Education	Doctor of Philosophy Sept. 2004 – Sept. 2008	Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Cambridge, MA. Advisor: Professors W. E. L. Grimson, W M. Wells, and CF Westin Thesis: Tract-Oriented Quantitative Analysis of Cerebral White Matter Anatomy from Diffusion MRI. GPA: 5.0/5.0
	Master of Science Sept. 2000 – Sept. 2002	Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Advisor: Professors H. Soltanian-Zadeh and A. Afzali-Kusha. Thesis: Fast 3D Skeletonization and Quantification of Microvascular Structures.
	Bachelor of Science Sept. 1996 – Sept. 2000	Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Thesis: Implementation of Passive Elements in Microwave Integrated Circuits.
Research Experience	Computer Vision Scientist Jan. 2009 – to date	 Visualization and Computer Vision Laboratory, GE Global Research, Niskayuna, NY. Created software package for automatically analyzing diffusion MRI, and integrated it as a downloadable extension to 3D Slicer, an open source platform for analyzing medical images. This module uses machine-learning techniques to cluster trajectories and enables statistical analysis along the cluster centerlines. Developed the first physically meaningful method to construct virtual un-enhanced images from dual energy computed tomography. Designed software for analysis of contrast-enhanced computed tomography images to minimize user interaction, and automatically track respiratory motion. This had a significant effect on the reproducibility and 80% reduction in processing time.
	Graduate Research Assistant Sept. 2004 – Sept. 2008	 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA. Developed a new algorithm for probabilistic clustering of fiber trajectories, incorporating anatomical atlases as prior information in a Bayesian framework. Enabled statistical analysis along the arc-length of each bundle by introducing an efficient method to establish point correspondences between the trajectories. Conducted a diffusion MRI population study on Schizophrenia, from pre-processing the diffusion data to performing statistical analysis along the bundles of white-matter fiber trajectories.

	Graduate Research Assistant Sept. 2003 – Sept. 2008	 Surgical Planning Laboratory, Brigham and Women's Hospital, Boston, MA. Evaluated the accuracy of four automatic segmentation tools (SPM, KNN, EM and FSL) for medical images, using Simultaneous Truth and Performance Level Estimation (STAPLE). 	
	Graduate Research Assistant Sept. 2001 – Aug. 2003	 Signal and Image Processing, Institute of Theoretical Physics and Mathematics, Tehran, Iran. Developed two new fully-automated centerline extraction methods based on path-planning and snake model. Performed quantitative analysis of vascular images using the extracted centerlines by the above methods. 	
Journal Publications	framewor Medical I 2. D. Goldb tensor ma pp. 68S-8 3. H. Soltan Maddah structures coding," (4. M. Madd "Three-di images," 498, 2005 5. M. Madd distance t <i>Computer</i> 6. S. Bolouk for PD/FI <i>State Elec</i> 7. M. Mad extraction	 M. Maddah, W. E. L. Grimson, S. K. Warfield, W. M. Wells, "A unified framework for clustering and quantitative analysis of white matter fiber tracts," <i>Medical Image Analysis</i>, vol. 12, no. 2, pp. 191-202, 2008. D. Goldberg-Zimring, A. U. J. Mewes, M. Maddah, S. K. Warfield, "Diffusion tensor magnetic resonance imaging in multiple sclerosis," <i>Neuroimaging</i>, vol. 15, pp. 68S-81S, 2005. H. Soltanian-Zadeh, A. Shahrokni, M. Khalighi, Z. G. Zhang, R. A. Zoroofi, M. Maddah and M. Chopp, "3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxelcoding," <i>Computers in Biology and Medicine</i>, vol. 35, no. 9, pp. 791-813, 2005. M. Maddah, H. Soltanian-Zadeh, A. Afzali-Kusha, A. Shahrokni and Z. G. Zhang, "Three-dimensional analysis of complex branching vessels in confocal microscopy images," <i>Computerized Medical Imaging and Graphics</i>, vol. 29, no. 6, pp. 487-498, 2005. M. Maddah, H. Soltanian-Zadeh and A. Afzali-Kusha, "Snake modeling and distance transform approach to vascular centerline extraction and quantification," <i>Computerized Medical Imaging and Graphics</i>, vol. 27, no. 6, pp. 503-512, 2003. S. Bolouki, M. Maddah, A. Afzali-Kusha and M. El Nokali, "A unified I-V model for PD/FD SOI MOSFETs with a compact model for floating body effects," <i>Solid-State Electronics</i>, vol. 47, no. 11, pp. 1909-1915, 2003. 	
Peer-Review Conference	Papers image re Biomedic 2. M. Mad Grimson Medical	 dah, P. Mendonca, R. Bhotika, "Physically meaningful virtual unenhanced construction from dual-energy CT," to be presented at <i>IEEE Int. Symp. cal Imaging (ISBI)</i>, Netherland, April 2010. dah, M. Kubicki, W.M. Wells, CF. Westin, M.E. Shenton, and W.E.L. , "Findings in schizophrenia by tract-oriented DTI analysis," presented at <i>Image Computing and Computer-Assisted Intervention (MICCAI)</i>, New Y, Sept. 2008. 	

- 3. M. Maddah, L. Zöllei, W.E.L. Grimson, and W.M. Wells, "Modeling of anatomical information in clustering of white matter fiber trajectories using Dirichlet distribution," *Mathematical Methods in Biomedical Image Analysis* (*MMBIA*), Anchorage, AK, June 2008.
- 4. **M. Maddah**, L. Zöllei, W.E.L. Grimson, C.-F. Westin, and W.M. Wells, "A mathematical framework for incorporating anatomical knowledge in DT-MRI analysis," *IEEE Int. Symp. Biomedical Imaging (ISBI)*, Paris, France, May 2008.
- 5. **M. Maddah**, W.M. Wells, S.K. Warfield, C.-F. Westin, and W.E.L. Grimson, "Probabilistic clustering and quantitative analysis of white matter fiber tracts," *Information Processing in Medical Imaging(IPMI)*, Netherlands, 2007.
- 6. **M. Maddah**, W.E.L. Grimson, and S.K. Warfield, "Statistical modeling and EM clustering of white matter fiber tracts," *IEEE Int. Symp. Biomedical Imaging* (*ISBI*), pp. 53-56, 2005.
- M. Maddah, A.U.J. Mewes, S. Haker, W.E.L. Grimson, and S.K. Warfield, "Automated atlas-based clustering of white matter fiber tracts from DTMRI," *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, Palm Spring, CA, pp. 188-195, 2005.
- 8. **M. Maddah**, K.H. Zou, W.M. Wells, R. Kikinis, and S.K. Warfield, "Automatic optimization of segmentation algorithms through simultaneous truth and performance level estimation (STAPLE)," *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, Saint-Malo, France, pp. 274-282, 2004.
- 9. M. Maddah, A. Afzali Kushaa, and H. Soltanian-Zadeh, "Efficient medial curve extraction of microvascular structures in confocal microscopy images," *Int. Conf. Diagnostic Imaging and Analysis*, Shanghai, China, pp. 119-124, August, 2002.
- 10. M. Maddah, A. Afzali Kushaa, and H. Soltanian-Zadeh, "Fast centerline extraction for quantification of vessels in confocal microscopy images," *IEEE Int. Symp. Biomedical Imaging (ISBI)*, pp. 461-464, Washington, D.C., July 2002.
- 1. **M. Maddah**, M. Kubicki, C.-F. Westin, W.E.L. Grimson, "Analysis of white matter integrity and brain asymmetry in schizophrenia: a diffusion MRI study," *Human Brain Mapping (HBM)*, San Francisco, CA, 2009.
- 2. M. Maddah, A.U.J. Mewes, H. Als, G. McAnulty, W.E.L. Grimson, and S.K. Warfield, "Investigation of neonate brain development enabled by tract-oriented quantification," *Proceedings of International Society for Magnetic Resonance in Medicine Eleventh Scientific Meeting and Exhibition (ISMRM)*, Toronto, Canada, May 2008.
- 3. M. Maddah, W. M. Wells, S. K. Warfield, C-F. Westin, and W. E. L. Grimson, "A spatial model of white matter fiber tracts," *Proceedings of International Society for Magnetic Resonance in Medicine Eleventh Scientific Meeting and Exhibition (ISMRM)*, Berlin, Germany, 2007.

Other Selected Publications

4

Oral Presenta	 "DTI tract- Neuroima "Probabilis <i>Informatic</i> "An EM ap Radiology "Atlas-base "Automatic performan <i>Computer</i> Simon Wa "Fast center images", <i>I</i> (presented) "Centerline 	 MRI", (to) GE Healthcare, Niskayuna, 2009. oriented analysis and findings in Schizophrenia", Psychiatry ging Laboratory, Harvard, 2008. ttic clustering and quantitative analysis of white matter fiber tracts", <i>on Processing in Medical Imaging(IPMI)</i>, Netherlands, 2007. oproach for fiber clustering from Diffusion MRI ", Computation / Laboratory, Children's Hospital, Boston, 2007. ed clustering of white matter fiber tracts", MIT, Boston, 2005. c optimization of segmentation algorithms through simultaneous truth and ace level estimation (STAPLE)", <i>Medical Image Computing and e-Assisted Intervention (MICCAI)</i>, Saint-Malo, France, 2004 (presented by arfield). rline extraction for quantification of vessels in confocal microscopy <i>IEEE Int. Symp. Biomedical Imaging (ISBI)</i>, Washington, D.C., 2002 d by Hamid Soltanian-Zadeh). e extraction methods for vascular structures", Institute of Theoretical and Mathematics, Tehran, Iran, 2002.
Teaching Experience	Teaching Assistant Sept. 2007 – Dec. 2007	Probabilistic Systems Analysis and Applied Probability (Graduate Course), Electrical Engineering and Computer Science, MIT.
Professional Activities	Reviewer	 IEEE Transaction on Visualization and Computer Graphics NeuroImage Medical Image Computing and Computer-Assisted Intervention