functional elements,
and components (being aggregations of functional elements).
The software components are as general as possible to allow
flexibility with respect to variations. The manufacturing
process is driven by the selection of features and part num-
bers of physical car components that determine which ECUs
(electronic control units) are in the car. The ECUs contain
the feature implementation, and their presence determines
whether a feature is available. The software components are
specifically configured for every produced vehicle. In this
calibration process, the Vehicle Option Codes—parameters
determining the startup of optional software components
installed by ECUs in the car—are saved to a flash database.

Organizational Structure. There are different teams,
including individual teams for each product line; they are
referred to as a body of knowledge—the teams have special-
ized knowledge about the instantiation of their product line.
There is also the concept of a feature owner, referring to the
main technical contact person in charge of a feature. The
feature owner also models the feature in GEARS.

3.3 Danfoss: Component Producer
Danfoss is a large producer of electronic and mechanical

components for industrial and consumer applications. It has
23,000 employees globally, distributed across 56 factories in
18 countries. We focus on Danfoss Drives, a subdivision
producing frequency converters (drives), which are used in a
wide range of applications, such as for HVAC or for winding
machines in the textile industry. Consequently, the drive
firmware has a high degree of variability, as the motors
to be controlled vary significantly. While the variability
had initially been handled using a clone&own approach [12],
Danfoss later adopted an SPLE approach by migrating the
cloned products into an integrated platform [16].

Architecture. Danfoss has multiple product lines, each
realized with a typical embedded-platform architecture and
a codebase of a few million lines of C/C++ code. Our focus,
the frequency-converter product line, consists of a platform,
which realizes 14 main products, complemented with addi-
tional repositories of 30 extensions (“sub-products”). The
platform’s variability is realized using the C/C++ preproces-
sor by referencing static features in conditional-compilation
directives (e.g., #IFDEF); by generating build files; and by
using dynamic parameters that influence the run-time of a
concrete product.

Features are defined in a feature model and mapped to
source files using the commercial tool pure::variants from
pure::systems. Upon creating a configuration (i.e., a selection
of features), pure::variants generates the build files and the
set of parameters belonging to the product-specific configura-
tion. Not all parameters are present in all products, and the
configuration of these parameters (e.g., limits and default
values) varies considerably across products.

Initially, only variability in source code was managed. Fol-
lowing positive experience, variability management was ex-

tended to other artifacts, such as requirements and test
cases [30]—enabling the derivation of variants of these arti-
facts by configuration and improving traceability.

Organizational Structure. A dedicated team involving
software architects from all development sites supports and
maintains the platform. Application-engineering teams con-
tribute new functionality of the drives. However, there is
no real split between application and domain engineering.
The platform team is also responsible for the feature-model
development, and each feature is assigned to a feature owner.
From the product perspective, there are product managers
who determine which features will go into a product. When
there is a change request for a particular feature, the product
manager has to contact the feature owner.

4. TYPICAL AND OUTLIER FEATURES
We now introduce concrete examples of the features we

studied, beginning with typical and atypical (outlier) features.
We discuss the rationales behind our interviewees’ classifica-
tion, complementing them with quotations. Table 3 shows
all features with their ID and the respective classification-
rationale codes. These codes—indicated by special for-

matting in the following descriptions—are further explained
in Table 4.

4.1 What is a Typical Feature?
Most interviewees argued that typical features represent

core functionality of the domain and are, thus, a prime prereq-
uisite for a company’s business. The feature Danfoss.Wobbler
is an example: It was not explicitly requested by a customer,
but is regarded essential in the textile industry domain as it
allows frequency converters to operate properly without pro-
ducing waves. Another feature providing core functionality
is Keba.ProfiNetSlave, implementing inter-machine communi-
cation based on the Industrial Ethernet standard Profinet.

Other typical features are either generally demanded by
the market or requested by a specific customer. For instance,
the feature Opel.LaneKeeping satisfies a very common mar-

ket demand expressed nowadays by car buyers. Customer

requests are also considered as common examples, such
as expressed by interviewee E: A typical feature is one re-
quested by a customer, a new motor control for example. It’s
a functional one. He refers to Danfoss.Torque, which extends
existing motor-control functionality.

Keba.LanguageTranslation is another example of a typical
feature, as it was realized following a management decision
(internal standard) to offer certain system localizations by
default to support customers in specific regions. It was also
marked as typical since it represents ubiquitous functional-
ity affecting not only the EasyNet control-station program
for which it was initially conceived, but now almost all parts
of the product line.

4.2 What is an Outlier Feature?
Not surprisingly, there is less agreement in what constitutes

an outlier feature, with almost everyone giving different
reasons. Neither did we observe any overlap in the rationales
between classifying a feature as typical or as an outlier.

For instance, the feature Keba.SilentMode enables instal-
lations without user interaction. It is realized as a hidden
command-line option of the setup program and only used
internally for testing; it does not provide a core functionality
for customers (deployment).

Table 3: Features and their classification rationales

company feature ID feature description classification rationale

ty
pi

ca
l

Keba LINMovement linear movement command of a robot domain
Keba ProfiNetSlave implementation of the PROFINET standard for the fieldbus communication stack domain, market demand
Keba LanguageTranslation translation of the EasyNet control-station program into several languages ubiquitous, market demand, internal

standard
Opel LaneKeeping driver assistance to keep the lane, including active steering domain, market demand
Danfoss Torque enables high starting-torque for permanent-magnet machines customer request
Danfoss Wobbler smooths the movement of electric motors (to avoid waves) in the textile industry domain

ou
tli

er

Keba SilentMode non-interactive (“silent”) installation procedure deployment
Keba UserGuidance user guidance for device configuration placeholder, usability
Keba HeatUpOptimization optimizes heat-up procedures of multiple machines by distributing power peaks optimization, startup
Danfoss PowerUpFastFuncs moves the execution of some functions from the flash drive to the RAM optimization, build
Danfoss BoardSupportPackage new Hardware Abstraction Layer (HAL) to improve board support evolvability, maintainability

go
od

Keba Oscilloscope software oscilloscope for recording signals error-free
Keba Wizard wizard-based configuration support for the initial robot setup popular with customers
Keba ProductionOverview historical overview on the production process (operation modes and “shots”) popular with customers, popular

with developers
Opel ParkAssist automated steering in parking situation well modularized
Danfoss CascadeController enables control of multi-drive (pump) setup to manage pressure or level well implemented, well modularized
Danfoss FieldBus enables the fieldbus communication stack for frequency converters distinct functionality, well

modularized, thoroughly tested

ba
d

Keba Euromap enables the Euromap protocol support in the fieldbus communication stack test challenges, frequent changes
Keba ManualConfiguration manual configuration of EncoderBox market demand, rushed development,

customer complaints
Keba DataManager export/import of low-level machine data rushed development, workaround,

variability
Opel EmergencyBraking autonomous emergency braking highly cross-cutting
Danfoss ProductG implements product-specific features for one particular customer highly cross-cutting
Danfoss ResetFix fixes a defect in another feature (Reset Counter) defect fix, frequent changes

Another interesting example is the feature Keba.UserGui-
dance, which serves as a placeholder for product managers
to plan future usability improvements regarding device-
configuration support. Specifically, users requested better
dependency resolution and choice propagation in the con-
figurator to catch misconfigurations early, which otherwise
could only be discovered at system startup. Our interviewee
also classified this as a bad feature since it is too vague (ex-
plained shortly in Sec. 5.2) and needs refinement. B: We
didn’t really know how to improve it. That’s why we are using
it as a placeholder for projects where one needs to improve
something. [...] Basically, it’s an accumulative feature.

Two of the outlier features—Keba.HeatUpOptimization and
Danfoss.PowerUpFastFuncs—were only introduced for the
optimization of non-functional aspects as explained by an
interviewee: E: Outliers are technical features for tuning and
tweaking performance. It’s not really a feature from the drive
perspective, but we can configure a drive to be faster or slower.
We can tweak the product to indirectly fulfill the customer
requirements. Furthermore, these two outliers only have a
specific lifecycle purpose—they control the startup or the
build process of the system. For instance, Danfoss.PowerUp-
FastFuncs improves system performance by moving functions
from flash to RAM using a dedicated compiler macro.

Finally, Danfoss introduced the mandatory feature Board-
SupportPackage, a more intelligent hardware abstraction layer
(HAL), to reduce the number of variants. Third-party board
vendors urge Danfoss to update the boards by increasing the
price for old boards. The more robust abstractions provided
by this feature account for improved maintainability and
evolvability to quickly support new boards. This feature is
not visible to the customer and only exists at the architecture
and development level. However, it needed to be approved
by the product management and other engineering teams
to verify that it does not negatively affect existing business
logic. In this light, considering this new HAL as a feature
makes it a unit of maintenance, which various teams can use
for communication and management can use for planning.

5. GOOD AND BAD FEATURES
We also studied features perceived as good or as bad by

our interviewees. Similar to the discussion above, we now
introduce examples of such features, describe the underlying
classification rationales, and provide illustrative quotations.

5.1 What is a Good Feature?
In two cases, our interviewees mentioned customer satis-

faction (popular with customers) as their prime rationale
for considering a feature as good. For instance, the feature
Keba.Wizard allows performing the initial robot setup and
installation within a few minutes by avoiding error-prone
manual configuration. Keba.ProductionOverview provides
monitoring capabilities for injection molding machines, in-
cluding an overview of operation modes and the history of
production sequences. In particular, customers like the pos-
sibility to inspect variables during system operation. The
feature is also highly valued by Keba developers who use it
for diagnoses (popular with developers).

Features also need to provide a distinct functionality

to the product line. On the other hand, ambiguous features
not meeting this criterion are considered as bad features
(explained shortly in Sec. 5.2). Recall the outlier feature
Keba.UserGuidance, which was only vaguely understood by
customers and the management.

Features have also been rated as good if they are perceived
as well implemented and error-free. For instance, the
feature Keba.Oscilloscope provides signal charts and two-
dimensional plots for monitoring and diagnosing robotics
solutions. According to our interviewee A: it just always
worked. General statements about the implementation aspect
further emphasize the absence of surprising feature interac-
tions and adherence to architectural rules: E: A good feature
fulfills the requirements, but does not introduce any bugs on
the way or impact existing features of the product line. [...]
It has to follow the architecture rules and the coding style.

Features are also considered as good if they are well

modularized, not cross-cutting multiple components. For

Table 4: Expressed feature-classification rationales

rationale description occ.1

ty
pi

ca
l

domain core domain functionality 4
ubiquitous common feature affecting many assets 1
market demand required to be competitive in the market 4
internal standard management decision for an internal

standard
1

customer request requested by a specific customer 1

ou
tli

er

deployment only supports system deployment 1
placeholder placeholder for future improvements 1
usability improves usability for customers 1
optimization optimizes a non-functional aspect (e.g.,

power consumption, performance)
2

startup controls or affects system startup 1
build controls or supports build process 1
evolvability improves future system evolvability 1
maintainability improves system maintainability 1

go
od

popular w/customers positive customer feedback 2
well modularized feature implementation limited to module 3
popular w/developers supports system diagnosis 1
error-free no or very few defects since inception 1
well implemented implementation adheres to architecture

rules and coding styles
1

distinct funct. graspable concept that is easily understood 1
thoroughly tested high confidence in correctness 1

ba
d

rushed development implemented under pressure 2
workaround compromise during implementation 1
customer complaints bad feedback from the market 1
frequent changes implementation modified frequently 2
highly cross-cutting scattered feature implementation 2
test challenges difficult or laborious to test 1
variability need to make a feature optional 1
defect fix defects that became features 1

1 number of occurrence of the rationale in interviews

instance, the feature Opel.ParkAssist is not scattered across
multiple components, therefore significantly limiting coordi-
nation effort between the suppliers, who commonly imple-
ment the components.

5.2 What is a Bad Feature?
Among our interviewees, bad features are usually the re-

sult of time pressure and rushed development as well as
compromises made during implementation (workaround).
For instance, the features Keba.ManualConfiguration and
Keba.DataManager were implemented too hastily, resulting
in low implementation quality. The feature Keba.Manual-
Configuration, supporting the configuration of an encoder box
to reduce wiring costs, was developed under time pressure
and released prematurely to selected customers. However,
this led to negative market feedback (customer complaints)
as expressed by interviewee B: There was an extreme pres-
sure from the customer side to support this feature. [...]
We sensed that customers would not agree with [the compli-
cated configuration], but due to pressure we realized it. [...]
Would have been better to realize the feature with complete
tool support before release.

A related problem are highly volatile features (frequent
changes), such as the feature Opel.EmergencyBraking, which
required continuous improvements and extensions to support
an increasing number of deceleration profiles and object types
recognized on the road.

Scattered and highly cross-cutting feature implemen-
tations led to a bad perception of two features: Danfoss.Pro-
ductG realizes a request for one specific customer, requiring
many little tweaks to the code. Opel.EmergencyBraking is
also considered as a highly crosscutting feature. It is also
more complex than the typical feature Opel.LaneKeeping due
to different deceleration profiles and object types as well as
more sub-variants and parameters for calibration. However,
cross-cutting features are not necessarily considered bad, as

we will discuss in Sec. 6.2.
Interestingly, the necessity to make a feature optional

(variability) has also led to issues. The feature Keba.Data-
Manager supports copying mold and protocol data between an
injection molding machine and a PC, allowing modification of
the machine cycle. Due to safety concerns of a key customer,
the feature had to be made optional, resulting in high effort.

We also observed features that originated from defects
(defect fix). This happened for the feature Danfoss.Reset-
Fix, where a bug fix for a reset functionality of counters
was defined as a new feature. It fixes an unintended feature
interaction between a counter feature and a feature providing
a reset functionality for the counter, resulting in incorrect
counting. In general, defining bug fixes as features helped
Danfoss to support customers who were used to the incorrect
behavior and did not wish a mandatory bug fix.

Finally, both duplicate and superfluous features were re-
ported as bad features. Danfoss reported that the same
functionality—for instance, the feature ResetFix from above—
was implemented twice due to a lack of coordination between
the application-engineering teams. Superfluous features are
those that were developed but never used, effectively wasting
development effort. None of our studied features belongs to
this category, but Danfoss reported such features: E: The
worst case scenario is a feature which has been implemented
but not used at all. It happens.

6. CROSS-CASE ANALYSIS
In our study, we also conducted a cross-case analysis by

investigating the various facets (cf. Table 2) of all 23 features.
We now discuss the results of this analysis and explicitly
formulate the core observations.

6.1 Rationale, Level, and Nature
Rationale. In all subjects, typical, good, and bad features
were mainly introduced for business-related reasons, such as
general market demand and customer requests. However, the
introduction of certain operational modes (e.g., Keba.Oscillo-
scope, a feature adding logging and monitoring support) or
regulatory requirements (e.g., ECE-R 79 requirements on
steering interventions and automatically commanded steering
for Opel.ParkAssist) were mentioned as well.

Outlier features were often the result of a technical concern
that had to be addressed. Indirectly, these features also
realize customer requirements. Their prime rationale was
the support for dedicated Lifecycle tasks of a system, such
as deployment, debugging, monitoring, configuration, system
startup, or usability improvements.

Level. We observed that the notion of features is used
at all organizational levels. For almost all of our features,
traces exist at all levels. For Keba, these levels comprise
product management, architecture, and development. Opel
has similar levels, ranging from the feature-definition level
at the top via the requirements, the logical and physical
architecture, down to the deployment level. Similarly, for
Danfoss, nearly every feature is identifiable at the business
level down to all other levels.

We also found that most of the features were leaf fea-
tures, which were very concrete and easy to describe, and
top-level features defined in product maps. Intermediate
features were fuzzier and more abstract, making it difficult
for the practitioners to talk about them. Two interviewees
explicitly stated this point, for instance, F: Product features

on a top-level are good features, which describe a specific
functionality [...] Yet, intermediate features are frequently
used, both for grouping purposes (Danfoss) or for defining
functionalities with different variants (Keba and Opel).

Observation 1: Outlier features. Features do not only ad-
dress functional or non-functional concerns that end up in a
product. Features are also used for atypical purposes, such
as supporting a system’s lifecycle.

Outlier features are an important part of the development
process. Yet, they do not need to be developed according to
the full feature development process. In other words, they do
not exist on all levels. For instance, Keba.UserGuidance solely
exists at the product-management level and is used internally.
Keba.SilentMode exists only at the development level; it is a
hidden command-line option used only by service engineers
during setup. Also, Danfoss.PowerUpFastFuncs exists only at
the architecture and development levels.

Thus, outlier features are coordinated or implemented only
by a subset of the typical roles involved (e.g., developers,
architects, or product managers) and are in most cases not
visible to the customer (Keba.HeatUpOptimization is an ex-
ception). Surprisingly, according to our interviewee, only
Opel has no such outlier features. For the domain under
consideration, all features currently represent functionality.
However, due to its long engineering history, Opel has addi-
tional co-existing entities (e.g., basic software components)
that might be used for this purpose. Investigating these
entities and their relation to features is valuable future work.

Nature. The features we investigated were treated primar-
ily as a unit of functionality to define system capabilities,
behavior or data. This is often the case for mandatory fea-
tures covering core functionality. Only as a secondary aspect
are features also a unit of variability—when the function-
ality should be optional. Recall Keba.DataManager, where
an allegedly mandatory addition (a new feature) had to be
made optional, causing substantial development effort. In
both cases, features do not only provide a unit of functional-
ity, but can immediately serve as a unit of variability when
necessary—without the need to introduce a new feature, but
potentially with significant implementation effort.

Only one of our features (Danfoss.CascadeController) pri-
marily offered parametrization to other existing features or
functionality. Interestingly, Keba decided to consider the sup-
port for the configuration of other features as features them-
selves: Keba.UserGuidance, Keba.Wizard, and Keba.Man-
ualConfiguration. Yet, recall that the first one was just a
placeholder for future plans to improve the usability of the
device configuration.

Finally, almost every feature came with further configura-
tion (a.k.a. calibration) parameters to fine-tune it. Danfoss
and Opel manage large parameter databases. For instance, at
Danfoss, the feature model has about 1,000 features, whereas
the parameter model has about 2,800 parameters. Parame-
ters are either directly assigned to and controlled by features
or can be stand-alone, as in the case of Danfoss. The latter
arose for historical reasons—the parameter database existed
before features and a software product line were adopted.

Observation 2: Features vs. parameters. Parameters are
not treated in the same way as features.

Parameters are important entities managed by our com-
panies in addition to features. Yet, the handling and the

characteristics of parameters are different. Parameters do
not have a process attached to them like features do, have no
architectural responsibility and no dedicated responsible role
(usually the feature owner is also responsible for parameters).

6.2 Scope and Architecture
Scope. Not surprisingly, we observe both localized and cross-
cutting features, scattered over large parts of the product line.
Half of Keba’s and Danfoss’ studied features are cross-cutting.
For instance, Keba.Oscilloscope introduces logging and a
global monitoring mode for operating the system, affecting
many parts of the codebase. In Opel’s active safety domain,
almost all features are cross-cutting, with implementations
being scattered over many components and ECUs. Among
the three Opel features, only one (ParkAssist) is well localized
in its current implementation. Another highly cross-cutting
feature, spanning many domains, is Danfoss.ProductG. It is
the result of one customer request whose realization needed
many tweaks throughout the codebase.

Yet, while some features are bad features due to their
highly cross-cutting nature, the scope of a feature is not
a differentiator between good and bad features. As one
interviewee explicitly explained, F: If a feature is cross-
cutting, that itself is not bad. There can be good reasons for
a scattered feature implementation.

Observation 3: Cross-cutting features. Scattered feature
implementations do not necessarily lead to problematic fea-
tures.

Architectural responsibility. The majority of the stud-
ied features across all companies contributes core business
logic. At Keba, all of the features discussed affect the user
interface (UI). At Opel, all three discussed features affect
both substantial business logic and the UI. At Danfoss, most
of the features (except the outliers) handle business logic,
whereas only one feature (Danfoss.Wobbler) also contributes
to the UI. This small number is not surprising given the
small display panels built into frequency converters.

The outliers, and other features to a lesser extent, al-
most always affect the product-line infrastructure for a spe-
cific lifecycle purpose. However, recall the outlier feature
Danfoss.BoardSupportPackage, which only contributes a new
architecture (and some business logic). Defining this new
architecture as a feature allowed internal communication and
approval (explained shortly in Sec. 6.4), but also booking
developers’ time on realizing the feature. This was also ex-
plained by a Keba interviewee: B: There are internal features
[...] [used] for project controlling [...] [to communicate] how
much of our time we invest into them.

6.3 Process and Representation
Definition and approval. While a deep study of processes
is beyond the scope of our work, we observed a diversity
of processes. At Keba, the features we studied are defined
by an internal project team, or existing specifications are
used in case the feature implements an existing standard
(e.g., for Industrial Ethernet). Sometimes, capabilities found
in similar systems are also studied. Usually, no dedicated
approval is necessary—none of the studied features required
this. Opel follows the typical V-shaped software-engineering
process: New features are defined in a so-called Advanced
Technology Work project, comprising the elicitation of re-
quirements and the building of a prototype vehicle. There is

special focus on safety-critical aspects; for instance, possible
feature interactions are investigated. Features are commonly
redefined based on customer clinics and field experience. At
Danfoss, a feature is typically created based on input from
customers and goes through a regular development process
(requirements, analysis, etc.). Before going into a product, it
has to be approved by the product owner. Danfoss’ outliers
are created without customer involvement.

It was surprising that the actual process was not a differ-
entiator between good and bad features. However, as briefly
discussed above (Sec. 5.2), our feature sample shows that
time pressure is a clear indicator.

Observation 4: Immature features. A rushed development
process causes problematic features.

Danfoss reported on bad experiences with an experiment
called “time-boxing”: E: Because of the time pressure, we
are told not to think, just to implement. [With time-boxing]
there was a limited amount of time to do some things. It was
OK to implement the code, but not to do any documentation.

Representation. While Opel and Danfoss represent features
in dedicated feature-modeling tools, the situation at Keba is
more diverse. Keba defines high-level product features and
their descriptions in product maps—matrices that allow com-
paring related products across numerous features—using the
Polarion requirements management system and spreadsheets.
Feature requests are also managed in an issue-tracking sys-
tem, used by application engineers to communicate with
domain engineers about future platform features. Keba also
has a home-grown configuration tool that, relying on select-
ing and customizing features by developers, allows quickly
cloning a product variant based on the domain platform. De-
velopers further use configuration files to define lower-level
features and parameters associated with features.

Opel uses GEARS for features and DOORS for require-
ments. Surprisingly, safety-critical dependencies are currently
modeled in the requirements, not in the feature model. At
Danfoss, every feature is represented in one central feature
model managed via pure::variants (with current modulariza-
tion attempts). Features are cross-linked to the parameter
database and requirements are managed in CaliberRM.

6.4 Use, Implementation and Deployment, and
Product Derivation

Use. Most frequently, interviewees reported that features are
used for explaining a system to a customer and for internal
communication. B: On the one hand it is the communication
to the customers—which features we have. [...] On the other
hand, it’s also for communication with the development.

Features were also frequently used for other closely related
activities such as scoping to create awareness for feature
reuse. B: When planning a project, we say that we can do a
project with those features. [Then] someone comes and says
[...] we can realize automated tests with the existing features.

Configuration was another common use of features. Some
of Keba’s and Danfoss’ features also contribute a config-
uration interface, allowing a feature’s parametrization by
customers during setup or run-time. All of Opel’s features
also contribute a large variety of calibration parameters used
for feature customization during manufacturing.

Implementation and deployment. We observed a large va-
riety of implementation techniques. To implement features,
Keba uses multiple programming languages (e.g., C, C++,

C#, Java, .NET, IEC 61131-3) and a home-grown domain-
specific language (TeachTalk), in which high-level robot-
movement commands are declared. Danfoss’ features are
implemented in C and C++, partly also using home-grown
DSLs. For deployment, Keba and Danfoss exploit binary
and properties files; Keba also uses OSGi bundles and the
TeachTalk scripts.

For the domain under consideration, Opel’s features are
mostly developed in C and typically deployed as AUTOSAR
components. All of the studied features are implemented and
validated by the ECU suppliers, who receive a specification
defining the calibration parameters the component needs to
support (for instance, to realize other cross-cutting features
affecting this component). The resulting AUTOSAR compo-
nents are integrated and validated on the vehicle level and
deployed to the ECUs. Given that most components real-
izing features are developed by ECU suppliers, most of the
development and integration effort is spent on calibration.

Inclusion/Exclusion. The mechanisms for including or
excluding optional features are very diverse. At Keba, for in-
stance, dedicated robot commands (e.g., Keba.LINMovement)
are activated at startup time by TeachTalk scripts, which
also allow fine-grained customization of the movement logic.
Other features are selected in the home-grown configuration
tool or activated via a command-line option, a preferences
menu in the UI, or a dedicated description file. The lat-
ter can either be a file delivered only to certain customers
to activate a feature (e.g., Keba.ManualConfiguration) or a
hardware-description file activating a feature when a certain
kind of hardware is present. Opel’s mechanisms are driven
by the calibration parameters, whose values determine the
startup of the feature’s components, or by the presence of
hardware (if not present, the respective ECU and component
are not included). Danfoss uses the tool chain provided by
pure::variants, comprising feature selection and a subsequent
build process driven by the C preprocessor as well as the
family model of pure::variants for determining the respective
source files to include. For the outlier Danfoss.PowerUp-
FastFuncs, compile macros are used to instruct the linker to
move functions from flash memory to RAM.

6.5 Quality Assurance and Evolution
Testing. For Keba, manual system tests are more important
than automated test procedures, which are primarily used at
the levels of components. Opel’s procedures follow the typical
levels outlined in the “V” development process: component
testing, integration testing, and vehicle testing. The software
is tested in an environment; integration testing is usually
done on a bench or on a hardware-in-the-loop platform.
Afterwards, the software is validated in the vehicle. Danfoss
conducts integration and regression tests for a fixed set of
products that are actually sold. Features are not tested via
component tests.

We noticed that cross-cutting features are problematic in
cases where they involve manual testing processes. Such
features can usually only be tested at integration time, po-
tentially also requiring hardware, making them high risk.

Observation 5: Testing and feature scattering. Scattered
features that have to be tested manually are problematic.

Evolution. The features at Keba were characterized as stable
with core functionality remaining unchanged. Customiza-
tions, refinements or refactorings are made upon request.

For instance, the feature Keba.Oscilloscope was extended to
support additional chart types, and the feature Keba.Silent-
Mode was recently refactored and re-implemented using a
different programming language. At Opel, features in the
active-safety domain are very dynamic. Therefore, a major
part of the evolution effort is spent on calibration, minor
adjustments of features, and code refactorings. For the fast-
evolving feature Opel.EmergencyBraking, engineers gradually
added support for recognizing additional objects to trigger
the automatic brake (e.g., stationary vehicle, pedestrian, or
bicycle in front).

7. THREATS TO VALIDITY
External Validity. As with any case-study research, it

might not be possible to generalize the results of our work
beyond the considered cases. Thus, we carefully avoided
making any generalizations, but rather presented an in-depth
analysis of the selected cases. We also focused on large,
influential companies, which we selected using well-defined
criteria (cf. Sec. 2.1), and sought to obtain a diverse sample
of features. This sampling approach is commonly known as
theoretic sampling [13]. To get a broader perspective, we
selected interviewees covering a range of roles in the studied
companies. We thus believe that the observations reported
in this paper are of value to the wider SPL community.

Internal Validity. We see two main threats to internal
validity. First, we might have phrased our interview questions
in a way that affected the participants’ answers, especially in
cases where specific examples were given. We attempted to
mitigate this threat by performing a pilot study and refining
our interview guide when we observed that our questions
raised confusion. We also avoided providing examples of
possible answers unless the participants experienced diffi-
culties in addressing a raised question. Second, we might
have misinterpreted the participants’ answers and derived
incorrect conclusions, threatening the reliability of our study.
To mitigate this threat, all interviews were recorded and
their summaries were cross-checked by one co-author who
did not attend the interview. Unclear cases were discussed
and some were further verified with the interviewees.

8. RELATED WORK
Feature Definitions. Many definitions of the term fea-

ture exist [1, 17, 32, 15, 25, 18, 23, 20, 8, 31], each of which em-
phasizes certain feature characteristics. For instance, Kang
et al. [19] provide a definition covering implementation, test-
ing, deployment, and maintenance of a feature. Bosch men-
tions functional and quality requirements specifying logical
units of behavior [7]. Further definitions focus on features
as user-visible aspects [17] or features as aspects that are
valuable to a customer [24]. However, existing approaches
do not combine multiple feature characteristics, nor do they
describe relations among them. The feature facets presented
in this paper can be useful as a terminology for describing dif-
ferent properties of features. Our observations also indicate
possible dependencies between such properties.

Feature Identification. Scoping methods propose a top-
down approach to determining the boundaries of a product
line and are an important planning activity that may deter-
mine the success or failure of a product line effort [26]. Some
scoping techniques ground the identification of the product
line scope based on business objectives [11, 27]. Scoping

methods also cover the identification of features in product
lines, but guidance is typically very specific in this regard.
While feature identification is not the primary aim of our
work, the presented facets of 23 real-world features can be
useful for organizations in their scoping activities.

Variability Modeling. Variability modeling is essential
for defining and managing the commonalities and variabili-
ties in software product lines. A wide range of variability-
modeling approaches has been proposed, including feature
modeling [17], decision modeling [28], and orthogonal vari-
ability modeling [23]. Empirical studies report on experiences
of applying variability modeling [6, 5]. Survey papers [8, 29,
3, 28, 10] compare variability-modeling approaches from dif-
ferent perspectives, which influenced the definition of feature
facets in our study. For instance, a survey paper comparing
feature models and decision models [10] uses ten dimensions
to characterize the different techniques. Although the focus of
our study was not on variability modeling, some dimensions
described in this survey supported the definition of feature
facets (e.g., applications, dependencies, binding time).

Feature-Oriented Engineering Methods. Feature-
oriented software development (FOSD) is a programming
concept for managing the construction, customization, and
synthesis of software systems based on features as first-class
citizens [1]. FOSD primarily addresses implementation-level
aspects of features, whereas our aim was to empirically investi-
gate a wider range of feature facets in different organizations.

Empirical Studies. Many experience reports about suc-
cessful industrial product lines are provided by van der Lin-
den et al. [31] and the SPL community’s ’Hall of Fame’.
While these provide valuable insights into economic, orga-
nizational, and process aspects of real-world product lines,
only few details are given on the characteristics of individual
features. Some experience papers provide more details about
features at different levels of product lines. For instance,
Lee et al. [21] report detailed experiences from developing
an elevator control software product line comprising 490 fea-
tures. Berger et al. [4] provide an analysis of features in 128
variability models, including metrics about feature types and
feature dependencies. While these results helped us identify
important facets of features, our aim was to complement
existing empirical studies by conducting a qualitative study
in companies and providing details about selected features.

9. CONCLUSION
We presented a qualitative study on the practical use of

features in three large companies. The study provides a con-
textualized and in-depth analysis of 23 features in real-world
settings—in organizations that manage features and explic-
itly track them. We reported insights into successful and
failed practices of feature usage together with the respective
conditions (RQ1) as well as a cross-case analysis on the range
of feature definitions and usages in practice (RQ2).

What is a Feature? The notion of what a feature is
varied widely across the three companies we studied. Yet,
we observed a surprising consistency regarding what makes
features good or bad. We also found that one of the most
important characteristics of a feature is that it needs to repre-
sent a distinct and well-understood aspect of the system. We
found that good features need to precisely describe customer-
relevant functionality, that bad features primarily arise from
rashly executed processes, and that cross-cutting features
scattered over the codebase are not necessarily bad. We also

observed that outliers are necessary, but do not require the
full engineering process of typical features. We hope that our
results on the actual feature usage and on issues arising from
it will be interesting for both practitioners and researchers.

Future Work. We plan to trace and study the lifecycles
of features in more detail. Specifically, the insights we gained
into the feature definition and approval process suggest that
an in-depth study in this area would be highly valuable. Such
a study should also capture the coordination among roles
and teams required to engineer and evolve features. The
paper used a set of facets for describing and communicating
important characteristics of features. We plan to refine the
facets as a basis for developing a language for describing
features. Finally, we reported initial observations relating
feature characteristics and their success. Further work should
investigate the development of approaches that can help to
predict when a feature is going to be good or bad.

Acknowledgments
We thank the companies, all our interviewees, and Manfred
Schölzke for participating in our study. This work was par-
tially supported by Keba AG and the Christian Doppler
Forschungsgesellschaft Austria, the Artemis Joint Undertak-
ing (grant 332830/2012-1), and the Ontario Research Fund.

10. REFERENCES
[1] S. Apel and C. Kästner. An Overview of Feature-

Oriented Software Development. J. Object Techn.,
8(5):49–84, 2009.

[2] E. R. Babbie. The Practice of Social Research. Cengage
Learning, 13th edition, 2012.

[3] D. Benavides, S. Segura, and A. R. Cortés. Automated
Analysis of Feature Models 20 Years Later: A
Literature Review. J. Information Systems, 35(6), 2010.

[4] T. Berger, D. Nair, R. Rublack, J. M. Atlee,
K. Czarnecki, and A. W ↪asowski. Three Cases of
Feature-Based Variability Modeling in Industry. In
Proc. MODELS, 2014.

[5] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. W ↪asowski. A Survey of Variability
Modeling in Industrial Practice. In Proc. VaMoS, 2013.

[6] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. A Study of Variability Models and
Languages in the Systems Software Domain. IEEE
Trans. on Soft. Eng., 39(12), 2013.

[7] J. Bosch. Design and Use of Software Architectures –
Adopting and Evolving a Product-line Approach. ACM
Press, 2000.

[8] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s
in a Feature: A Requirements Engineering Perspective.
In Proc. FASE, 2008.

[9] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

[10] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid,
and A. W ↪asowski. Cool Features and Tough Decisions:
A Comparison of Variability Modeling Approaches. In
Proc. VAMOS, 2012.

[11] J.-M. DeBaud and K. Schmid. A Systematic Approach
to Derive the Scope of Software Product Lines. In Proc.
ICSE, 1999.

[12] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An Exploratory Study of
Cloning in Industrial Software Product Lines. In Proc.
CSMR, 2013.

[13] K. M. Eisenhardt and M. E. Graebner. Theory
Building from Cases: Opportunities and Challenges.
Academy of Management J., 50(1):25–32, 2007.

[14] R. Flores, C. Krueger, and P. Clements. Mega-Scale
Product Line Engineering at General Motors. In Proc.
SPLC, 2012.

[15] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse:
Architecture, Process and Organization for Business
Success. 1997.

[16] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally
Invasive Migration to Software Product Lines. In Proc.
SPLC, 2007.

[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Tech. Rep., 1990.

[18] K. Kang, J. Lee, and P. Donohoe. Feature-Oriented
Product Line Engineering. IEEE Software, 19(4), 2002.

[19] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures. Ann.
Softw. Eng., 5:143–168, Jan. 1998.

[20] J. Lee and D. Muthig. Feature-oriented Variability
Management in Product Line Engineering. Commun.
ACM, 49(12):55–59, Dec. 2006.

[21] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and
B. W. Choi. Domain-Oriented Engineering of Elevator
Control Software: A Product Line Practice. In Proc.
SPLC, 2000.

[22] D. Lettner, F. Angerer, H. Prähofer, and
P. Grünbacher. A Case Study on Software Ecosystem
Characteristics in Industrial Automation Software. In
Proc. ICSSP, 2014.

[23] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer-Verlag, 2005.

[24] M. Riebisch. Towards a More Precise Definition of
Feature Models. In Modelling Variability for OO
Product Lines. 2003.

[25] J. Savolainen and J. Kuusela. Volatility Analysis
Framework for Product Lines. In Proc. ISSR, 2001.

[26] K. Schmid. Scoping Software Product Lines: An
Analysis of an Emerging Technology. In SPLC, 2000.

[27] K. Schmid, I. John, R. Kolb, and G. Meier. Introducing
the PuLSE Approach to an Embedded System
Population at Testo AG. In Proc. ICSE, 2005.

[28] K. Schmid, R. Rabiser, and P. Grünbacher. A
Comparison of Decision Modeling Approaches in
Product Lines. In Proc. VaMoS, 2011.

[29] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Feature Diagrams: A Survey and a
Formal Semantics. In Proc. RE, 2006.

[30] K. Sierszecki, M. Steffens, H. H. Hojrup, J. Savolainen,
and D. Beuche. Extending Variability Management to
the Next Level. In Proc. SPLC, 2014.

[31] F. J. van der Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action. 2007.

[32] P. Zave. FAQ Sheet on Feature Interactions. Available
at http://www.research.att.com/˜pamela/faq.html, 2004.

http://www.research.att.com/~pamela/faq.html

	Introduction
	Research Methodology
	Company Selection
	Interview Design
	Data Collection and Analysis

	Subject Companies
	Keba: Industrial-Automation Provider
	Opel: Car Manufacturer
	Danfoss: Component Producer

	Typical and Outlier Features
	What is a Typical Feature?
	What is an Outlier Feature?

	Good and Bad Features
	What is a Good Feature?
	What is a Bad Feature?

	Cross-Case Analysis
	Rationale, Level, and Nature
	Scope and Architecture
	Process and Representation
	Use, Implementation and Deployment, and Product Derivation
	Quality Assurance and Evolution

	Threats to Validity
	Related Work
	Conclusion
	References

