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Communicating data within the graphic processing unit (GPU) memory system and between the CPU and GPU are major 
bottlenecks in accelerating Krylov solvers on GPUs. Communication-avoiding techniques reduce the communication cost of Krylov 
subspace methods by computing several vectors of a Krylov subspace “at once”, using a kernel called “matrix powers”. The matrix 
powers kernel is implemented on a recent generation of NVIDIA GPUs and speedups of upto 5.7 times are reported for the 
communication-avoiding matrix powers kernel compared to the standard sparse matrix vector multiplication (SpMV) implementation.  

Index Terms—Numerical algorithms; Parallel algorithms; Graphic processors; Krylov solvers.  

I. INTRODUCTION 

HE SPARSE matrix vector multiplication (SpMV) kernel is 
a dominant computing kernel in standard Krylov subspace 

methods (KSMs). Computing a few arithmetic operations per 
datum, SpMV operations are classified as communication-
bound. The cost of communication (moving data between 
levels of the memory hierarchy) is considerably higher than 
the cost of arithmetic computations in modern architectures 
and this gap is expected to further widen. Thus, in order to 
enhance the performance of communication bound kernels 
such as SpMV, new strategies should be explored to minimize 
communication and data movement. 

A. Communication-avoiding Krylov techniques 

Communication-avoiding (CA) algorithms [1] communicate 
less than the state-of-the-art algorithms at the expense of more 
arithmetic operations. Standard implementations of SpMV in 
KSMs, require reloading the sparse matrix to caches and fast 
memory in each iteration when they are too large to fit in fast 
memory; thus, overwhelming the algorithm with 
communication and data movement between fast and slow 
memory. Communication-avoiding Krylov techniques [1] 
minimize communication via computing k steps of the 
iterative solver at the same time. To take k steps at the same 
time, and so potentially reduce memory traffic by a factor of k, 
a new sparse matrix kernel is required, called the matrix 
powers kernel. Where pi is a polynomial of degree i, the 
matrix powers kernel computes the basis 
ሾ݌ଵሺܣሻݔ, ,ݔሻܣଶሺ݌ ,ݔሻܣଷሺ݌ … , .ሿݔሻܣ௞ሺ݌ To compute the 
aforementioned basis for a matrix ܣ that does not fit into fast 
memory, the matrix is first divided into partitions (cache-
blocks) that fit into the desired memory space. The partitions 
are then loaded into fast memory to compute the basis. To 
avoid communication between fast and slow memory and 
between partitions, non-local rows might also be copied to a 
partition (“remote/ghost” rows) leading to redundant 
arithmetic operations [2]. For a well partitioned ܣ  matrix 
(where ܣ  has a low surface-to-volume ratio), the 
communication cost of the k-step matrix powers kernel will be 
ܱሺ1ሻ compared to ܱሺ݇ሻ  for k SpMV operations in a naïve 
implementation [2]. 

B. Graphic processing Units 

GPUs have become an important resource for scientific 
computing in recent years. With easy to learn APIs such as 
CUDA [3] introduced by NVIDIA, general purpose 
programming for modern scientific computations on GPUs 
have gained considerable attention. The GPU consists of 
streaming multiprocessors (SMs) and each SM contains basic 
processing units called scalar processors (SPs). To run 
compute intensive parts of an application on the GPU initial 
data has to be transferred from CPU memory to GPU global 
memory and a GPU kernel is then launched. Using a single 
data multiple thread paradigm, GPU threads grouped into 
thread blocks (TBs) proceed with the computations and 
transfer the results back to CPU. The GPU memory hierarchy 
consists of an on-board global memory with long access 
latency, a fast access shared memory, registers, and caches. 
Threads inside a block communicate via shared memory and 
their execution can be synchronized. Every 32 threads in a 
block execute the same instruction and are called a warp. 
Referred to as thread divergence, if threads inside a warp go 
through different computation paths their execution is 
serialized; to achieve higher speedups, thread divergence 
should be avoided while accelerating problems on GPUs. 

II. PREVIOUS WORK 

A brief survey of the k-step Krylov techniques is presented in 
this section; algorithmic details of these techniques and a 
complete survey of previous work on k-step Krylov solvers 
and available preconditioners can be found in [2]. The k-step 
Krylov subspace methods were initially introduced by 
Rosendale [4], and later studied in work such as [5], [6]. All 
this work used a monomial basis and reported convergence for 
k<5 in k-step KSMs. By using a scaled monomial basis [7], a 
scaled and shifted Chebychev basis [8] and Newton basis [9], 
the coverage of the k-step Krylov subspace techniques were 
further improved at the expense of increased dependency in 
the algorithm. This problem is resolved by Hoemmen et al. [2] 
by eliminating the need for scaled basis vectors. Carson et al. 
proposed techniques to extend CA-Krylov techniques to 2-
sided methods such as BiCGStab in [10] and repaired their 
numerical instability in [11]. A more detailed survey of 
available work on communication-avoiding KSMs is 
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presented in [2]. The dominant computing kernel in k-step 
Krylov solvers is the matrix powers kernel which is 
accelerated on GPUs in this work.    

A considerable number of work has been done on 
accelerating sparse matrix vector multiplication on GPUs [12], 
[13], [14]. None of the available implementations of SpMV on 
GPUs consider cache blocking for GPU global memory 
(device memory). If the matrix is larger than the device 
memory, computing k SpMVs requires reloading the matrix to 
the GPU for each SpMV kernel which is very costly. With 
only 1.5GB of global memory in GPUs such as NVIDIA 
GTX480, matrices from many real problems cannot be fully 
stored on the device. Memory might also be allocated to store 
preconditioners and other data structures, leaving only a part 
of GPU global memory for storing ܣ. As a result, the matrix 
has to be transferred to the GPU in each iteration, increasing 
data transfers between GPU and CPU memory in iterative 
solvers. The matrix powers kernel reduces data 
communication between CPU and GPU by partitioning the 
matrix and computing k SpMV operations at the same time for 
each partition. 

In this work the matrix powers kernel is implemented on 
GPUs by cache blocking the matrices to fit on the GPU global 
memory. Our work is closely related to the work proposed by 
Mohiyuddin et al. [15], which studies the performance of the 
matrix powers kernel on an 8-core Intel Clovertown. The 
proposed implementation of the communication-avoiding 
matrix powers kernel on GPUs will be used in 
communication-avoiding KSMs in future work.  

III. IMPLEMENTATION DETAILS 

Implementation details of the matrix powers kernel on GPU 
global memory are presented in this section. The auto-tuning 
stage partitions the matrix to fit into GPU global memory; the 
partitions are then used in the matrix powers kernel. 

A. Auto-tuning Stage 
The first stage of the algorithm is the partitioning stage 

where the matrix is either divided into equal partitions using a 
naïve partitioning strategy or graph and hyper-graph 
partitioners such as Metis [16] and Zoltan [17]. The results 
presented in this work are achieved via naïve row block 
partitioning; other partitioning methods will be studied in 
future work. The matrix is first divided into equal partitions of 
row blocks. The partitions are balanced based on the floating 
point operations required to compute k steps of the matrix 
powers for each row block and are recursively reduced to fit 
into GPU global memory (Fig. 1). The size of each partition is 
equal to the memory required to store local and remote rows in 
compressed row storage (CSR) format for each partition.  

B. Matrix powers Kernel 
Along with the corresponding elements of the source vector 

partitions generated by the auto-tuner are transferred to GPU 
global memory one after another. For each partition k steps of 
the matrix powers kernel are computed while it is in global 
memory (Fig. 2). Sparse matrix vector multiplications are 
computed in parallel on the GPU for each partition using the 
CUSPARSE SpMV kernel [14]. The generated vectors for 

each partition can then be used in the communication-avoiding 
Krylov solvers. 

 
Fig.  1: The steps in the auto-tuner to generate cache blocks for global 

memory. 
Performance results for the matrix powers kernel are tested 

on the NVIDIA GTX480. The GTX480 graphic card contains 
480 CUDA cores and operates at 1.4GHz, the size of global 
memory is 1.5GB with a bandwidth of 177 GB/s. The shared 
memory is configured to 48KB. All speedups are calculated 
using the following formula: 

       
timeሺ݉ܽݔ݅ݎݐ	ݏݎ݁ݓ݋݌	݈݁݊ݎ݁݇	ݎ݋݂	ሺݔ݇ܣ,…,ݔ2ܣ,ݔܣሻ

ሻݏ݊݋݅ݐܽݎ݁݌݋	݀ݎܽ݀݊ܽݎݐݏ	ܸܯ݌ܵ	ሺ݇݁݉݅ݐ
           (1) 

The k SpMV standard operations in equation (1) are 
computed using the implementation in Fig.  3. Similar to the 
matrix powers kernel implementation, the SpMV operations in 
the standard (also referred to as naïve) algorithm are 
accelerated on the GPU using the CUSPARSE SpMV kernel. 

 
Fig. 2: The matrix powers implementation on GPU global memory, ݔ௝

௜ is the 
݆-th component of ݔ௜ ൌ  .ሺ଴ሻݔ௜ܣ	

 
Fig. 3: The standard computation of ݇ SpMVs on the GPU, ݔ௝

௜ is the ݆-th 
component of ݔ௜ ൌ  .ሺ଴ሻݔ௜ܣ	

for ݅ ൌ 1 to ݇ do 

  for each partition (cache block) 

    transfer the partition to GPU Global memory 

    call a GPU kernel to compute ݔ௝
ሺ௜ሻ (for all ݆ belonging to the 

current partition) 

    transfer ݔ௝
ሺ௜ሻ to CPU (for all ݆ belonging to the current partition) 

    remove the current partition from global memory 

for each partition (cache block) 

  transfer the partition to GPU Global memory 

  for ݅ ൌ 1 to ݇ do 

    call a GPU kernel to compute ݔ௝
ሺ௜ሻ (for all ݆ belonging to the 

current partition) 

    copy ݔ௝
ሺ௜ሻ to the CPU (for all ݆ belonging to the current partition) 

  remove the current partition from global memory 
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Fig.4: Each matrix is described by its name, description, number of rows, number of non-zeros, average number 

of non-zeros per row and its non-zero pattern. The matrices are stored in compressed row storage format. 

IV. RESULTS 

In this section, the performance of the proposed 
implementation of the matrix powers kernel on GPU global 
memory is studied using ten matrices (Fig.  4) from the 
University of Florida matrix repository [18]. All matrices are 
cache blocked assuming only one fourth of the matrix can be 
stored in global memory at one time.  

Fig.  5 shows the performance of the matrix powers kernel 
for global memory cache blocking (the best performance 
obtained for all ݇ ൏ 40). Speedups of up to 5.7 and 4.98 are 
achieved for well structured matrices, such as ‘Cant’ and ‘2d-
9pt’. The naïve SpMV performance is lower for matrices with 
smaller numbers of non-zeros per row such as ‘2d9pt’ and 
‘mc2depi’. The CUSPARSE SpMV implementation performs 
poorly for such problems due to an increase in thread 
divergence. The extra flops performed in the matrix powers 
kernel (for the best k) compared to k steps of the standard 
SpMV is shown in Table  I. For an unstructured matrix such as 
‘Xenon’ that achieves the least speedup from the matrix 
powers kernel, in only 5 steps of the matrix powers kernel up 
to 23% more flops are computed (Table  I). The upperbound in 
Fig.  5 is computed for the best performing k using: 

          
ሺ௔௥௜௧௛௠௘௧௜௖_௜௡௧௘௡௦௜௧௬	ሺ௠௔௧௥௜௫	௣௢௪௘௥௦ሻሻ

ሺ௔௥௜௧௛௠௘௧௜௖_௜௡௧௘௡௦௜௧௬	ሺௌ௣ெ௏ሻሻ.௣௘௥௙௢௥௠௔௡௖௘ሺௌ௣ெ௏ሻ
         

where the arithmetic intensity is the effective flops to bytes 
transferred ratio [15]. The generated ݔ௜  vectors (where 

௜ݔ ൌ  ሺ଴ሻ) are transferred to the CPU for both the naïveݔ௜ܣ	
SpMV and matrix powers kernels at each step. The 
aforementioned transfers are also included in computing the 
upperbound. Table  I shows the fraction of total time spent in 
communicating data between GPU and CPU memory for all 
the tested problems (for the best performing k). The table 
shows on average 90 percent of the SpMV kernel execution 
time is spent in transferring data between CPU and GPU 
global memory which further justifies the importance of 
avoiding communications using the communication-avoiding 
matrix powers kernel. For matrices such as “2d-9pt” and 
‘mc2depi’, which have the least number of non-zeros per row, 
a smaller percentage of total time is spent in communicating 
data. Also, compared to other matrices, the performance gap 
between the matrix powers kernel and the upperbound is 
larger for the aforementioned matrices. This is because the 
time spent in computing operations such as spreading the 
initial and source vectors at each step of the matrix powers 
kernel are no longer negligible for these problems. Increased 
thread divergence on the GPU for matrices with fewer non-
zeros per row also increases the execution time of arithmetic 
computations for ‘2d9pt’ and ‘mc2depi’. As shown in Table I 
for some matrices the best speedup for the matrix powers 
kernel is achieved for  ݇  parameters as high as 34 and 15, 
which indicates the importance of using better polynomial 
bases and residual replacement to achieve both stability and 
convergence in CA Krylov techniques [11]. 

 
TABLE I 

 THE BEST SPEEDUP OF THE MATRIX POWERS KERNEL COMPARED TO NAÏVE SPMV, FRACTION OF TOTAL TIME SPENT IN COMMUNICATING DATA IN THE NAÏVE 

SPMV IMPLEMENTATION AND EXTRA COMPUTED FLOPS IN THE MATRIX POWERS KERNEL PERFORMING ݇ STEPS. 

Matrix pwtk 2d9pt cfd2 rajat xenon mc2depi Cube coup cant shipsec1 gearbox 

݇ 15 34 7 15 5 11 8 14 6 7 

Speedup 4.92 4.98 3.79 3.49 2.85 3.53 3.98 5.7 2.88 3.21 

Communication vs. 

Total time 
91% 84% 90% 87% 87% 78% 88% 93% 93% 96% 

AkXflops/naïveflops 1.3 1.1 1.2 1.03 1.23 1.02 1.22 1.16 1.24 1.26 

Pwtk

Wind Tunnel
(218K, 12M, 55)

Cant

FEM cantilever
(62K, 4M, 65)

Cfd2

Pressure matrix
(123K, 3.1M,25)

Gearbox
Aircraft flap 
actuator

(153K,9.1M, 59)

2d 9‐pt
9‐pt operator on 

2Dmesh
(1M, 9M, 9)

mc2depi
2D Markov 
model

(525K, 2.1M, 4)

Shipsec

FEM ship section
(141K, 7.8M, 55)

Xenon
Complex zelolite

csrytals
(157K, 3.9M, 25)

Rajat31

Circuit simulation
(4.6M, 20.3M, 84)

Cube_coup3d 
coupled 

consolidation
(2.1M, 124M, 59)
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Fig. 5: Performance of the matrix powers kernel cache blocking for global memory on NVIDIA GTX480. The “AkX” indicates the best 

performance obtained for all ݇ ൏ 40. The label “upper bound” shows the performance achievable via scaling the standard ݇ SpMV. 
 

V. CONCLUSION AND FUTURE WORK 

The matrix powers kernel in communication-avoiding 
Krylov techniques is accelerated and speedups of up to 5.7 are 
obtained for global memory cache blocking compared to the 
standard implementation of k SpMV operations; in future 
work, we intend to enhance the performance of this kernel by 
implementing other matrix partitioning schemes and 
enhancing the auto-tuning phase. The performance of the 
matrix powers kernel in Krylov subspace methods will be 
studied and preconditioners such as the sparse approximate 
inverse [19] will be used to enhance the convergence of 
communication-avoiding KSMs. 
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