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Abstract—Accelerating numerical algorithms for solving sparse linear systems on parallel architectures has attracted the attention of
many researchers due to their applicability to many engineering and scientific problems. The solution of sparse systems often
dominates the overall execution time of such problems and is mainly solved by iterative methods. Preconditioners are used to
accelerate the convergence rate of these solvers and reduce the total execution time. Sparse approximate inverse (SAI)
preconditioners are a popular class of preconditioners designed to improve the condition number of large sparse matrices. We propose
a GPU accelerated SAI preconditioning technique called GSAI, which parallelizes the computation of this preconditioner on NVIDIA
graphic cards. The preconditioner is then used to enhance the convergence rate of the BiConjugate Gradient Stabilized (BiCGStab)
iterative solver on the GPU. The SAIl preconditioner is generated on average 28 and 23 times faster on the NVIDIA GTX480 and
TESLA M2070 graphic cards, respectively, compared to ParaSails (a popular implementation of SAIl preconditioners on CPU) single
processor/core results. The proposed GSAI technique computes the SAI preconditioner in approximately the same time as ParaSails
generates the same preconditioner on 16 AMD Opteron 252 processors.

Index Terms—Numerical algorithms, parallel algorithms, graphics processors, parallel programming, conditioning

1 INTRODUCTION

ATHEMATICAL physics and engineering problems in a

broad range of applications have grown larger and
more complex in the past few decades leading to large scale
simulations. These simulations generally involve the use of
techniques such as the finite element method and the finite
difference time domain method which are used to discretize,
assemble and solve such systems [1], [2]. One of the most time
consuming steps in the aforementioned techniques is solving
the system of equations proceeding the systems assembly
stage. The solution of such systems is achieved by either
direct or iterative methods. For larger and sparser systems,
direct methods often suffer from high computational com-
plexity and are notoriously difficult to implement in parallel
due to their recursive nature [3]. A more viable alternative to
solving large linear systems is using iterative solvers. Krylov
methods are a popular class of these solvers with techniques
such as the generalized minimum RESidual (GMRES) and
BiConjugate Gradient Stabilized (BiCGStab) [1]. Krylov
solvers generally involve less computations and memory
requirements compared to direct methods but suffer from
slow convergence rates especially for ill-conditioned matrices
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[4]. Because of their slow convergence these methods are
frequently used with preconditioners.

Preconditioners are designed to accelerate the conver-
gence rate of iterative solvers for a majority of applications.
Applying the preconditioner M, to both sides of the linear
systems equation Az = b, reduces the number of iterations
and accelerates the execution time of the solver. A popular
class of preconditioners suitable for parallelization and
efficient for a large class of problems are the sparse
approximate inverse (SAI) preconditioners. Although com-
puting SAI preconditioners is generally expensive on a
single processor, constructing them on parallel architecture
is relatively fast. By generating a denser preconditioner, SAI
preconditioning can reduce iterations in iterative solvers
considerably and be applied to a broad range of applica-
tions. Previous work has accelerated the computation of this
preconditioner on multiple processors [5], [6], [7], [8], [9],
[10], [11], [12], [13] as well as multicore [14], [15] and many-
core architecture [16].

Graphic processing units have become an important
resource for scientific computing in recent years [17]. With
easy to learn application programming interfaces such as
compute unified device architecture (CUDA) [18] intro-
duced by NVIDIA, general purpose programming for
modern scientific computations on GPUs gained consider-
able attention. Using a single data multiple thread para-
digm, GPU threads grouped into thread blocks run
compute intensive parts of an application in parallel. The
GPU has an on-board global memory with long access
latency, a fast access shared memory, registers and caches.
Every 32 threads in a thread block execute the same
instruction and are called a warp. In this paper, we present
a new GPU accelerated SAI preconditioning technique
called GSAI, which parallelizes the computation of SAI
preconditioners on NVIDIA GPUs. Major contributions of
the proposed GSAI technique are as follows:
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e The preconditioner M is generated in parallel on the
GPU; each GPU warp computes one column of M.

e Large data structures are stored in GPU global
memory and memory space is reused by dividing
the computation of M between many GPU kernels.

e Memory accesses, vector multiplications, inner
products, QR decomposition, and triangular solves
are computed in parallel inside a GPU warp.

o The preconditioner is assembled in a compressed
storage format and then applied to the BiCGStab
iterative solver, which is also accelerated on the GPU.

2 SAIl PRECONDITIONING

A sparse approximate inverse preconditioner approximates
the inverse of A using a sparse matrix M to improve the
condition number of the linear system of equations Az = b.
M is computed using the least-squares methods and by
minimizing the matrix residual norm

1AM — 1|7 (1)

The above equation is then separated into n independent
least square problems

min ||Amg — erl3, k=1,2,...,n, (2)
my

where ¢, is the kth column of the identity matrix and m;,
represents column £ in matrix M. The degrees of freedom in
solving the above equations are the locations and values of
the nonzeros in M. Based on the degree of freedom used,
sparse approximate inverse preconditioner generation is
classified as adaptive or static (a priori). In adaptive
schemes ([9], [19], [20], etc.) the sparsity of M is initially
set to a simple pattern such as diagonal, this pattern is then
augmented until a threshold on the residual norm or a
maximum on the number of nonzeros in M is reached.
Although adaptive methods have broadened the scope of
problems which can be solved using SAI preconditioning,
by utilizing additional degrees of freedom in minimizing
(2), the preconditioner generation becomes generally very
expensive requiring many reruns to determine the appro-
priate values of various parameters involved, such as
tolerance [21], maximum improvements per step [21],
number of nonzeros per step [21], and so on for each
problem. On the other hand, static preconditioning ([6],
[12], [21], [22], [23]) determines the sparsity of M in a
preprocessing step limiting the degrees of freedom in (1)
to the nonzero values of M.

Previous work has introduced various techniques to
determine a more accurate approximation of M prior to
computing the preconditioner and have shown that static
schemes are more efficient than adaptive techniques in
improving the condition number of the A matrix if the
sparsity of M is better approximated. Since the focus of this
work is not to introduce a better initial guess for the M
preconditioner but to accelerate the computation of M (1),
for general static (a priori) SAI preconditioners, we use the
most popular approximate of M which is based on
sparsifications [24] of A. M(i, j) is considered a nonzero if
the condition
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i) ] is constructed based on (3).

7) Columns of A in ] are selected and matched to construct I.

k) 4 is constructed and decomposed using QR Gram-Schmidt.

1) Values in #y, are computed using @y = R™1QTé, and
scattered back to M.

Fig. 1. Steps involved in constructing static sparse approximate inverse
preconditioners.

|A@,4) > (1 —7) mﬁXlA(iJ)la 0<7<1, 3)

is satisfied, where 7 is a user defined tolerance parameter
(the main diagonal is always included). Based on (3), for
smaller 7 parameters more nonzeros entries in A are
dropped resulting in a sparser preconditioner; for T equal
to 1 the sparsity pattern assumed for A/ would be the same
as the sparsity of A. If a more accurate approximate of
the sparsity of M is known for a specific application it can
be used instead of (3). Knowing the sparsity of M before
solving (1), reduces (2) to

min || Ariy, — éll3, k=1,2,...,n, (4)
my,

my, is the reduced vector of unknows my(.J), where J is the
set of indices j such that m;,(j) # 0. Considering I as a set of
indices i such that A(i,J) is not zero, A is the submatrix
A(I,J) where all zero rows in A(.,J) are deleted. The
dimension of A is equal to n; x ny where n; and n; are the
number of indices in I and J, respectively. Finally, é;
represents ey (I). To construct and solve (4) for each column
k of M, the steps in Fig. 1 should be computed for each &k
(more information on the above implementations and the
steps in Fig. 1 can be found in previous work on SAI
preconditioners specifically [6], [7], [9], [11], [21]).
Factorized sparse approximate inverse preconditioners
are another class of SAI preconditioning techniques devel-
oped in [25], [26], [27], [28], [29], [30], [31]. This class of
preconditioners are less popular than the kind based on
Frobenius norm minimization (1) [4] and can fail due to
breakdowns during an incomplete factorization process.
A comparative study of various SAI preconditioners is
presented in [32]. Sparsification is a method used to
diminish the pattern of A when it is relatively full and
generate a sparser preconditioner and can be implemented
in both adaptive and static SAI preconditioner construction
algorithms. Initially introduced by Kolotilina [24] for
computing SAI preconditioners for dense matrices, sparsi-
fication is also used by Tang [33] to enhance the condition
number of anisotropic problems. Costgrov et al. [34] also
propose augmenting the pattern of A for constructing
sparse approximate inverse preconditioners. SAI precondi-
tioner proposed by All’eon et al. [35] and ParaSails [7]
introduced by Chow [6] use a priori sparsity patterns based
on powers of sparsified matrices for partial differential
equation (PDE) problems. Sparsification is also implemen-
ted in SPAI 3.2 [21] by eliminating small values in A before
computing the preconditioner. The equation used in the
proposed GSAI technique (3) also allows for sparsifying A
using a tolerance parameter 7. Applying sparsification to
the preconditioner after it has been produced is also studied
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Fig. 2. The four stages in implementing SAI preconditioners using GSAI on NVIDIA GPUs.

in [25] and [36]. If an effective sparsification is known for a
specific problem it can be added to the Pre-GSAI stage (see
Fig. 2) in the GSAI method proposed.

Most of the work on SAI preconditioners presents
techniques to parallelize the computation of the precondi-
tioner on multiprocessor architectures [5], [6], [7], [8], [9],
[10], [11], [12], [13], by distributing the computation of the
columns in M between multiple processors. Techniques
such as grouping communications [11], dictionary-based
methods [8] and latency-tolerant hybrid SAI precondition-
ing [10] are proposed in these work, to further enhance the
execution time of SAI preconditioners on multiprocessors.
ParaSails [7] and SPAI 3.2 [21] are two of the most popular
open source implementations of the sparse approximate
inverse preconditioner on single- and multiprocessor plat-
forms and are used for comparison in a majority of previous
work [4], [6], [8], [10]. While ParaSails uses a priori
approximation of M to generate the preconditioner, both
adaptive and static SAI preconditioners are implemented in
SPAI 3.2. Similar to SPAI 3.2 the preconditioned problem in
GSAl s solved using the BiCGStab iterative solver (ParaSails
implements the GMRES and CG iterative solvers). Chow [6]
compares the performance of ParaSails to SPAI 3.2 and
shows ParaSails generates the SAI preconditioner consider-
ably faster than SPAI 3.2. We compare the GSAI precondi-
tioner generation time on GPUs to ParaSails on single- and
multiprocessor platforms.

Although parallelizing sparse approximate inverse pre-
conditioners on more than one processor has been exten-
sively studied in previous work which succeeded to enhance
the execution speed of such preconditioners considerably,
few works have studied the possibility of accelerating
these preconditioners on multi/many core architectures.
Gravvanis et al. [14], [15] attempt to accelerate a SAI
preconditioned BiCGStab iterative solver on Intel multicore
architecture by allocating the computation of each iteration
of the iterative solver to a different thread; implementation
details on how to accelerate the preconditioner computation
on a multicore are not presented in this work. Xu et al. [16]
accelerate factorized SAI on NVIDIA GPUs. The paper
mainly describes how to accelerate the sparse matrix vector
multiplication kernel (SpMV) in the iterative solver but
details for computing the SAI preconditioner have not been

presented (other accelerations of the SpMV kernel are
presented in [37], and [38] and CUSPARSE [41]).

3 PARALLEL SAI oN NVIDIA GPUs

The SAI preconditioner is computed in parallel on GPUs by
allocating the computation of each column of A to one
warp. Accelerating the SAI preconditioner involves local
(per warp) parallelization of various computing kernels
such as QR decomposition, dot products, sorting vector
values, finding the maximum value in a vector, and so on.
One of the major challenges in computing SAI precondi-
tioners on GPUs is the limited size of global and shared
memory and the generation of large data structures.
Proposing techniques to reuse memory space and minimize
the allocated memory to data structures in the kernel are
key factors in producing SAI preconditioners for large
problems on GPUs. In the following implementation details
to overcome the above constraints and implement in
parallel the computing kernels involved in solving Az =b
using SAI preconditioners are presented.

Computing the SAI preconditioner in parallel on GPUs
involves the implementation of steps introduced in Fig. 1,
which we implemented in a stage called Compute-GSAI
(see Fig. 2). In this stage, every 32 threads (one warp) on the
GPU computes one column of M (m;) by executing the
steps in Fig. 1. Each warp first finds the dimensions of its
corresponding A matrix (4) and assembles it. The local A
matrices, which are very small compared to A, are then
decomposed (local decompositions per warp for each A)
using the Gram Schmidt method [1] and m;, is computed.
SAI preconditioning on GPUs requires two additional steps
(Pre-GSAI and Post-GSAI) which handle GPU memory
allocation, define required data structures, gather results
and determine the required number of kernel (hereafter
kernel refers to a CUDA kernel) calls based on the problem
size and available GPU memory. Thus, solving the Az =b
linear systems equations on the GPU using SAI precondi-
tioners consists of four major steps (see Fig. 2):

1. Pre-GSAI involves reading A in a compressed sparse
format [39] and transferring it to GPU, allocating
GPU memory space to the preconditioner M and
other data structures and determining the number of
kernel calls based on the available global memory.
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2. Compute-GSAI: computes the SAI preconditioner on
the GPU and scatters the produced columns back to
M on GPU global memory.

3. Post-GSAI: revises the assigned global memory space
to M by releasing extra memory space allocated to
M and assembles M on the GPU in compressed
column storage (CSC) [39] format.

4. Solver: converts both M and A from CSC to CSR
(compressed row storage [39]) on the GPU to
accelerate the iterative solver execution time and
solves Az =0 using the computed SAI precondi-
tioner and the BiCGStab iterative solver.

The rest of this section is organized as follows. Section 3.1
introduces implementation details of the above steps and
the kernel/function calls involved in each stage. Managing
global and shared memory, determining the amount of
memory required for each data structure and deciding
the necessary number of kernel calls are proposed in
Section 3.2.

3.1 GSAI Steps

The proposed GSAI preconditioning method computes the
SALI preconditioner on NVIDIA GPUs in three major steps,
namely, Pre-GSAI, Compute-GSAI, and Post-GSAI, the
generated preconditioner is then passed to the Solver stage
(see Fig. 2) to precondition and solve the linear system.

3.1.1 Pre-GSAI Stage

Copy A to GPU. Sparse matrices are stored in memory using
various compressed sparse storage formats such as CSR,
CSC, and so on [39]. To compute the SAI preconditioner, the
A matrix is initially stored in CSC format using three
vectors called Aygue, Aindes, and Appinier. The M matrix is
also produced and stored in columns. A copy of the A
matrix is transferred to GPU global memory.

Compute ny and ny and allocate memory to M. The precondi-
tioner M is stored in global memory, thus memory should be
allocated to M prior to the Compute-GSAI stage. Although the
dimensions of M are the same as A it has to be stored in
compressed format to fit on the GPU global memory. To
reduce the amount of computation required to locate data
structures used by each warp and regularize global memory
accesses, equal memory space is allocated to each column of
M using the compute dimensions kernel (see Fig. 2). The
proposed memory allocation technique, introduces the need
for the Post-GSAI step described in the next section, whose
execution time is, however, negligible compared to Compute-
GSAI as shown in the results section (see Section 4) and to the
provided benefits. The kernel first finds the dimensions of
local A matrices (n1, nz) and stores them on global memory
and the maximum n; and ny values between all columns
(called 71 max and 1 ;mqz) are then found. Since the number of
nonzeros in the largest column of M is equal to 1 4., global
memory allocated to M would be equal to the number of
columns in M multiplied by the number of bytes required to
store ng g, floating point values (Myg.). The row indices
corresponding to the values of the preconditioner (M;qc.)
and the number of nonzeros produced for each column of M
(Mppinter) are stored in global memory. Besides allocating
memory to the preconditioner M, the allocate memory step of
the Pre-GSAI stage (see Fig. 2) assigns memory space to other
data structures used during the computation of the SAI
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TABLE 1
The Number of Elements in Each of the Data Structures
Involved in GSAI and Their Size Based on Their Data Type

Data Structure Number of elements Type

Alue non-zeros double
Aindex non-zeros integer
Apointer columns integer
Maatue columns X Ny max double
Mindex columns X 1y gy integer
Mointer columns integer
A (all columns) columns X 1y ymay X Ny max double
Q (all columns) columns X ny gy X N max double
Lindex (all columns) columns X 1y 4y integer

Columns and nonzeros represent the number of columns and
nonzeros in A.

preconditioner (Compute-GSAI) and determines the number
of kernel calls required to compute the SAI preconditioner.
Details of these implementations are presented in Section 3.2
and Table 1.

3.1.2 Compute-GSAI Stage

To compute the SAI preconditioner on the GPU, the steps
indicated in the Compute-GSAI stage in Fig. 2 have to be
implemented in parallel on the GPU in a kernel called
compute preconditioner. Each column of the preconditioner M
is computed via one warp (32 threads in a block) and every
block is assigned 256 threads (eight warps) to compute eight
columns in parallel. The number of columns computed in
one SM simultaneously will depend on the allocated shared
memory per block and available resources per SM.

Find J. In this stage, the set J (the first step in Fig. 1) is
constructed and loaded into a vector called Jj,4.. Each
warp in the kernel first loads the column in A correspond-
ing to its index (the index is assigned to each warp based on
the total number of warps launched on the GPU) and finds
the largest element in the loaded column. The condition in
(3) is then evaluated for each element of the loaded value
vector simultaneously and the column index of elements
satisfying the condition is stored in Jiuqc,-

Find I and construct the local A. To determine I (see Fig. 1),
the row indices of the first column referenced in J;,4., are
first loaded into a vector called I;,4.,. The row index vector
of successive columns referenced by Ji,q., are then loaded
in order into shared memory and compared in parallel with
values in /;ng.., new indices are tagged and later added to
I;pqex to construct the set I. Local A matrices are constructed
on global memory by loading columns indexed in Jj;4c,, and
matching them to I;,4, in parallel (see Fig. 3).

Local QR decomposition and triangular solves. Local QR
decompositions are computed using the Gram Schmidt
method [1], which was easier to parallelize inside a warp
compared to other QR decomposition techniques. Each
warp decomposes one A matrix, thus many QR decom-
positions are computed simultaneously via warps executing
in parallel. Parallelism is also exploited in a warp by
computing the local QR decompositions in parallel using
the 32 threads inside a warp, for example, most of the
operations in the QR decomposition technique such as
memory loads and multiplications are computed in parallel.
The orthogonal vectors produced in the QR decomposition
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Fig. 3. Constructing local A matrices.

algorithm are stored in global memory (Q in Table 1) and
used in proceeding steps. At the end of the Compute-GSAI
stage, my, values are computed via 1y, = R'QT¢;. (R is the
upper triangular matrix from the decomposition [1]) and
scattered to global memory space allocated to M.

3.1.3 Post-GSAIl Stage

Modify and assemble M. The values and row indices of the
preconditioner generated in the compute preconditioner
kernel are stored in the My, and M;,4., vectors in the
format shown in Fig. 4. Since the allocated size to each
column of M on global memory is equal to 19,4, (Which is
not necessarily equal to the number of nonzeros per
column), to assemble M each warp has to store the number
of nonzeros of the column it is generating into a vector
called M, inter- In the Post-GSAI stage the Myue, Minges, and
Mpointer data structures are modified to match the CSC
storage format. The first kernel in the Post-GSAI stage called
modify changes Mppinter to match the CSC format (M, ;.. in
Fig. 4). Another kernel called assemble then modifies the
M;nder and M, vectors on the GPU to match the column
storage format (A1}, and M}, in Fig. 4). The updated
vectors are generated on GPU memory and do not need to
be transferred to the CPU.

3.1.4 The Solver

Preconditioned BiCGStab solver. When generating a right
preconditioner M (via minimizing (2)) matrices are stored
and generated in column storage format to reduce memory
access latencies [1]. On the other hand, to achieve the best
performance and increase coalesced memory accesses on the
GPU, the matrices in the sparse matrix vector multiplication
kernel should be stored in row storage format [41]. Thus prior
tosolving Az = bthe matrices are converted to CSR format (to
generate a left preconditioner the CSC to CSR stage in Fig. 2
should be removed since all matrices are generated and
stored in CSR format). After the conversion step the BiCGStab
kernel is called to solve Az = b using the produced M.

The preconditioned BiCGStab iterative solver on GPU is
dominated by the multiple sparse matrix multiplies [1]. The
CPU is only used for scalar updates in the algorithm and
major computing kernels are implemented on the GPU.
Since sparse matrix vector multiplication is the most time
consuming operation in iterative solvers [40] it has to be
accelerated efficiently on the GPU. We used the SMVM
implementation from [38], [41] which is one of the fastest
implementations of this kernel on GPUs. Other operations
in the BiCGStab iterative solver have also been accelerated
on the GPU using CUBLAS [42] functions.
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storage format and then the Assemble kernel assembles the matrix
values and stores them in CSC format (M}, ., and M

index 1alue)

3.2 Memory Allocation

In this section, we introduce techniques to overcome GPU
memory space limitations and enable the correct imple-
mentation of the GSAI stages proposed in Section 3.1 for
large problems. Since the exact size of data structures (such
as A and Q) used in the compute preconditioner kernel are
only determined during the kernel execution, techniques to
allocate memory statically to these data structures in the
Pre-GSAI stage (prior to calling the kernel) are also
proposed. Based on the allocated memory space to each
data structure, the number of compute preconditioner kernel
calls required to generate the preconditioner are also
determined. The implementations proposed in this section
are all a part of the allocate memory section of the Pre-GSAI
stage shown in Fig. 2.

Local data structures such as A and @ are generally large
and cannot be stored on GPU shared memory; thus by
approximating their size, global memory space is allocated
to them in the Pre-GSAI stage prior to calling the compute
preconditioner kernel. The maximum number of rows and
columns in these matrices is computed in the compute
dimensions kernel (n)mq; and ngme,) and global memory
space equal to the size of an array with 7y X 72max
elements is allocated to them per column (warp). The Iingex
vector used in the Compute-GSAI kernel also varies in size
for each warp and can easily exceed the maximum size of
shared memory. This vector is also stored in global memory
by allocating memory to arrays of njm. elements per
column. To compute the preconditioner different columns
of A are required thus the A matrix should be on global
memory at all times. From Table 1, the amount of global
memory required to store various vectors and data
structures prior to calling the Compute-GSAI kernel are
computed. For large A matrices and 7 parameters that lead
to a denser preconditioner, the total size of the data
structures in Table 1 will exceed the GPU global memory.
Since the memory required to store A and @ for all columns
is considerably larger than the size of A and M, by calling
multiple kernels sequentially and overwriting the memory
space allocated to these matrices, computing the SAI
preconditioner is made possible on the GPU. After storing
A and M on the device depending on the available memory
and size of other data structures that need to be on global
memory, the computation of the preconditioner is divided
between multiple kernels each producing a few columns of
M. Thus, memory allocated to other data structures such as
A and Q can be reused.

The small size of the GPU shared memory does not limit
the size of the problem being solved, because large data
structures in the kernel are stored on GPU global memory.
To accelerate computations shared memory is used to store
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TABLE 2
Properties of Tested Sparse Matrices

Matrix Name Matrix Type Rows  non-zeros
venkat01 CFD sequence 62,424 1,717,792
majorbasis Optimization 160,000 1,750,416
t2em Electromagnetic 921,632 4,590,832
atmosmodd CFD 1,270,432 8,814,880
thermal2 thermal 1,228,045 8,580,313
g3_circuit circuit simulation 1,585,478 7,660,826
apache2 structural 715,176 4,817,870

local data structures in the compute preconditioner kernel
whenever possible. Before calling the compute preconditioner
kernel, the amount of shared memory required for each
block to store these data structures is checked and if it
reduces the number of active blocks per SM to two all data
is read from global memory directly. For larger tolerances
which lead to larger data structures most of the data is read
directly from global memory. Thus, the number of active
blocks per SM is no longer limited to the size of data
structures and shared memory and memory access latencies
are reduced via configuring the L1 cache to 48 KB. To
generate SAI preconditioners for very large problems which
do not fit on the GPU global memory or to generate very
dense preconditioners, the computation of the precondi-
tioner should be distributed between many GPUs.

4 REesSuULTS

The performance of the proposed GSAI technique is
evaluated using seven matrices [43] from various applica-
tion areas with different sparsity patterns (see Table 2).
These problems are generally difficult to solve and
precondition due to their complex geometry and ill-
conditioning. GPU results were achieved using NVIDIA
GTX480, TESLA M2070, and CUDA-SDK 3.2., CPU pro-
grams are executed on a system core Linux cluster from
Sharcnet [44] using 1-32 AMD Opteron 252 (2.6 GHZ, single
core) processors with a Quadrics Elan4 interconnect. The
preconditioned BiCGStab iterations are terminated upon
reaching 10,000 iterations or reaching a relative residual of
less than le-7 in under 10,000 iterations using a random
right-hand side (RHS) for all problems (the same RHS is
used for each matrix in all platforms). Both the precondi-
tioner generation kernel and the iterative solver run in
double precision. In the following, the performance of the
proposed GSAI preconditioner on GTX480 and TESLA
M2070 is first presented (see Section 4.1), the preconditioner
computation time on the GPU is then compared to ParaSails
(see Section 4.2) on a single processor/core (a processor/
core is an AMD Opteron 252 consisting of one core).
ParaSails computes the preconditioner in parallel on
multiprocessor platforms by partitioning M and allocating
the computation of its columns to different processors. They
propose novel techniques to partition columns/rows among
processors, hide interprocessor communication latencies,
balance load among processors, manage one-sided commu-
nications, construct A matrices and perform operations such
as QR decomposition. Implementation details of how the
computation of SAI preconditioners is parallelized in Para-
Sails can be found in the documentations and publications
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TABLE 3
The Effect of Increasing Tolerance (7) on lterations
(GSAI on GTX480)
Matrix =05 7=06 1=07 =08 1=09

venkat01 65 59 50 45 70
majorbasis 49 47 49 43 23
t2em 2390 2390 2390 1264 1264
atmosmodd 268 268 268 145 145
thermal2 6000 5805 5727 3608 2906
g3_circuit 1856 2307 1863 1347 1145
apache2 2922 1674 1674 1143 1226
average 1936 1793 1717 1085 968

referenced in [7]. The time to compute the SAI preconditioner
using GSAI on GPUs is compared to ParaSails on a cluster of
multiple AMD Opteron 252 processors in Section 4.2.

4.1 The GSAI Preconditioning Method

In this section, the effect of increasing the tolerance 7 in (3)
using GSAI and NVIDIA GTX480 on the preconditioner
construction time, iterative solver execution time and the
number of iterations are first studied. The total execution
time and the number of iterations of the preconditioned
iterative solver are then presented for both GTX480 and
TESLA M2070. As shown in Table 3 for larger tolerances (7),
the number of iterations considerably decreases for most of
the tested problems using GSAI. Because the preconditioner
M is an approximation of A~! decreasing its sparsity using
7 does not necessarily guarantee a better preconditioner, for
example, the number of iterations in g3_circuit increases
when 7 is increased to 0.6 (see Table 3). But, on average, the
number of iterations decrease as 7 increases and the sparsity
of M gets closer to A [4]. For most of the tested problems,
the total execution time on GPU also decreases as T
increases (see Table 4). Because more elements of A satisfy
the condition in (3) the maximum number of rows and
columns (1 e and ng q.) Of the local A matrices on the
GPU increase with tolerance (see Fig. 5a). As a result the
time required by the compute dimensions kernel to determine
N1mae aNd N2 0, as well as the time required to construct
and decompose A in the compute preconditioner kernel also
increase with 7 (Fig. 5b and Table 5). Fig. 5b shows the
fraction of total preconditioner execution time spent in all
kernels involved in the construction of the SAI precondi-
tioner on GTX480. Based on Table 5 for all tested matrices
the preconditioner execution time increases with 7. Thus,
except for copying A to the GPU, the execution time of all
kernels increases with 7 due to an increase in the number of
non-zeros in preconditioner M (Fig. 5b and Table 5).

Fig. 6a and Table 4 explain why an increase in the SAI
computing time for larger tolerances still on average
improves the total execution time on GPU. As shown in
Fig. 6a, the total execution time is dominated by the
BiCGStab solver. Thus, based on total execution times
reported in Table 4, by increasing 7 and generally generating
a more accurate preconditioner, the execution time of the
iterative solver is decreased (due to an average reduced
number of iterations) with a negligible increase in SAI
computation time. Since the time spent in generating the
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TABLE 4
The Effect of Increasing Tolerance () on the Total
Execution Time (Preconditioner Construction and Solve)
(GSAI on GTX480)

Matrix t=05 =06 1=07 1=08 71=09

venkat01 0.43 0.54 0.69 0.83 26
majorbasis 0.66 0.64 0.65 0.68 0.6
t2em 108 108 108 59 59
atmosmodd 17 17 17 11 11
thermal2 364 348 331 213 174
g3_circuit 136 170 138 101 87
apache2 110 63 63 44 47
average 105 101 94 61 54

preconditioner is considerably less than the time required to
solve the problem, the total execution time on average
decreases for larger tolerance parameters. The problem
solution time on the GPU decreases when the iterations
are reduced on the GPU. This is because the SpMV kernel in
the iterative solver uses available GPU resources more
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TABLE 5
The Effect of Increasing 7 in the GSAI Algorithm (on GTX480)
on the Preconditioner Construction Time

Matrix T=05 1=06 _ o i g =09

venkatOl 0.11 0.24 042 058 214
majorbasis 0.11 0.11 011 019 03
em 03 03 03 1.26 1.26
atmosmodd 043 0.43 043 197 197
thermal2 0.42 0.42 07 1.65 27
o3 circuit 0.65 0.78 0.9 151 1.84
apache? 031 035 035 078 0.8
average 033 0.38 046 113 157

efficiently as the number of nonzeros in M increase.
While the preconditioner becomes denser with larger
T parameters, the number of rows in M is fixed; as a result
the number of computing blocks/warps launched on the
GPU remain unchanged (because of using SpMV imple-
mentations proposed in [38] and [41]). On the other hand,

K Modify and assemble M B Compute preconditioner

@ Compute dimensions & allocate memory O Copy A to GPU
100% .
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40%

30%

Fraction of total time
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Fig. 5. The left figure (a) shows the effect of increasing 7 on the maximum dimension of local A matrices (ny jnq., and n2,maz); IN the right figure (b) the
average fraction of total time (over all matrices) spent in the functions/kernels involved in the first three stages of the GSAI preconditioning algorithm
(on GTX480) are shown for an increasing = (compute preconditioner consists of all steps in the Compute-GSAI stage).
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Fig. 6. The average fraction of total time (over all matrices) in generating the SAIl preconditioner (the Pre-GSAIl, Compute-GSAl, and Post-GSAl
stages in Fig. 2) and solving the problem for an increasing 7 on the GPU using GSAI (left figure, a); the right figure (b) shows the speedup achieved
from generating the preconditioner on GTX480 and TESLA M2070 compared to generating the same preconditioner using ParaSails [7] on 1-
32 processors/cores (the generated preconditioner has the same sparsity as 4, 7 = 1 in GSAI).
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TABLE 6
The Time Spent in Computing the Stages in Fig. 2
for 7 = 0.9 on GTX480

Matrix Pre-GSAI  Compute-GSAI ~ Post-GSAI  Solve
=09 =09 7=09

venkat01 02 1.94 0.01 0.46
majorbasis 0.06 0.23 0.01 0.3
. 0.22 1.03 0.01 57
atmosmodd 0.389 157 0.02 9.5
thermal2 0.46 2.23 0.02 171
g3_circuit 0.33 1.49 0.02 85
apache? 0.17 0.62 0.01 47

the number of nonzeros per row increases, exploiting
more parallelism per warp and better utilizing the GPU
resources. In conclusion, GPU acceleration of SAI precondi-
tioners allows for the generation of more accurate and
denser preconditioners and increases the applicability of
static SAI preconditioning.

Table 6 shows the execution time of the steps involved in
constructing the SAI preconditioner on GTX480 for 7 equal
to 0.9 (which generated the best preconditioner among the
tested tolerances) as well as the BiCGStab iterative solver.
The time spent in constructing the preconditioner is less
than 3 seconds for all matrices (see Table 6) while the
iterative solver can take up to 171 seconds for matrices such
as thermal? on the GPU.

Preconditioners with more than 6 million nonzeros (see
Table 7) are generated in less than 3 seconds (see Table 6)
using the proposed GSAI technique. As shown in Table 7,
without the preconditioner most of the problems would not
converge in 10,000 iterations while the preconditioned
BiCGStab solver would converge to the le-7 residual error
in less than 100 iterations for some matrices (venkat01 and
majorbasis). Table 7 also shows that although the number of
iterations for the preconditioned solver on TESLA M2070
decreases compared to GTX480, the total execution time is
still lager for the tested matrices. Architectural differences
among the two GPUs (GTX480 versus TESLA M2070:
480 versus 448 cores, 1.4 GB versus 1.15-GB processor
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clock, 177 GB/s versus 150 GB/s bandwidth and floating
point precision differences) are accountable for the iteration
count and timing differences in the results.

4.2 GSAI versus ParaSails

In this section, the preconditioner construction time is
compared with ParaSails [7] which also uses a priori
techniques to determine the sparsity of M and computes
SAI in parallel on multiprocessors. Techniques proposed in
ParaSails to better determine the sparsity of M prior to its
computations for PDE problems can be implemented in the
Pre-GSAI stage of GSAI without changing the compute
preconditioner kernel itself (determining the sparsity of M in
a priori SAI preconditioning techniques is negligible
compared to the preconditioner computation itself). To
compare GSAI with ParaSails, parameters were set so that
both ParaSails and GSAI would produce similar precondi-
tioners with the same sparsity as A (r=1 in GSA],
parameter settings for ParaSails are described in [7]),
preconditioners are produced using unfactorized precondi-
tioning in ParaSails. Table 8 shows generating the SAI
preconditioner using ParaSails on one processor/core can
take up to 100 seconds while the proposed acceleration of
SAI preconditioners on GPUs generated the same precondi-
tioner in less than 3 seconds. With GSAI on GTX480,
speedups of up to 47 times are achieved compared to
ParaSails, decreasing the average generation time of SAI
preconditioners 28 times. In Fig. 6b, the average execution
time of ParaSails for all matrices on multiprocessors is
compared to average preconditioner generation time of
GSAI on NVIDIA GTX480 and TESLA M2070. Fig. 6b shows
constructing the preconditioner on a single GPU using
GSAI is equivalent to constructing the same preconditioner
on 16 processors/cores using ParaSails. GSAI computes
many columns of M in parallel, the time spent to construct
local A matrices do not accumulate for columns generated
simultaneously. This is not the case in ParaSails when run
on a single processor, so both the parallel execution of
columns on the GPU and the techniques proposed to
compute each column of A are the main reasons for the
reported speedups.

TABLE 7
Preconditioned and Unpreconditioned BiCGStab Iterative Solver on GTX480 and TESLA M2070
GPU Precond GTX480 GTX480 TESLA 2070 TESLA M2070
Matrix BiCGStab Itera- ) Precond. BiCGStab Total Precond. BiCGStab Total
. non-zeros . . . .
tions [terations Time [terations Time
venkat01 >10000 822937 70 26 70 2.7
majorbasis >10000 646524 23 0.6 23 0.72
t2em >10000 4590832 1264 59 968 63
atmosmodd >10000 6317824 145 1 140 14
thermal2 6119 6720218 2906 174 2804 195
g3_circuit >10000 6562707 1145 87 1133 108
apache2 4931 2677127 1226 47 1115 58

The table shows the number of iterations (column one) required to solve the unpreconditioned BiCGStab solver for the tested matrices, the number
of nonzeros in the preconditioner produced for - = 0.9 and the iterations achieved from the preconditioned BiCGStab solver using this preconditioner
on both the GTX480 and TESLA M2070 graphic cards.
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TABLE 8
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ParaSails Execution Time Compared to GPU Results

ParaSails-Total ParaSails-Total

Matrix ParaSails- ParaSails- ParaSails-  GTX480 VS. g/}EZSO];(? vs.
Setup Preconditioner Total =1 GTX480 r=1 TESLA M2070
speedup speedup

venkat01 0.1 13.7 13.8 222 6.2 2.83 4.8

majorbasis 0.1 14.7 14.8 1.19 12.3 1.43 10.3

t2em 04 60 60.4 1.26 479 1.55 38.9

atmosmodd 0.7 93.7 944 3 31 3.8 24.8

thermal2 0.8 91.7 92.5 3.76 24.5 3.9 23.7

g3_circuit 0.7 99.4 100.1 2.13 46.8 2.64 37

apache2 04 52 524 1.62 32.3 2 25.8

average - - - - 287 - 237
speedup

The time to setup (ParaSails-Setup) and compute (ParaSails-Preconditioner) the SAl preconditioner with the same sparsity as A (r = 1 in GSAI) on
ParaSails for one processor/core compared to the time required to compute the preconditioner on GTX480 (GPU-SAI) and TESLA M2070 using the
GSAI preconditioning algorithm (ParaSails-Total is computed by adding ParaSails-Setup and ParaSails-Preconditioner).

5 CoNcLUSION AND FUTURE WORK

The proposed GPU accelerated SAI preconditioning meth-
od (GSAI) introduces optimized implementations to paral-
lelize the computation of SAI preconditioners on NVIDIA
GPUs. The effects of decreasing the sparsity of the
preconditioner using a tolerance parameter 7 are also tested
on the GPU using GSAIL The results showed that the
number of iterations and total execution time would on
average decrease using GSAI for larger tolerances; the
preconditioner generation time would remain negligible
compared to the problem solution time. The total execution
time on the GPU (the time spent on generating the
preconditioner and solving the problem) would constantly
decrease as T increases making the generation of denser
preconditioner more efficient. The generation of the SAI
preconditioner was accelerated on average 28 and 23 times
faster on GTX480 and TESLA M2070, respectively, using
GSAI compared to the time required to create the same
preconditioner using ParaSails on a single processor (single-
core AMD Opteron 252). The preconditioner generation
time on GTX480 and TESLA M2070 (using GSAI) is almost
equivalent to creating the SAI preconditioner on 16 proces-
sors in parallel using ParaSails. We plan to accelerate the
execution time of other variants of SAI preconditioning
techniques such as adaptive methods and also introduce
techniques to find better approximations of the precondi-
tioner using GPUs in future work.
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