
A Deep Learning Approach to Identifying Shock
Locations in Turbulent Combustion Tensor
Fields

Mathew Monfort, Timothy Luciani, Jonathan Komperda,
Brian Ziebart, Farzad Mashayek, G. Elisabeta Marai

Abstract We introduce a deep learning approach for the identification of shock
locations in large scale tensor field datasets. Such datasets are typically generated
by turbulent combustion simulations. In this proof of concept approach, we use deep
learning to learn mappings from strain tensors to Schlieren images which serve as
labels. The use of neural networks allows for the Schlieren values to be accurately
approximated more efficiently than calculating the values from the density gradient.
In addition, we show that this approach can be used to predict the Schlieren values
for both two-dimensional and three-dimensional tensor fields, potentially allowing
for anomaly detection in tensor flows. Results on two shock example datasets show
that this approach can assist in the extraction of features from reacting flow tensor
fields.

1 Introduction

The design of efficient combustion systems requires an in-depth understanding of
the underlying physics that occur within combustion chambers. The challenge is
significantly escalated for supersonic combustion due to the presence of shocks and
other waves. Considering that turbulent flows are inherently three-dimensional and
shocks occur over very thin regions of the order of one mean free path, the pres-
ence of shocks introduces additional complexities to a flow that is characterized by
a multitude of scales in time and space. Computational methods typically use arti-
ficial diffusion to smear the shocks such that they can be captured on a grid that is
more coarse than the thickness of the shock [3]. Despite this approximation, the sim-
ulation of supersonic turbulent combustion is not only computationally demanding
but also able to produce large quantities of data.

University of Illinois at Chicago, Chicago, IL 60607, e-mail: mathewmonfort@gmail.com,
{tlucia2, jonk,bziebart,mashayek,gmarai}@uic.edu

1

2 Monfort et al.

As discussed in detail in our previous work [36], an important aspect of turbu-
lence modeling and model validation involves analysis of the subgrid scale stress
tensor or the stress tensor. Unfortunately, the scale of these datasets is very large; it
is necessary to capture all the scales of turbulence, combustion, as well as the dis-
continuities. For example, Reynolds Averaged Navier-Stokes (RANS) simulations
of the scramjet engine have used in excess of 33 million cells [15, 46, 16]. Mean-
while, Large eddy simulation (LES) of a simplified scramjet engine model have
required upwards of 6 million cells [6], and preliminary LES simulations of a full
scramjet at low Reynolds numbers have used 14 million cells [8]. It is expected
that high-fidelity LES simulations of the full scramjet geometry at high Reynolds
numbers will exceed 100 million cells. These datasets cannot be output frequently
for visualization because of the computational cost of writing the files. When one
considers that the computational cost of such a simulation can easily exceed 17,000
core-hours, it becomes necessary to limit disk-intensive operations to preserve core-
hours [29].

Feature extraction can be a useful approach to reducing the size of the dataset
to visualize. In this approach, a small subset of points are identified as features of
interest and output for visualization. While multiple filtering techniques exist for
flow shock feature extraction, some of these methods incorrectly identify regions
of turbulence as shocks, and conversely some turbulence models incorrectly iden-
tify shocks as turbulence [17]. Most importantly, filtering techniques generally do
not have the ability to identify abnormalities in the flow in the absence of expert
knowledge input. As a result, it is necessary to investigate more flexible approaches
to analyzing discontinuities in the flow that may correspond to shockwaves, includ-
ing approaches which can identify normal shock behavior and abnormalities. Such
anomaly detection tasks tend to require a statistical approach.

In this work we investigate the potential and limitations of deep learning [5,
30]—a machine learning technique based on learning representations of the data—
with respect to shock feature extraction from strain tensor values. Deep learning
has been successfully used in a variety of applications, including image analysis
and speech recognition, and, beyond feature extraction, has the potential to capture
abnormalities in the data. Here we take an exploratory first step in this direction by
investigating the feasibility of using deep learning to retrieve shock locations. Future
work will investigate the ability of deep learning with respect to anomaly detection.

2 Background and Related Work

2.1 Stress and Strain Tensors

A tensor is an extension of the concept of a scalar and a vector to higher orders.
Scalars and vectors are 0-th and 1-st order tensors, respectively. In general, a k-th
order tensor can be represented by a k-dimensional array, e.g. a second order tensor

Deep Learning over Combustion Stress Tensors 3

is a two-dimensional array (a matrix). For example, while a stress vector is the
force acting on a given unit surface, a stress tensor is defined as the components of
stress vectors acting on each coordinate surface; thus stress can be described by a
symmetric 2-nd order tensor.

The velocity stress and strain tensor fields are manifested in the transport of
fluid momentum, which is a vector quantity governed by the following conserva-
tion equation:

∂ρui

∂ t
+

∂ρuiu j

∂x j
=− ∂ p

∂xi
+

∂τi j

∂x j
, for i = 1,2,3 (1)

where the Cartesian index notation is employed in which the index i = 1,2,3 repre-
sents spatial directions along the x,y, and z Cartesian coordinates, respectively; and
the repeated index j implies summation over the coordinates. t is time, ρ is the fluid
density, u ≡ [u1,u2,u3] is the Eulerian fluid velocity, p is the pressure, and τ is the
stress tensor defined as:

τi j = 2µ

(
Si j−

1
3

δi j
∂uk

∂xk

)
(2)

where µ is the dynamic viscosity coefficient (a fluid-dependent parameter) and S is
the velocity strain tensor defined as:

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(3)

As indicated by the definitions above, both the stress and strain tensor are two-
dimensional, symmetric, positively-defined arrays. Density, along with the three ve-
locity components and total energy, are the primary variables calculated in the code.
All other information, including the stress tensor and velocity strain tensor, are sec-
ondary variables calculated from these primary variables.

2.2 Shock Feature Extraction

Most feature extraction techniques fall into one of three basic categories. The most
widespread method uses feature attributes such as mass, centroid, volume, texture,
or moment of inertia [50, 51, 52, 10]. A number of filtering techniques specifi-
cally for detecting and visualizing shocks waves have been developed, including
using shock surface alignment to the pressure gradient vector [33], and using the
density gradient in the direction of the velocity [44, 34]. A second approach to
feature extraction uses isosurfacing in higher dimensions [24]. A third class of ap-
proaches uses various machine learning techniques to aid in feature tracking. Tzeng
and Ma [58] utilize neural networks to learn which transfer functions are most ap-
propriate in tracking the features of interest. Ozer et al. [43] use a clustering algo-
rithm to group features based on similarity measures. In our previous work [36], we

4 Monfort et al.

introduced a large scale K-Means clustering approach to define and track regions of
interest. Our approach is similar to these last category approaches in that we also
utilize machine learning.

The approach we use to generate labels for the tensor data is based on the
Schlieren filter [35]. The density-gradient of combustion datasets relates indirectly
to the stress tensor through the conservation equation [35]. Such density-gradient
descriptors can be used to generate flow visualizations in the style of Schlieren im-
ages [19], and have been shown to accurately reflect shock boundaries [35].

The use of the Schlieren computation is intended as an exploratory first step in
investigating the ability of deep learning to identify shockwaves and other features
in CFD datasets. While the computation of the Schlieren itself is not costly enough
to justify a learning alternative, more accurate shock prediction methods are signifi-
cantly more costly and difficult to pose numerically. The ultimate goal of the future
work would be to employ a deep learning approach to directly pinpoint and differ-
entiate different phenomena at a lower computational cost than the many sensors
currently available in literature.

2.3 Deep Learning

In 1943 McCulloch and Pitts [39] introduced a set of simplified computational mod-
els of biological networks. These ideas were soon extended to include models of
how these networks might learn including Hebbian learning [20], multilayer per-
ceptrons [25] and eventually backpropagation [49]. However, the extensive compu-
tational complexity of training large networks [41] prohibitively limited their use-
fulness.

Deep architectures yield a greater expressive power than shallow networks since
functions that can be compactly represented by an architecture of depth k, would
require an exponential number of computational elements to be represented by an
architecture with a depth of k− 1 [5]. This breadth for depth trade-off allows deep
architectures to represent a wide family of functions with reduced complexity and
improved generalization. Each succeeding layer of the network combines the fea-
tures of the previous layer forming a higher level abstraction of the features in the
preceding layer. This increasing level of abstraction from layer to layer allows deep
networks to produce strong generalizations for highly varying functions. The diffi-
culty lies in efficiently training the large number of parameters needed to form the
network [41].

Convolutional networks are specific types of deep architectures inspired by the
structure of the visual cortex [37, 30] which do not suffer from the typical conver-
gence issues of other deep architectures [5]. The defining characteristic of convo-
lutional networks is the use of local receptive fields with shared parameters. These
fields are used to scan input features with a two dimensional structure and form
feature maps that capture low-level (e.g., edges and corners) representations of the
input. This process is then repeated in each succeeding layer allowing for the for-

Deep Learning over Combustion Stress Tensors 5

mation of progressively higher-level abstractions. This two-dimensional representa-
tional power of convolutional networks has allowed them to dominate the field of
computer vision [28, 55].

Volumetric convolutional networks [40, 38, 47] are an extension of convolutional
surface-based architectures to input features with three dimensional structure. They
have successfully been applied to the area of object recognition [38] and MRI seg-
mentation [40]. The ability of these architectures to take advantage of three dimen-
sional structure directly translates to the problem of inferring Schlieren features in
combustible fluids.

2.4 Application Domain Background

Supersonic combustors, such as scramjet engines, are prime examples of flows
where turbulence and combustion interact with shock waves [46, 15, 48]. However,
the concurrent presence of shock waves and turbulence in the simulation of su-
personic turbulent flow presents additional challenges compared to subsonic flows;
the numerical methods designed to treat these properties must predict the presence
and capture these features accurately [17]. The inability to accurately predict these
features contributes to the many unresolved fundamental issues that surround super-
sonic combustors, such as the scramjet. Flames in the presence of shocks are known
to become distorted, generate vorticity, and break up or stretch [26, 27]. Addition-
ally, when turbulence is seen in the presence of a shock, there is an amplification of
velocity fluctuations [8]. The inability to accurately predict these behaviors affects
the remainder of the solution domain, thereby causing a failure to compare well
against experiment.

While numerical simulations can provide an acceptable prediction of turbulence
behavior, either through the use of large eddy simulation or direct numerical sim-
ulation, there is still a significant challenge in the simulation of flows involving
flow discontinuities, such as shocks. Methods for numerically modeling supersonic
turbulent combustion[23, 4] rely on the accurate prediction of the shock location.
Current methods for shock capturing may rely on an artificial viscosity to dissipate
the shock, to smear it across many solution points so that it may be captured [1, 2, 3].
However, incorrectly predicting the location of the shock may have unintended side
effects, such as adding the artificial viscosity in the incorrect regions, thereby dissi-
pating other regions of the flow. Research has been performed in developing sensors
to accurately predict the shock location [14, 3, 17]. However, some of these methods
incorrectly identify regions of turbulence as shocks, and conversely some turbulence
models incorrectly identify shocks as turbulence [17]. As a result, it is necessary to
investigate more flexible approaches to analyzing discontinuities in the flow that
may correspond to shockwaves, including approaches which can identify normal
shock behavior and abnormalities.

6 Monfort et al.

3 Methods

To study the applicability of deep learning to the feature identification problem,
we trained convolutional neural networks to learn a mapping from strain tensors to
Schlieren values [35] for each time-step in a turbulent flow. To accomplish this we
form a regression network similar to an auto-encoder [9, 21] where instead of learn-
ing to replicate the strain tensors used as input, we learn to construct the associated
Schlieren values for each time step. The strain tensor is calculated with Equation
(3) above [35]. Additionally, the Schlieren value for each pixel is derived with the
following equation:

Schlieren(x,y,z) = βe−
k|∇ρ|
|∇ρ|max , (4)

where x, y, and z are the position coordinates, β and k are rendering parameters set
to 0.8 and 20 respectively, and ∆ p is the gradient of the density field.

We will examine this approach on two datasets, a three-dimensional Sod dataset
and a two-dimensional blast dataset. The differing spatial dimensions of both of
these domains requires the formation of two different network architectures. In this
section we will describe the methods used to construct and train both of these net-
works.

3.1 Data Processing

3.1.1 Three-Dimensional Sod Dataset

The three-dimensional Sod problem is one form of a shock tube problem, which
is frequently considered a benchmark test for shock capturing methods. It is also
commonly used for testing compressibility terms in numerical codes due to its in-
clusion of spatial pressure variation [32]. The initial condition contains a driver and
driven gas separated by a diaphragm in the center. When the diaphragm breaks, at
time zero, a discontinuity forms and travels to the end of the tube. The final solu-
tion, which is available as an analytical solution, consists of rarefaction, contact, and
shock waves [57].

For each time-step (of a total of 1,775 steps in our experiments) we discretize the
position coordinates of the Sod dataset into a 804x4x4 volume and for each position
calculate the strain tensor S and the Schlieren using Equations (3) and (4).

We then represent each of the six unique values of the strain tensor as a different
channel of a three dimensional image (6x804x4x4) and the Schlieren value as a
single channel image (1x804x4x4). Representing the data in this form allows for
us to use computer vision techniques such as volumetric convolutional networks to
learn a mapping from the strain tensors to the Schlieren values.

With the data in this format we place every tenth time-step into a test set (177
total) and randomly separate the 90% remaining time-steps into a training set (1,416

Deep Learning over Combustion Stress Tensors 7

total) and 10% into an evaluation set (182 total) that is used to determine when the
network training has converged.

3.1.2 Two-Dimensional Blast Dataset

The second problem considered is a two-dimensional explosion. The initial con-
dition consists of a high-density, high-pressure region located inside of a circle in
the center of the geometry and low-density, low-pressure in the remainder of the
computational domain. The two regions are joined by a discontinuity, which travels
outwards in time, forming shock, contact, and rarefaction waves. Comparison along
the radial directions gives virtually identical results due to the problem’s symmetry,
and the resolution of discontinuities that travel in all directions is the same as that in
the one-dimensional Sod problem [57]. The solution of this problem requires high
resolution throughout the domain due to the sharp discontinuities traveling in all
spatial directions.

For each time-step of a total of 158 steps we discretize the position coordinates
into a 70x70 surface and for each position calculate the strain tensor S using Equa-
tion (3) and the Schlieren value with Equation (4).

We then represent each of the six unique values of the strain tensor as a different
channel of an image (6x70x70) and the Schlieren value as a single channel image
(1x70x70). As with the three-dimensional dataset we place every tenth time-step
into a test set (15 total) and randomly separate the 90% remaining time-steps into
a training set (133 total) and 10% into an evaluation set (ten total) that is used to
determine when the network training has converged.

3.2 Network Architecture

For both the three-dimensional and the two-dimensional dataset we constructed
an eight-layer all convolutional network [53] that is divided into two parts; a fea-
ture extractor that learns a function for condensing the input features into a low-
dimensional feature vector, and an image constructor that learns a function that
transforms the low-dimensional feature vector calculated in the previous part into a
schlieren image. We construct the network in this way in order to improve general-
ization by forcing the network to learn a sparse feature representation with useful
(general) features of the strain tensors. The ultimate structure is chosen by tuning
the hyper-parameters on the evaluation set [7]. The main difference between the two
networks is the use of volumetric convolutions for the three-dimensional dataset and
regular convolutions for the two-dimensional dataset.

8 Monfort et al.

Network Diagrams

Fig. 1 Networks for three-dimensional Sod dataset (left) and the two-dimensional Blast dataset
(right). Each network comprises two parts; a feature extractor that learns a function for condensing
the input features into a low-dimensional feature vector, and an image constructor that learns a
function that transforms the low-dimensional feature vector calculated in the previous part into a
Schlieren image.

The feature extractor for both networks consist of four strided volumetric convo-
lutional layers that reduce the input strain tensors into a 64 neuron feature vector.
Strided convolutions incorporate regularization into the convolutional layers while
improving the efficiency in network performance [54] when compared to standard
max-pooling based sub-sampling. The image extractor consists of an inverse map-
ping, sometimes referred to as deconvolutional layers [42], with matching strides
and kernel sizes as the feature extractor. The key difference is that the image extrac-
tor outputs a single channel image compared to the six channel input of the feature
extractor. Figure 1 details the structure of both of the networks with a feature ex-
tractor reducing the input strain tensors to a low dimensional vector of 64 features
and the image extractor building the Schlieren from the feature vector. Additionally,
we use Exponentiated Linear Units (ELU) [11] as our activation function for both
networks which leads to improved efficiency and performance while addressing the
vanishing gradient problem in training deep networks.

Deep Learning over Combustion Stress Tensors 9

3.3 Optimization

We train our network parameters to minimize the mean squared error between the
predicted Schlieren values and the ground truth values and optimize the weights
with an adaptive learning rate calculated using the adadelta optimization function
[59]. To avoid large gradient updates that may be caused from learning regression
values, we incorporate gradient clipping [45] to constrain the gradient norm to lie
within a specific threshold (i.e., [0,1]).

In order to improve the efficiency of our training routine we use spatial batch
normalization [22] to normalize the feature maps generated after each convolutional
layer. This ensures that the input distribution for each layer is consistent (zero mean
and unit variance) which greatly improves learning performance.

Convergence of the network training is determined using a five-step average win-
dowed delta loss on the evaluation set. When the average delta loss (mean squared
error) on the evaluation set is positive, meaning the network is not improving its
ability to construct the Schlieren, learning is stopped. This ensures that we do not
over-train on the training set and preserve the networks ability to generalize.

3.4 Regularization

When training a system on a limited amount of data (or an unbalanced dataset)
there is a risk of over-training on the training set and losing the ability to generalize
to new instances. For this reason we incorporate spatial dropout [56] after each of
the convolutional layers in the network. During training this randomly drops entire
feature maps in forward propagation (by setting all values to 0). This forces the
network to learn a sparsified representation of the feature vector (condensed low-
dimensional feature representation) leading to improved generalization.

4 Results

We evaluate our approach on two datasets, a three-dimensional Sod dataset and a
two-dimensional Blast dataset as described in Section 3.1. In this section we de-
scribe our results in training the networks and examine the features the networks
learned.

It is important to note that while calculating the Schlieren for the three-dimensional
Sod dataset via Equation (4) takes an average of 550 ms per time step on an Intel
Xeon E5-2697 2.6 GHz processor, our trained network generates the Schlieren in
less than 107 ms on the same CPU processor (respectively less than 1 ms on a
GeForce GTX 1080 GPU) running the Torch framework [12], an open source ma-
chine learning library and scientific computing framework that provides a range of
algorithms for deep machine learning. Torch uses the scripting language LuaJIT and

10 Monfort et al.

an underlying C implementation. This increase in efficiency becomes extremely sig-
nificant as datasets grow to include hundreds of thousands of time-steps. In total the
three-dimensional network trained for about 35 seconds on the Sod dataset and the
two-dimensional network trained for about six seconds on the Blast dataset before
convergence. Nevertheless, the main strength of the deep learning approach lies in
its potential for anomaly detection, which the Schlieren filter cannot do.

4.1 Training

Schlieren Prediction Error

M
ea

n-
Sq

ua
re

d
 E

rr
o

r

0.1

1

Epoch
0 1 2 3 4 5 6

Evaluation Set
Test Set
Training Set

M
ea

n-
Sq

ua
re

d
 E

rr
o

r

0.01

0.1

1

10

Epoch
0 2 4 6 8 10

Evaluation Set
Test Set
Training Set

Fig. 2 The average error of the network generated Schlieren for both the three-dimensional Sod
dataset (left) and the two-dimensional Blast dataset (right) after each training epoch. The Y axis
represents the mean squared error of the Schlieren value and it is plotted in log-scale for clarity.
A standard Schlieren carries units of density gradient (kg/m4), however the flow simulation code
uses a normalized function and as such in this case the Schlieren is unitless.

Figure 2 shows the prediction (mean-squared) error on the training, evaluation, and
test set for both datasets after each training epoch. We can clearly see that the net-
works perform very well on the training sets and converge quickly on the evaluation
sets. The test error matches closely with the evaluation error indicating that the eval-
uation error is a strong representation of the networks ability to generalize to the test
set. In fact we were able to achieve an average mean-squared error of 0.14 on the
three-dimensional Sod test set and 0.12 on the two-dimensional Blast test set. These
results suggest that an adequately trained network has the ability to detect anoma-
lies in the tensor field by comparing the predictive error of the network to the true
Schlieren values for each time step. A large error would signal a possible deviation
from the regular tensor flow indicating anomalous behavior.

Deep Learning over Combustion Stress Tensors 11

4.2 Learned Network Features

In this section we show examples of the features that the two-dimensional net-
work learns for the Blast dataset. We restrict this section to the two-dimensional
dataset for the sake of visual clarity as viewing images of the low resolution volu-
metric features of the Sod dataset in two dimensions is not very informative. How-
ever, the conclusions from the two-dimensional dataset match those of the three-
dimensional dataset in that the network learns strong feature representations of
the input strain tensors allowing for accurate constructions of the associated three-
dimensional Schlieren images.

Fig. 3 The six channels of the strain tensor used as input for step 120 followed by the ground truth
Schlieren (bottom left) and the Schlieren generated by the network (bottom right).

12 Monfort et al.

As an example from the test set, Figure 3 displays the six channel strain tensor
(calculated via Equation (3)) used as input into the network for time step 120 fol-
lowed by the true Schlieren image (calculated via Equation (4) and the Schlieren
image generated by the network. We can see that the output of the network (bottom
right) matches closely with the calculated Schlieren (bottom left) with a clear sep-
aration between high and low-density regions. The fact that we can develop such a
close approximation of the desired Schlieren for a time step in the test set is very
impressive. Deep networks tend to require large amounts of data to generate strong
results indicating that increasing the size of our training set will further improve our
predictions.

Learned Feature maps for the two-dimensional Blast Dataset at Step 120

Fig. 4 Feature maps in the first layer of the feature extractor.

Fig. 5 Feature maps in the second layer of the feature extractor.

Figures 4 and 5 show examples of feature maps in the first two layers of the fea-
ture extractor for time step 120 from the test set (we restrict our view to the first two
layers due to the low resolution of feature maps in deeper layers). We observe that
the network has learned the informative features of each unique strain tensor and
combined them to form feature maps with the necessary information for construct-
ing the Schlieren image. The specialization of these feature maps allows for the
network to learn a general representation of the input data which is very important

Deep Learning over Combustion Stress Tensors 13

for accurately predicting the Schlieren values in unseen time steps. Additionally,
these feature maps serve as a set of dictionary references with increasing abstrac-
tion (by layer) that allow the network to properly condense the input tensors into a
general low-dimensional feature vector as shown in Figure 1.

4.3 Output Visualization

The output of the network produces a reconstructed volume for every tenth time-
step of both datasets (test cases), where each point corresponds to the floating-
point Schlieren value at that location in the discretized grid. In our experiments,
we evaluated 177 and 15 output Schlieren volumes for the three-dimensional and
two-dimensional datasets, respectively.

To analyze the results, we visualize each volume as a two-dimensional pseudo-
color image that encodes the Schlieren value between two diverging colors – red
and black. Similar to grayscale photos, pseudocolor images map intensity to a color
scale that ranges from the minimum and maximum value of a data sample [13].

We create three pseudocolor images for each reconstructed Schlieren volume to
compare it against the input data and its ground truth. Figure 6 shows the analysis
of the output corresponding to the three time-steps of the Blast dataset. Note how
the distinct dark areas in the reconstructed images (right) match those of the ground
truth (left). These areas signify the occurrence of large density gradients across data
samples that correlate with potential shock locations. Figure 7 shows the similar
ground truth and reconstruction for the three-dimensional dataset. In this figure,
note the three distinct shock zones.

The noise in the Schlieren generated from the network in Figure 6 is a symptom
of the low amount of training data in this particular dataset. We trained on data
from a single combustion run for both the three-dimensional and two-dimensional
settings. Expanding the training data will likely improve results, as is the case in
most deep learning applications. This paper is meant as a proof of concept that
deep learning is a feasible tool for generating the Schlieren from strain tensors and
had potential for identifying anomalies in the combustion fields. Additional image
processing may create a clearer Schlieren, as would an increase in the amount of
training data.

14 Monfort et al.

Two-dimensional Blast Comparison

Fig. 6 The network comparison between the network ground truth (left)
and the final reconstruction (right) for the 1st, 50th, and 150th time-step
of the two-dimensional Blast dataset. The dark areas seen in the images
indicate large density gradients corresponding to potential shock regions.

5 Discussion and Conclusion

As previously discussed, the goal of this project was to examine the potential of
using deep learning on tensor field data generated by turbulent combustion simu-
lations. First, we were interested in finding out whether a supervised approach can
detect structures in the data, and whether these structures correlate with the regions

Deep Learning over Combustion Stress Tensors 15

Three-dimensional Sod Comparison

Fig. 7 The network comparison between the network ground truth (top) and the final reconstruc-
tion (bottom) for the 100th time-step of the three-dimensional Sod dataset. The dark narrow bands
seen in the two images indicate large density gradients, and correspond to potential shock regions.
Note the three distinct shock zones in the images.

of interest. Second, we wanted to examine whether this problem is computationally
feasible. The answer to both questions is affirmative.

In summary, we found that the deep learning approach can effectively capture
and construct shock features. The results indicate that deep networks have the abil-
ity to identify anomalies in the tensor flow. Furthermore, the efficiency of the ma-
chine learning algorithm exceeds that of calculating the Schlieren via Equation (4).
With a greater than 5x improvement on time complexity for the three-dimensional
Sod dataset. The efficiency of the machine learning algorithm leads to a 500x im-
provement when running on the GPU, while optimized CPU to GPU throughput-
computing transfers lead to only a 2.5x improvement on average [31]. A small de-
viation in the predicted values shows that deep learning has the potential to be an
effective tool for efficiently generating visualizations of large tensor fields.

It is important to note that this work is exploratory and is meant to be a proof
of concept for the use of deep networks in visualizing large tensor fields. While the
results are strong, we trained and tested the networks on the same time sequences
(with separate training and testing time steps). Predicting time steps in sequences
that were not previously trained on may be a more difficult task, However, the results
in this chapter were generated with a very limited dataset, 1,775 and 158 time-steps
for the Sod and Blast datasets respectively, and deep networks usually require very
large amounts of data to be effectively trained [55]. This implies that while the
predictive performance may drop with separate training and testing sequences, it
may also improve with the inclusion of more data. Additionally, the datasets used
in this chapter are sequential in nature lending to the notion that the results may
improve with deep architectures that can take advantage of sequential features in
their predictions such as recurrent neural networks [18]. Further exploration of this
area is needed in order to form a decisive conclusion.

In conclusion, we have introduced a supervised machine learning approach for
the segmentation of shocks in large scale tensor field datasets generated by compu-
tational turbulent combustion simulations. The approach employs a deep learning
architecture based on volumetric convolutional networks. Our evaluation on two

16 Monfort et al.

rich combustion datasets shows this approach can assist in the visual analysis of the
combustion tensor field and that it is more effective than direct filtering calculations.
Most importantly, the approach has potential for the detection of anomalies in the
data.

Acknowledgements This work was partially supported by the National Science Foundation
through award NSF CAREER IIS-1541277. We gratefully acknowledge the NSF Graduate Re-
search Fellowship program for supporting Tim. We thank Adrian Maries and Shiwangi Singh for
the initial literature search, and the Electronic Visualization Lab for their feedback and support.
We further thank the Peyman Lab for the original motivation behind this line of work, and the
Dagstuhl 16142 and 14082 seminars run by the Leibniz Center for Informatics for the many useful
discussions regarding tensor field analysis and visualization.

References

1. H. Abbassi, J. Komperda, F. Mashayek, and G. Jacobs. Application of entropy viscosity
method for supersonic flow simulation using discontinuous spectral element method. AIAA
Paper 2012-1115, 2012.

2. H. Abbassi, F. Mashayek, and G. Jacobs. Entropy viscosity approach for compressible turbu-
lent simulations using discontinuous spectral element method. AIAA Paper 2014-0947, 2014.

3. H. Abbassi, F. Mashayek, and G. Jacobs. Shock capturing with entropy-based artificial viscos-
ity for staggered grid discontinuous spectral element method. Computers & Fluids, 98:152–
163, 2014.

4. A. Banaeizadeh, Z. Li, and F. Jaberi. Compressible scalar filtered mass density function model
for high-speed turbulent flows. AIAA Journal, 49(10):2130–2143, 2011.

5. Y. Bengio and Y. Lecun. Scaling Learning Algorithms toward AI, pages 321–359. MIT Press,
2007.

6. M. Berglund and C. Fureby. Les of supersonic combustion in a scramjet engine model. In Pro-
ceedings of the Combustion Institute 31, pages 2497–2504. The Combustion Institute, Pitts-
burgh, PA, 2007.

7. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn.
Res., 13:281–305, Feb. 2012.

8. I. Bermejo-Moreno. Subgrid-scale modeling of shock-turbulence interaction for large-eddy
simulation. Ann. res. briefs, Center for Turbulence Research, Stanford University, Stanford,
CA, 2009.

9. H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological Cybernetics, 59(4):291–294, 1988.

10. J. Caban, A. Joshi, and P. Rheingans. Texture-based feature tracking for effective time-varying
data visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6):1472–
1479, Nov. 2007.

11. D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). CoRR, abs/1511.07289, 2015.

12. R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for ma-
chine learning. In BigLearn, NIPS Workshop, 2011.

13. L. Dimitrov. Pseudo-colored visualization of eeg activities on the human cortex using mri-
based volume rendering and delaunay interpolation. 1995.

14. F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, and T. Poinsot. Large-
eddy simulation of the shock/turbulence interaction. Journal of Computational Physics,
152:517–549, 1999.

Deep Learning over Combustion Stress Tensors 17

15. J. R. Edwards, A. Potturi, and J. A. Fulton. Large-eddy / reynolds-averaged navier-stokes
simulations of scramjet combustor flow fields. AIAA Paper 2012-4262, 2012.

16. J. A. Fulton, J. R. Edwards, H. A. Hassan, J. C. McDaniel, C. P. Goyne, R. D. Rockwell,
A. D. Cutler, C. T. Johansen, and P. M. Danehy. Large-eddy/reynolds-averaged navierstokes
simulations of reactive flow in dual-mode scramjet combustor. Journal of Propulsion and
Power, 30(3):558–575, 2013.

17. Z. Ghiasi, J. Komperda, D. Li, and F. Mashayek. Simulation of supersonic turbulent non-
reactive flow in ramp-cavity combustor using a discontinuous spectral element method. AIAA
Paper 2016-0617, 2016.

18. A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel
connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal.
Mach. Intell., 31(5):855–868, May 2009.

19. A. HADJADJ and A. KUDRYAVTSEV. Computation and flow visualization in high-speed
aerodynamics. Journal of Turbulence, 6:16, 2005.

20. D. O. Hebb. The Organization of Behavior. John Wiley, New York, 1949.
21. G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural net-

works. Science, 313(5786):504–507, 2006.
22. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. CoRR, abs/1502.03167, 2015.
23. A. Irannejad, F. Jaberi, J. Komperda, and F. Mashayek. Large eddy simulation of supersonic

turbulent combustion with fmdf. AIAA Paper 2014-1188, 2014.
24. G. Ji, H.-W. Shen, and R. Wenger. Volume tracking using higpher dimensional isosurfacing. In

Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, pages 28–, Washington,
DC, USA, 2003. IEEE Computer Society.

25. O. JJ. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Archives
of General Psychiatry, 7(3):218–219, 1962.

26. Y. JU, A. SHIMANO, and O. INOUE. Vorticity generation and flame distortion induced by
shock flame interaction. In Proceedings of the Combustion Institute 27, pages 735–741. The
Combustion Institute, Boulder, CO, 1998.

27. A. M. Khokhlov, E. S. Oran, and G. O. Thomas. Numerical simulation of deflagration-to-
detonation transition: The role of shockflame interactions in turbulent flames. Combustion
and Flame, 117(12):323 – 339, 1999.

28. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, page 2012.

29. J. Larsson, R. Vicquelin, and I. Bermejo-Moreno. Large eddy simulations of the hyshot ii
scramjet. Ann. res. briefs, Center for Turbulence Research, Stanford University, Stanford,
CA, 2011.

30. Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. In
M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 255–258.
MIT Press, Cambridge, MA, USA, 1998.

31. V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an evalua-
tion of throughput computing on cpu and gpu. ACM SIGARCH Computer Architecture News,
38(3):451–460, 2010.

32. Z. Li, A. Banaeizadeh, S. Rezaeiravesh, and F. Jaberi. Advanced modeling of high speed
turbulent reacting flows. AIAA Paper 2012-116, 2012.

33. D. Lovely and H. Haimes. Shock detection from computational fluid dynamics results. In 14th
Computational Fluid Dynamics Conference, pages 255–258, Cambridge, MA, USA, 1999.
MIT Press.

34. K.-L. Ma, J. V. Rosendale, and W. Vermeer. 3d shock wave visualization on unstructured
grids. In VVS, pages 87–, 1996.

35. G. E. Marai, T. Luciani, A. Maries, S. L. Yilmaz, and M. B. Nik. Visual descriptors for dense
tensor fields in computational turbulent combustion: A case study. In Visualization and Data
Analysis, pages 1–11. Ingenta, 2016.

18 Monfort et al.

36. A. Maries, T. Luciani, P. Pisciuneri, M. Nik, S. Yilmaz, P. Givi, and G. Marai. A Clustering
Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields. Visualiza-
tion and Processing of Higher Order Descriptors for Multi-Valued Data. Editors: Ingrid Hotz
and Thomas Schultz, Springer, 2015. In Press.

37. M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda. Subject independent facial expression recog-
nition with robust face detection using a convolutional neural network. Neural Networks,
16(5-6):555–559, 2003.

38. D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Confer-
ence on, pages 922–928. IEEE, 2015.

39. W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

40. F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully convolutional neural networks for volu-
metric medical image segmentation. CoRR, abs/1606.04797, 2016.

41. M. Minsky and S. Papert. Perceptrons : an introduction to computational geometry, 1969.
42. H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation.

CoRR, abs/1505.04366, 2015.
43. S. Ozer, J. Wei, D. Silver, and P. Martin. Group dynamics in scientific visualization. in large

data analysis and visualization (ldav). In Large Data Analysis and Visualization (LDAV), 2012
IEEE Symposium on, page 97104, Oct. 2012.

44. H.-G. Pagendarm and B. Walter. Feature detection from vector quantities in a numerically
simulated hypersonic flow field in combination with experimental flow visualization. In Pro-
ceedings of the Conference on Visualization ’94, VIS ’94, pages 117–123, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

45. R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem. CoRR,
abs/1211.5063, 2012.

46. D. M. Peterson, M. Hagenmaier, C. D. Carter, and S. G. Tuttle. Hybrid reynolds-averaged and
large-eddy simulations of a supersonic cavity flameholder. AIAA Paper 2013-2483, 2013.

47. C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view
cnns for object classification on 3d data. CoRR, abs/1604.03265, 2016.

48. C. J. Roy and J. R. Edwards. Numerical simulation of a three-dimensional flame/shock wave
interaction. AIAA Journal, 38(5):745–754, 2000.

49. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. In J. A. Anderson and E. Rosenfeld, editors, Neurocomputing: Foun-
dations of Research, pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

50. R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and tracking their evolu-
tion. IEEE Computer, 27(7):20–27, 1994.

51. D. Silver. Object-oriented visualization. IEEE Computer Graphics and Applications,
15(3):54–62, 1.

52. D. Silver and X. Wang. Tracking and visualizing turbulent 3d features. IEEE Transactions on
Visualization and Computer Graphics, 3(2):129–141, 1997.

53. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving for simplicity:
The all convolutional net. CoRR, abs/1412.6806, 2014.

54. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving for simplicity:
The all convolutional net. CoRR, abs/1412.6806, 2014.

55. S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S. S. Kruthiventi, and R. V.
Babu. A taxonomy of deep convolutional neural nets for computer vision. Frontiers in
Robotics and AI, 2:36, 2016.

56. J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using
convolutional networks. CoRR, abs/1411.4280, 2014.

57. E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag,
Berlin, 3rd edition, 2009.

58. F.-Y. Tzeng and K.-L. Ma. Intelligent feature extraction and tracking for visualizing large-
scale 4d flow simulations. In Proceedings of the 2005 ACM/IEEE Conference on Supercom-
puting, SC ’05, pages 6–, Washington, DC, USA, 2005. IEEE Computer Society.

59. M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

