
ID-263

1

Communication- avoiding Krylov Techniques on Graphic Processing
Units

Maryam Mehri Dehnavi, Yousef El-Kurdi, James Demmel*, Dennis Giannacopoulos

ECE Department, McGill University, H3A2A7, Canada
*EECS and Math Department, University of California Berkeley, CA 94720, USA

mmehride@eecs.berkeley.edu, yousef.elkurdi@mail.mcgill.ca, demmel@eecs.berkeley.edu, dennis.giannacopoulos@mcgill.ca

Communicating data within the graphic processing unit (GPU) memory system and between the CPU and GPU are major
bottlenecks in accelerating Krylov solvers on GPUs. Communication-avoiding techniques reduce the communication cost of Krylov
subspace methods by computing several vectors of a Krylov subspace “at once”, using a kernel called “matrix powers”. The matrix
powers kernel is implemented on a recent generation of NVIDIA GPUs and speedups of upto 5.7 times are reported for the
communication-avoiding matrix powers kernel compared to the standard sparse matrix vector multiplication (SpMV) implementation.

Index Terms—Numerical algorithms; Parallel algorithms; Graphic processors; Krylov solvers.

I. INTRODUCTION

HE SPARSE matrix vector multiplication (SpMV) kernel is
a dominant computing kernel in standard Krylov subspace

methods (KSMs). Computing a few arithmetic operations per
datum, SpMV operations are classified as communication-
bound. The cost of communication (moving data between
levels of the memory hierarchy) is considerably higher than
the cost of arithmetic computations in modern architectures
and this gap is expected to further widen. Thus, in order to
enhance the performance of communication bound kernels
such as SpMV, new strategies should be explored to minimize
communication and data movement.

A. Communication-avoiding Krylov techniques

Communication-avoiding (CA) algorithms [1] communicate
less than the state-of-the-art algorithms at the expense of more
arithmetic operations. Standard implementations of SpMV in
KSMs, require reloading the sparse matrix to caches and fast
memory in each iteration when they are too large to fit in fast
memory; thus, overwhelming the algorithm with
communication and data movement between fast and slow
memory. Communication-avoiding Krylov techniques [1]
minimize communication via computing k steps of the
iterative solver at the same time. To take k steps at the same
time, and so potentially reduce memory traffic by a factor of k,
a new sparse matrix kernel is required, called the matrix
powers kernel. Where pi is a polynomial of degree i, the
matrix powers kernel computes the basis
ሾ݌ଵሺܣሻݔ, ,ݔሻܣଶሺ݌ ,ݔሻܣଷሺ݌ … , .ሿݔሻܣ௞ሺ݌ To compute the
aforementioned basis for a matrix ܣ that does not fit into fast
memory, the matrix is first divided into partitions (cache-
blocks) that fit into the desired memory space. The partitions
are then loaded into fast memory to compute the basis. To
avoid communication between fast and slow memory and
between partitions, non-local rows might also be copied to a
partition (“remote/ghost” rows) leading to redundant
arithmetic operations [2]. For a well partitioned ܣ matrix
(where ܣ has a low surface-to-volume ratio), the
communication cost of the k-step matrix powers kernel will be
ܱሺ1ሻ compared to ܱሺ݇ሻ for k SpMV operations in a naïve
implementation [2].

B. Graphic processing Units

GPUs have become an important resource for scientific
computing in recent years. With easy to learn APIs such as
CUDA [3] introduced by NVIDIA, general purpose
programming for modern scientific computations on GPUs
have gained considerable attention. The GPU consists of
streaming multiprocessors (SMs) and each SM contains basic
processing units called scalar processors (SPs). To run
compute intensive parts of an application on the GPU initial
data has to be transferred from CPU memory to GPU global
memory and a GPU kernel is then launched. Using a single
data multiple thread paradigm, GPU threads grouped into
thread blocks (TBs) proceed with the computations and
transfer the results back to CPU. The GPU memory hierarchy
consists of an on-board global memory with long access
latency, a fast access shared memory, registers, and caches.
Threads inside a block communicate via shared memory and
their execution can be synchronized. Every 32 threads in a
block execute the same instruction and are called a warp.
Referred to as thread divergence, if threads inside a warp go
through different computation paths their execution is
serialized; to achieve higher speedups, thread divergence
should be avoided while accelerating problems on GPUs.

II. PREVIOUS WORK

A brief survey of the k-step Krylov techniques is presented in
this section; algorithmic details of these techniques and a
complete survey of previous work on k-step Krylov solvers
and available preconditioners can be found in [2]. The k-step
Krylov subspace methods were initially introduced by
Rosendale [4], and later studied in work such as [5], [6]. All
this work used a monomial basis and reported convergence for
k<5 in k-step KSMs. By using a scaled monomial basis [7], a
scaled and shifted Chebychev basis [8] and Newton basis [9],
the coverage of the k-step Krylov subspace techniques were
further improved at the expense of increased dependency in
the algorithm. This problem is resolved by Hoemmen et al. [2]
by eliminating the need for scaled basis vectors. Carson et al.
proposed techniques to extend CA-Krylov techniques to 2-
sided methods such as BiCGStab in [10] and repaired their
numerical instability in [11]. A more detailed survey of
available work on communication-avoiding KSMs is

T

ID-263

2

presented in [2]. The dominant computing kernel in k-step
Krylov solvers is the matrix powers kernel which is
accelerated on GPUs in this work.

A considerable number of work has been done on
accelerating sparse matrix vector multiplication on GPUs [12],
[13], [14]. None of the available implementations of SpMV on
GPUs consider cache blocking for GPU global memory
(device memory). If the matrix is larger than the device
memory, computing k SpMVs requires reloading the matrix to
the GPU for each SpMV kernel which is very costly. With
only 1.5GB of global memory in GPUs such as NVIDIA
GTX480, matrices from many real problems cannot be fully
stored on the device. Memory might also be allocated to store
preconditioners and other data structures, leaving only a part
of GPU global memory for storing ܣ. As a result, the matrix
has to be transferred to the GPU in each iteration, increasing
data transfers between GPU and CPU memory in iterative
solvers. The matrix powers kernel reduces data
communication between CPU and GPU by partitioning the
matrix and computing k SpMV operations at the same time for
each partition.

In this work the matrix powers kernel is implemented on
GPUs by cache blocking the matrices to fit on the GPU global
memory. Our work is closely related to the work proposed by
Mohiyuddin et al. [15], which studies the performance of the
matrix powers kernel on an 8-core Intel Clovertown. The
proposed implementation of the communication-avoiding
matrix powers kernel on GPUs will be used in
communication-avoiding KSMs in future work.

III. IMPLEMENTATION DETAILS

Implementation details of the matrix powers kernel on GPU
global memory are presented in this section. The auto-tuning
stage partitions the matrix to fit into GPU global memory; the
partitions are then used in the matrix powers kernel.

A. Auto-tuning Stage
The first stage of the algorithm is the partitioning stage

where the matrix is either divided into equal partitions using a
naïve partitioning strategy or graph and hyper-graph
partitioners such as Metis [16] and Zoltan [17]. The results
presented in this work are achieved via naïve row block
partitioning; other partitioning methods will be studied in
future work. The matrix is first divided into equal partitions of
row blocks. The partitions are balanced based on the floating
point operations required to compute k steps of the matrix
powers for each row block and are recursively reduced to fit
into GPU global memory (Fig. 1). The size of each partition is
equal to the memory required to store local and remote rows in
compressed row storage (CSR) format for each partition.

B. Matrix powers Kernel
Along with the corresponding elements of the source vector

partitions generated by the auto-tuner are transferred to GPU
global memory one after another. For each partition k steps of
the matrix powers kernel are computed while it is in global
memory (Fig. 2). Sparse matrix vector multiplications are
computed in parallel on the GPU for each partition using the
CUSPARSE SpMV kernel [14]. The generated vectors for

each partition can then be used in the communication-avoiding
Krylov solvers.

Fig. 1: The steps in the auto-tuner to generate cache blocks for global

memory.
Performance results for the matrix powers kernel are tested

on the NVIDIA GTX480. The GTX480 graphic card contains
480 CUDA cores and operates at 1.4GHz, the size of global
memory is 1.5GB with a bandwidth of 177 GB/s. The shared
memory is configured to 48KB. All speedups are calculated
using the following formula:

timeሺ݉ܽݔ݅ݎݐ	ݏݎ݁ݓ݋݌	݈݁݊ݎ݁݇	ݎ݋݂	ሺݔ݇ܣ,…,ݔ2ܣ,ݔܣሻ

ሻݏ݊݋݅ݐܽݎ݁݌݋	݀ݎܽ݀݊ܽݎݐݏ	ܸܯ݌ܵ	ሺ݇݁݉݅ݐ
 (1)

The k SpMV standard operations in equation (1) are
computed using the implementation in Fig. 3. Similar to the
matrix powers kernel implementation, the SpMV operations in
the standard (also referred to as naïve) algorithm are
accelerated on the GPU using the CUSPARSE SpMV kernel.

Fig. 2: The matrix powers implementation on GPU global memory, ݔ௝

௜ is the
݆-th component of ݔ௜ ൌ .ሺ଴ሻݔ௜ܣ	

Fig. 3: The standard computation of ݇ SpMVs on the GPU, ݔ௝

௜ is the ݆-th
component of ݔ௜ ൌ .ሺ଴ሻݔ௜ܣ	

for ݅ ൌ 1 to ݇ do

 for each partition (cache block)

 transfer the partition to GPU Global memory

 call a GPU kernel to compute ݔ௝
ሺ௜ሻ (for all ݆ belonging to the

current partition)

 transfer ݔ௝
ሺ௜ሻ to CPU (for all ݆ belonging to the current partition)

 remove the current partition from global memory

for each partition (cache block)

 transfer the partition to GPU Global memory

 for ݅ ൌ 1 to ݇ do

 call a GPU kernel to compute ݔ௝
ሺ௜ሻ (for all ݆ belonging to the

current partition)

 copy ݔ௝
ሺ௜ሻ to the CPU (for all ݆ belonging to the current partition)

 remove the current partition from global memory

ID-263

3

Fig.4: Each matrix is described by its name, description, number of rows, number of non-zeros, average number

of non-zeros per row and its non-zero pattern. The matrices are stored in compressed row storage format.

IV. RESULTS

In this section, the performance of the proposed
implementation of the matrix powers kernel on GPU global
memory is studied using ten matrices (Fig. 4) from the
University of Florida matrix repository [18]. All matrices are
cache blocked assuming only one fourth of the matrix can be
stored in global memory at one time.

Fig. 5 shows the performance of the matrix powers kernel
for global memory cache blocking (the best performance
obtained for all ݇ ൏ 40). Speedups of up to 5.7 and 4.98 are
achieved for well structured matrices, such as ‘Cant’ and ‘2d-
9pt’. The naïve SpMV performance is lower for matrices with
smaller numbers of non-zeros per row such as ‘2d9pt’ and
‘mc2depi’. The CUSPARSE SpMV implementation performs
poorly for such problems due to an increase in thread
divergence. The extra flops performed in the matrix powers
kernel (for the best k) compared to k steps of the standard
SpMV is shown in Table I. For an unstructured matrix such as
‘Xenon’ that achieves the least speedup from the matrix
powers kernel, in only 5 steps of the matrix powers kernel up
to 23% more flops are computed (Table I). The upperbound in
Fig. 5 is computed for the best performing k using:

ሺ௔௥௜௧௛௠௘௧௜௖_௜௡௧௘௡௦௜௧௬	ሺ௠௔௧௥௜௫	௣௢௪௘௥௦ሻሻ

ሺ௔௥௜௧௛௠௘௧௜௖_௜௡௧௘௡௦௜௧௬	ሺௌ௣ெ௏ሻሻ.௣௘௥௙௢௥௠௔௡௖௘ሺௌ௣ெ௏ሻ

where the arithmetic intensity is the effective flops to bytes
transferred ratio [15]. The generated ݔ௜ vectors (where

௜ݔ ൌ ሺ଴ሻ) are transferred to the CPU for both the naïveݔ௜ܣ	
SpMV and matrix powers kernels at each step. The
aforementioned transfers are also included in computing the
upperbound. Table I shows the fraction of total time spent in
communicating data between GPU and CPU memory for all
the tested problems (for the best performing k). The table
shows on average 90 percent of the SpMV kernel execution
time is spent in transferring data between CPU and GPU
global memory which further justifies the importance of
avoiding communications using the communication-avoiding
matrix powers kernel. For matrices such as “2d-9pt” and
‘mc2depi’, which have the least number of non-zeros per row,
a smaller percentage of total time is spent in communicating
data. Also, compared to other matrices, the performance gap
between the matrix powers kernel and the upperbound is
larger for the aforementioned matrices. This is because the
time spent in computing operations such as spreading the
initial and source vectors at each step of the matrix powers
kernel are no longer negligible for these problems. Increased
thread divergence on the GPU for matrices with fewer non-
zeros per row also increases the execution time of arithmetic
computations for ‘2d9pt’ and ‘mc2depi’. As shown in Table I
for some matrices the best speedup for the matrix powers
kernel is achieved for ݇ parameters as high as 34 and 15,
which indicates the importance of using better polynomial
bases and residual replacement to achieve both stability and
convergence in CA Krylov techniques [11].

TABLE I

 THE BEST SPEEDUP OF THE MATRIX POWERS KERNEL COMPARED TO NAÏVE SPMV, FRACTION OF TOTAL TIME SPENT IN COMMUNICATING DATA IN THE NAÏVE

SPMV IMPLEMENTATION AND EXTRA COMPUTED FLOPS IN THE MATRIX POWERS KERNEL PERFORMING ݇ STEPS.

Matrix pwtk 2d9pt cfd2 rajat xenon mc2depi Cube coup cant shipsec1 gearbox

݇ 15 34 7 15 5 11 8 14 6 7

Speedup 4.92 4.98 3.79 3.49 2.85 3.53 3.98 5.7 2.88 3.21

Communication vs.

Total time
91% 84% 90% 87% 87% 78% 88% 93% 93% 96%

AkXflops/naïveflops 1.3 1.1 1.2 1.03 1.23 1.02 1.22 1.16 1.24 1.26

Pwtk

Wind Tunnel
(218K, 12M, 55)

Cant

FEM cantilever
(62K, 4M, 65)

Cfd2

Pressure matrix
(123K, 3.1M,25)

Gearbox
Aircraft flap
actuator

(153K,9.1M, 59)

2d 9‐pt
9‐pt operator on

2Dmesh
(1M, 9M, 9)

mc2depi
2D Markov
model

(525K, 2.1M, 4)

Shipsec

FEM ship section
(141K, 7.8M, 55)

Xenon
Complex zelolite

csrytals
(157K, 3.9M, 25)

Rajat31

Circuit simulation
(4.6M, 20.3M, 84)

Cube_coup3d
coupled

consolidation
(2.1M, 124M, 59)

ID-263

4

Fig. 5: Performance of the matrix powers kernel cache blocking for global memory on NVIDIA GTX480. The “AkX” indicates the best

performance obtained for all ݇ ൏ 40. The label “upper bound” shows the performance achievable via scaling the standard ݇ SpMV.

V. CONCLUSION AND FUTURE WORK

The matrix powers kernel in communication-avoiding
Krylov techniques is accelerated and speedups of up to 5.7 are
obtained for global memory cache blocking compared to the
standard implementation of k SpMV operations; in future
work, we intend to enhance the performance of this kernel by
implementing other matrix partitioning schemes and
enhancing the auto-tuning phase. The performance of the
matrix powers kernel in Krylov subspace methods will be
studied and preconditioners such as the sparse approximate
inverse [19] will be used to enhance the convergence of
communication-avoiding KSMs.

REFERENCES
[1] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, “Avoiding

communication in computing Krylov subspaces”, Technical Report
UCB/EECS-2007-123, University of California Berkeley EECS, 2007.

[2] M. Hoemmen, “Communication-avoiding Krylov subspace methods”.
Thesis UC Berkeley, Department of Computer Science, 2010.

[3] NVIDIA CUDA [Online]. Available:
 http://developer.nvidia.com/object/cuda.html.

[4] J.V. Rosendale, “Minimizing inner product data dependencies in conjugate
gradient iteration”, IEEE Computer Society Press, Silver Spring, 1983.

[5] A. Chronopoulos and C. W. Gear, “s-step iterative methods for symmetric
linear systems”, J. Comput. Appl. Math., vol. 25, no. 2, pp. 153-156,
1989.

 [6] H.F. Walker, “Implementation of the GMRES method using Householder
transformations”, SIAM Journal on Scientific and Statistical Computing,
pp. 9-152, 1988.

[7] A.C. Hindmarsh and H.F. Walker, “Note on a Householder
implementation of the GMRES method”, Technical report, Lawrence
Livermore National Lab., USA, 1986.

[8] W.D. Joubert and G.F. Carey, “Parallelizable restarted iterative methods

for nonsymmetric linear systems”, Part I: Theory. International Journal of
Computer Mathematics, 44(1), pp. 243-267, 1992.

 [9] Z. Bai, D. Hu, and L. Reichel, “A Newton basis GMRES
implementation”, IMA Journal of Numerical Analysis, 14(4), pp. 563-
581, 1994.

 [10] E. Carson, N. Knight and J. Demmel, “Avoiding Communication in
Two-Sided Krylov Subspace Methods”, Technical Report, U.C. Berkeley,
EECS-2011-93, 2011.

[11] E. Carson and J. Demmel, “A Residual Replacement Strategy for
Improving the Maximum Attainable Accuracy of s-step Krylov Subspace
Methods”, Technical Report, U.C. Berkeley, EECS-2012-197, 2012.

[12] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on
CUDA,” NVIDIA Tech. Rep., 2008.

[13] M. Mehri Dehnavi, D. Fernandez and D. Giannacopoulos, “Finite
element sparse matrix vector multiplication on GPUs”, IEEE Trans. on
Mag., vol. 46, no. 8, pp. 2982-2985,

[14] NVIDIA CUSPARSE Library:
http://developer.download.nvidia.com/compute/cuda/40rc2/toolkit/docs/C
USPARSE_Library.pdf.

[15] M. Mohiyuddin, M. Hoemmen, J. Demmel and K. Yelick, “Minimizing.
communication in sparse matrix solvers”, Proceedings of the 2009
ACM/IEEE Conference on Supercomputing, New York, USA, Nov 2009.

[16] http://glaros.dtc.umn.edu/gkhome/metis/metis.

[17] http://www.cs.sandia.gov/Zoltan/.

[18] T. A. Davis, and Y. Hu, “The university of Florida sparse matrix
collection”, ACM Transactions on Mathematical Software (to appear),
http://www.cise.ufl.edu/research/sparse/matrices, January, 2009.

[19] M. Mehri Dehnavi, D. Fernandez, J. Gaudiot, and D. Giannacopoulos,
“Parallel sparse approximate inverse preconditioners on graphic
processing units”, IEEE transactions on parallel and distributed systems,
vol. 99, preprints, 2012.

0

1

2

3

4

5

6
G

Fl
op

/s
Upperbound AkX SPMV

