
Goal-Predictive Robotic Teleoperation from Noisy Sensors

Christopher Schultz1, Sanket Gaurav1, Mathew Monfort2, Lingfei Zhang1, and Brian D. Ziebart1

Abstract— Robotic teleoperation from a human operator’s
pose demonstrations provides an intuitive and effective means of
control that has been made feasible by improvements in sensor
technologies in recent years. However, the imprecision of low-
cost depth cameras and the difficulty of calibrating a frame
of reference for the operator introduce inefficiencies in this
process when performing tasks that require interactions with
objects in the robot’s workspace. We develop a goal-predictive
teleoperation system that aids in “de-noising” the controls of the
operator to be more goal-directed. Our approach uses inverse
optimal control to predict the intended object of interaction
from the current motion trajectory in real time and then adapts
the degree of autonomy between the operator’s demonstrations
and autonomous completion of the predicted task. We evaluate
our approach using the Microsoft Kinect depth camera as our
input sensor to control a Rethink Robotics Baxter robot.

I. INTRODUCTION

Effective robots are critically needed in a number of
settings where human capabilities are limited. These include
operation in settings that are unsafe for human presence [1],
when lifting heavy objects that exceed the limits of human
physical strength [2], and/or when precise movements are
needed at fine scales that are beyond the precision of unaided
human motor control [3]. Despite significant advances in
artificial intelligence [4], [5], human teleoperators are still
more adept at many of the robotic motion planning and
manipulation tasks [6] encountered in these settings, which
require versatility and high-level problem solving. Further-
more, programming by demonstration through teleoperation
is an attractive modality for enabling end-users without com-
puter programming expertise to create desired autonomous
behavior [7]. Methods that improve the efficiency of teleop-
eration by sharing autonomy between human operator and
autonomous controller [8], [9]—leveraging the advantages
of each—are needed to further improve the efficiency of
completing these tasks.

A natural input mechanism for humanoid robot teleoper-
ation is for the end-user to simply demonstrate the desired
robot movements to a passively observing sensor and have
the movements imitated by the robot [10], [11], [12]. There
are two key challenges to this form of unilateral teleoper-
ation. First, the translation from human to robotic poses is

*The research in this paper was supported in part by NSF NRI Award
No. 1227495.

1Christopher Schultz, Sanket Gaurav, Lingfei Zhang, and Brian
D. Ziebart are with the Department of Computer Science, Uni-
versity of Illinois at Chicago, 851 S. Morgan St. (M/C 152)
Chicago, IL 60607 cschul25@uic.edu, sgaura2@uic.edu,
lzhang44@uic.edu, and bziebart@uic.edu

2Mathew Monfort is with the Computer Science and Artificial Intel-
ligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St,
Cambridge, MA 02139 mmonfort@mit.edu

Fig. 1. The Baxter robot testing setup with a number of interaction
objects suspended in the robot’s workspace (left) and Kinect data of human
teleoperator with tracked skeleton produced from the OpenNI system (right).

often complicated due to differences in physical embodiment.
Joint angle limitations of human operators and humanoid
robots can differ significantly, for example. Second, apart
from motion capture systems [13], [14], [15], which are very
precise but require a calibrated environment and are relatively
expensive, human pose estimates are often susceptible to
sensor noise. Depth cameras, like the Microsoft Kinect, are
relatively inexpensive, but can produce skeleton tracking
errors that may make them unsuitable for fine-grained tele-
operation tasks on their own. Despite being an inexpensive
and intuitive setup, depth camera teleoperation has yet to be
deployed in many industrial teleoperation applications [16],
such as handling hazardous waste [17], due to these issues.

To address the issues with depth camera teleoperation,
in this paper, we investigate goal-predictive pose-based
robotic teleoperation from noisy sensor data: the task of
using the knowledge of possible task completion goals for
de-noising depth camera data to improve the efficiency of
robotic teleoperation [8]. Our approach is composed of three
main steps. First, we estimate a correspondence between
the human operator’s tracked skeleton and robotic joint
positions. This is used to translate from human operator
pose to robot pose. Second, we learn a model for goal
prediction using inverse optimal control for linear-quadratic
systems [18]. This provides a posterior probability estimate
for each possible target or goal in the robot’s work space
given the partial trajectory. Third, we investigate control
assistance policies based on the confidence of the goal
prediction component. These increase the autonomy of the
controller when predicted goal certainty is high. We evaluate
the approach on teleoperated pointing tasks using the Baxter
robot from Rethink Robotics [19] as our platform (Figure 1,

left) and a Microsoft Kinect [20] as our input sensor (Figure
1, right).

II. BACKGROUND AND RELATED WORK

A. Robotic Teleoperation

Robotic teleoperation refers to robotic control with hu-
man participation [17]. There are generally two types of
teleoperation systems: unilateral and bilateral control. In
unilateral control, humans provide control inputs to a robot
through a master control interface, such as a joystick, which
then provides output to a robot slave controller. The slave
controller performs the robotic system manipulations based
off of the output from the master control interface. Bilateral
control is unilateral control with an additional feedback loop
in which a robotic slave controller provides feedback to
the master control interface. This additional feedback allows
the master control interface to provide feedback to human
teleoperators. An example of bilateral control is a joystick
that provides mechanical resistance to a human operator
when a robot makes contact with objects or obstacles in its
environment [17].

A number of recent teleoperation systems enable the op-
erator to demonstrate desired control through pose data col-
lected from depth cameras [21]. These types of teleoperation
interfaces are unilateral and have been primarily developed to
faithfully reproduce the operator’s behaviors [22], [12]. Some
use gesture recognition as a command signaling mechanism
to improve teleoperation [23]. Our focus differs in that
we infer intentions rather than recognizing pre-programmed
directives from depth camera data.

Unfortunately, teleoperation using depth cameras can be
difficult for human operators due to noisy sensor or tracking
output, poor translation from human input to robotic output,
and latency between the human input and robot output [17],
[24]. Nevertheless, these interfaces are appealing from a cost
and flexibility standpoint. A significant research direction
has investigated assistive teleoperation [8], in which con-
trol is achieved through shared autonomy. One example is
teleoperation for free-form tasks using mouse cursor input,
in which the task is inferred and used to optimize low-
level robotic motions [25]. A recent approach in the brain-
computer interface teleoperation domain [9] has attempted
to address these type of teleoperation issues in the BCI
domain by infusing an correcting assist action, Aassist, to a
teleoperation control action, Atel. The exact Aassist value
and the degree in which it is added to Atel is based off
of the predicted intention of the teleoperation action. This
assisting action addition was shown in [9] to improve task
completion metrics in robot teleoperation applications.

B. Inverse Optimal Control

Inverse optimal control (also known as inverse reinforce-
ment learning) [26], [27], [28] seeks a reward or cost
function that rationalizes demonstrated control sequences
[28]. Though ill-posed in its simplest formulation [27],
extensions that seek to provide predictive guarantees create a
well-defined machine learning task [29]. Maximum entropy

inverse optimal control [30], for example, seeks to provide
robust predictions of the control policy under the logarithmic
loss, while learning parameters that define a cost function for
inverse reinforcement learning purposes.

In this work, we leverage extensions of maximum entropy
inverse optimal control to linear-quadratic control (LQR)
settings [18], [31], [32]. In these settings, it is assumed
that the dynamics of a system being investigated can be
represented by a continuous linear state-space representation,

st+1 = Ast +Bat + εt, (1)

where st denotes the state of the system at time t, at denotes
the action at time t, εt denotes some zero mean Gaussian
noise, and A and B define the system dynamics.

A state-action cost function,

cost(st,at) =

[
at
st

]T
M

[
at
st

]
, t < T, (2)

and a final state cost penalizing the final state, sT, from
deviating from the desired target, sG,

cost(sT) = (sT − sG)TMf (sT − sG), (3)

are learned by updating the M and Mf coefficient matrices
through demonstrated behaviors using the principle of maxi-
mum causal entropy [31]. Specifically, this is done by solving
the constrained optimization problem maximizing the causal
entropy [18],

H(a||s) , Eπ̂

[
−

T∑
t=1

log π̂(a||s)

]
,

such that the predictive policy distribution, π̂(a||s) =
π(a1|s1)π(a2|s2) · · ·π(aT |sT), matches the demonstrated
quadratic state properties, π̃, in feature expectation through
the following optimization constraints,

Eπ̂

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
= Eπ̃

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
, and

Eπ̂
[
(sT − sG)(sT − sG)

T
]
= Eπ̃

[
(sT − sG)(sT − sG)

T
]
.

This optimization allows the state-conditioned probabilis-
tic policy, π̂, to be formed using the following recursively
defined equations,

π̂(at|st) = eQ(st,at)−V (st), (4)
Q(st,at) = Eτ(st+1|st,at)[V (st+1|st,at)] + cost(st,at),

(5)

V (st) =

{
softmax

at

Q(st,at), t < T

(st − sG)
TMf (st − sG), t = T,

(6)

where the policy distribution is penalized for deviating from
the desired goal location, sG, at time T and the softmax
function is a smoothed interpolation of the maximum
function, softmax

x
f(x) = log

∫
x
ef(x)dx.

After training is complete, Equations (4) through (6) allow
us to estimate the probability of each possible target being
the desired goal of an observed partial trajectory [18].

Fig. 2. The steps of a task in our testing sequence.

III. APPROACH

Our approach for real-time goal-predictive robotic tele-
operation is based on the combination of three main com-
ponents, which we describe in this section: (1) learning
a correspondence between human operator pose and robot
pose; (2) predicting the intended goal of the operator given
a partial trajectory; and (3) control assistance when goal
prediction confidence is high.

A. Learning Human-Robot Pose Correspondence

We use a Microsoft Kinect to obtain depth point cloud data
of a human teleoperator and use the OpenNI framework1

on the Kinect data to overlay a digital skeleton model on
the human teleoperator’s captured depth camera data. The
OpenNI Skeleton model has 105 datapoints, 15 skeleton
points each having x,y,z translation and x,y,z,w rotational
data. These 105 datapoints are used as features to build
a correspondence to a Rethink Robotics Baxter Research
Robot’s2 two arm joint positions. The Baxter Robot arms
are 7-degrees of freedom arms.

To build a correspondence between the arm joints of the
Baxter arms to the OpenNI Skeleton, we collect data from
the Baxter robot as one demonstrator moves the robot arms
in “zero-gravity” mode. The arm movements start from a

1https://github.com/ros-drivers/opennilaunch
2http://sdk.rethinkrobotics.com/wiki/Main Page

neutral arm position (Figure 2a) to a final position. While one
robot arm is moved by a demonstrator, another demonstrator
mimics the robot’s arm motions with his/her arms and tries to
stay synchronized with the robot arm movements. Both the
robot arm joints and the corresponding OpenNI Skeleton data
are recorded together. We vary the demonstrators to ensure
a generalized correlation between human teleoperators and
arm joints.

Given the amount of data we collect, we use a simple
linear regression model with no regularization [33] to build
the correspondence. We withhold 30% of the our collected
data to act as a validation set for our linear correspondence
model. The final fit correspondence model trained from
ten demonstrators achieves an average variance between a
predicted joint to the actual value in the validation set of
0.04 rad2. We employ this correspondence model in our
experiments.

B. Goal Prediction via Inverse Linear-Quadratic-Regulation

We define a goal as a location in x,y,z translational space
that we may want the robot arm end-effector to reach. The
end-effector is the endpoint of the robot arm, which can
be calculated through the arm’s geometry using forward
kinematics [34]. The end-effector has both x,y,z translational
and x,y,z,w rotational dimensions referenced from the associ-
ated robot’s coordinate frame. We only consider translational
dimensions for goal positions. End-effector space is used
since the control task can be modeled as a Linear-Quadratic
Regulation problem [18].

Our approach to goal prediction is to predict the intent
of an end-effector trajectory through space in reference to a
goal position. Following the approach outlined in [18], we
assume the linear dynamics of (1), in which we define the
state of the end-effector as:

st = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, 1]
T , (7)

and end-effector actions as:

at = [ẋt, ẏt, żt]
T , (8)

where (ẋt, ẏt, żt) are velocities, (ẍt, ÿt, z̈t) are accelerations,
and a constant of 1 is added to the state representation to
incorporate linear features into the quadratic cost function
in (2). Additionally, goal state i of the end-effector is
represented using only the goal’s translational position,

sGi
= [xGi

, yGi
, zGi

, 0, 0, 0, 0, 0, 0, 0]T . (9)

The cost matrix coefficients M and Mf are learned
from end-effector position data where a human demonstrator
moves the robot arms in “zero-gravity” mode from a neutral
start position to a goal position. We train these matrices by
maximizing causal entropy [31] using gradient descent with
an adaptive learning rate [18].

From these learned cost matrices, we infer the probabilities
of different possible goal states that the operator may want
the end-effector to reach given the observed partial trajectory
of the end-effector in real time. We define these goal state
probabilities as P (sGi

|trajectoryinit→t) and the probability

t
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
P
(S

G
i
|t
ra
je
ct
o
ry

in
it
−
>
t)

goal 1 goal 2 goal 3 goal 4 goal 5

Fig. 3. The predicted goal probabilities of the trained inverse LQR model
over time for a sequence of poses as the operator’s left arm reaches towards
goal 3.

of the most likely intended goal of the partial trajectory, I ,
as,

I = max
i
P (sGi

| trajectoryinit→t). (10)

The inverse LQR goal prediction method is a Bayesian
inference method that benefits greatly from a prior distribu-
tion over the possible goals [18]. In this application, we use
a distance prior similar to the one used in previous work
[18],

P (sGi
|st) ∝ e−βdist(st,sGi

), (11)

where dist(st, sGi
) is a function that computes the Euclidean

distance between the spatial coordinates of st and sGi
, and

β is an adjustable coefficient that increases the importance
of distance on the distribution. As dist(st, sGi

) decreases,
P (sGi

|st) increases effectively making closer targets more
probable. Fig. 3 depicts the goal probability change over time
when the operator attempts to reach goal 3.

C. Goal-Based Control Assistance

Using the goal predictions from the previous section,
we adjust the level of autonomy between human and au-
tonomous control. The specific approach we employ from
[35], [9] is to consider an action taken by a robot at time t,
Ar,t, to be a linear combination of a teleoperation action,
Atel,t and an assisting action, Aassist,t:

Ar,t = αAtel,t + (1− α)Aassist,t (12)

where α is a mixing coefficient. When α is close to 1, Ar,t

is mainly a function of the teleoperation translated action
Atel,t. As alpha decreases towards 0, Ar,t becomes increas-
ingly a function of an assist action Aassist,t. By defining α
as a function of predicted intent [18], a noisy teleoperation
action can be corrected by mixing in an appropriate assisting
action that reflects the true intention of the teleoperation
action.

We use a joint angle position based arm controller for
this work3. Because of this, we consider the actions in (12)
to be in the arm joint angle position space. Specifically,
Atel,t is the joint values from the linear correspondence
model we trained from a human teleoperator to robot arm
joints. Aassist,t is calculated by finding the end-effector
goal with the highest probability from our goal prediction
model and applying inverse kinematics [34] to goal position
with the current arm joint positions as seeds to inverse
kinematic calculations. We then linearly mix Atel,t and
Aassist,t together per (12) to form Ar,t which is used by the
joint position arm controller to manipulate the robot arms.

We consider three different ways to set the value of the
mixing coefficient α. The first is a no assist approach where
α is 1.0 for all I values. As α remains at 1.0 regardless of
I , this method prevents any assist from being applied to a
teleoperation control action. For this reason, we refer to this
α setting method as the no assist method.

The second approach sets α using a sigmoid function of
the highest probability goal, I , of the following form [9]:

α =
1

1 + e−a(1−I)+o
, (13)

where a and o are adjustable parameters. this method varies
α as I varies so this method mixes in an assisting action
with a teleoperation control action. We refer to this α setting
method as the sigmoid assist.

The last approach is α as a step function of I of the
following form [8]:

α =

{
1.0 if I < Ithreshold

c else,
(14)

where Ithreshold and c are adjustable parameters. Like the
sigmoid assist, this method mixes in an assisting action with
a teleoperation control action based on Ithreshold. We refer
to this α setting method as the step assist. The three alpha
variation are shown in Fig. 4

As discussed in [9], it is important to set an αmin where
the value of α cannot drop below. If α decreases too much,
Aassist,t becomes dominant in (12) where if the guessed
intent of a partial trajectory is wrong the human teleoperator
will never be able to correct the arm because Atel,t will not
be a large enough component in Ar,t. An αmin is set in the
two α approaches above where α varies as a function of I.

IV. EXPERIMENTS

To test our approach, ten different end-effector goal lo-
cations are selected, five for each of the Baxter arms. The
selected goals are different than any of the goals used to
train the goal prediction and linear correspondence models.
The goals are visually shown in the testing space around
the robot with, approximately, four-inch diameter spheres
numbered to reflect the goal index they are associated with.
There is a Kinect camera directly in-front of the robot
testing space setup where the human demonstrator’s OpenNI

3http://sdk.rethinkrobotics.com/wiki/Arm Control Modes

0.1 0.2 0.3 0.4

I

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.0

α

sigmoid assist step assist no assist

Fig. 4. Three α selection methods after final parameter adjustments.

skeleton data is captured. The Kinect camera is positioned
so that a demonstrator can see both the Baxter robot and the
goals.

For each demonstrator, all three of the α selection criteria
are tested twice. The order in which the assist and no
assist α selection methods are used is randomized between
demonstrators. A demonstrator is never told what α selection
method is being used at a given time.

For a given α selection test, all ten goals are tested in
a random order. We refer to one goal test as a goal test
sequence. A sequence always starts with the robot arms at
neutral positions that are the same for every sequence. The
demonstrator is told what the objective goal is prior to the
start of any goal test sequence through a graphics display
and given five seconds to prepare. After this countdown, the
sequence starts.

At the start of a test sequence, the associated arm position
controller of the selected goal is enabled. The input used
by the arm controller is the output from (12). The objective
of the sequence is to get the associated arm’s end-effector
within 0.13 meters (Euclidean distance) of the selected goal.
The demonstrator must have the end-effector stay within that
distance tolerance for 2.0 seconds to register the sequence
as a successful sequence. The demonstrator has 15 seconds
to complete this sequence, otherwise, a timeout is recorded
for the sequence. When using an assist method, the α value
is kept at 1.0 until the arm end-effector travels at least 0.6
meters. This is to allow a partial trajectory to be established.
With no partial trajectory, the inverse LQR goal predictive
method output will be based off of the distance away from
the goal solely because we are using a distance prior and
there is no trajectory at that point to update the posterior.

The metrics we evaluate each sequence on are the com-
pletion time and the end-effector distance traveled. The end-
effector distance traveled is calculated by summing up the
Euclidean distances between controller steps. If a timeout
occurs for a sequence, we record the completion time as the

TABLE I
AVERAGE IMPROVEMENT OF COMPLETION TIME AND DISTANCE

TRAVELED AND CORRESPONDING P-VALUE STATISTICS

∆t [s]1 p-value2 ∆d [m]1 p-value2

No Assist to Sigmoid 2.1 2.8e-6 0.47 2.2e-5
No Assist to Step 1.3 5.8e-5 0.29 4.9e-5
Step to Sigmoid 0.8 1.3e-2 0.18 5.7e-5

1 Average improvement across all participants with both left and right
arm results. Results shown are decrease improvements.

2 The p-values computed using pairwise t-testing for each participant
comparing participant’s average results from each of the control
strategies. Shown p-values are one-sided.

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

Fig. 5. Time improvements results for both arms. Plots in the first row
show the improvement from using no assist to using the sigmoid assist, plots
in the second row show the improvement from using no assist to using the
step assist, and plots in the last show the improvement from using step
assist to sigmoid assist. The left column is the left arm results and the right
column is the right arm results.

timeout setting amount, which is 15 seconds.
Overall, we had 18 completed testing sets of data from

human demonstrators. Each demonstrator contributed 60
datapoints, 6 α selection tests each having 10 goals.

Averaging the sequence results of all 18 demonstrators
(Table I), we see an average decrease in the completion
time of a sequence on the order of 1 to 2 seconds and a
decrease of distance traveled by less than 0.5 meters when
comparing the assist methods to the no assist method. These
results might appear to be moderate improvements. However,
considering the relatively easy task we used to test with,
these results are of practical importance. We also note that
the sigmoid assist method provides a larger improvement
than the step assist method. This result is not surprising
given that the sigmoid assist provides a continuous range
of α values compared to the two α value outputs of the
step assist method. The p-values of these results, calculated
using a paired statistical test for different methods using
paired teleoperation sequences to each goal, show that the
improvements are statistically significant.

Averaging the sequence results on a per-goal basis (Fig. 5,

1 2 3 4 5

Goal Index

−2

−1

0

1

2
∆

d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2
∆

d
 [

m
]

Fig. 6. Distance traveled results for both arms. Plots in the first row show
the improvement from using no assist to using the sigmoid assist. Plots in
the second row show the improvement from using no assist to using the
step assist. Plots in the last show the improvement from using step assist to
sigmoid assist. The left column contains the left arm results and the right
column contains the right arm results.

Fig. 6) we see improvements in both task completion time
and distance traveled across all 10 goals when comparing
results of the assisting methods and no assist method as well.
For a majority of the goals, the sigmoid assist method out
performs the step assist.

The improvements that the assist methods provide can
also be seen in the actual arm end-effector trajectories of
the test sequences. For example, in Fig. 7 we see that one
demonstrator was able to teleoperate the arm in a much more
efficient path to the goal with the assist methods. When no
assist was applied, the end-effector trajectory appears more
sporadic, taking longer to stabilized near the goal coordi-
nates. Although this is one specific example of improvement,
it provides insight into how the assisting actions improve the
efficiency of teleoperation.

A possible concern with our results is that the observed
improvements could have been achieved using the distance
prior, defined in Eq. (11), solely for the likelihood of a
robot arm goal state instead of using our inverse LQR
model output P (SG|trajectoryinit→t) which incorporates
learned robotic arm system dynamics. To show we believe
this is not the case, in Fig. 8, we see differences between
P (SG|St) and P (SG|trajectoryinit→t) for the probability
of the selected goal of a trial across all of the data gathered
from the validation experiment trials. Although P (SG|St)
and P (SG|trajectoryinit→t) are often very similar in value,
there are times when these values differ from 0.1 to 0.7,
which shows that the learned system dynamics provide
additional information in predicting goal likelihood over
using distance measures alone.

V. CONCLUSIONS

In this work, we have shown that inverse optimal control
approaches, specifically inverse LQR, can be used to extract

0 50 100 150
−0.5

0.0

0.5

1.0

1.5

2.0
x y z

0 50 100 150
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150

tcontroller

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

d
g
o
a
l

Fig. 7. Example of the improvement that the assisting methods provide to
the arm end-effector trajectory. Data is from the same participant attempting
to teleoperate a robot arm from the neutral position to the same goal position.
From the top, the first plot is the no assist method end-effector trajectory
result, the second plot is the sigmoid assist method, and the last plot is
the step assist method. All three translational dimensions (x,y,z) of an end-
effector are shown. The tcontroller axis represents time referenced by the
arm controller time step since the start of a testing sequence. The dgoal
axis represents the fraction of the distance the arm end-effector has traveled
towards the goal.

Fig. 8. The difference between the selected goal’s probability under the
distance prior and the inverse LQR model as a function of the percentage of
the trajectory completed for all data gathered in our validation experiments.

the intent of teleoperation control actions in real time. This
intent can be used to improve teleopation task completion
efficiency by applying an assist action to a teleoperation
control action. Specifically, we have shown these results in
a depth camera teleoperation setting.

There are many interesting extensions to this work to
consider in the future. First, we believe the improvements
shown in this work will increase as the difficulty of the
teleoperation task increases. Therefore, we plan to extend
this work to more complicated teleoperation tasks, such as
grasping objects and more difficult arm navigation tasks.

Second, it is possible to predict the best action to get a
robot arm end-effector into a goal state from the inverse
LQR model. Instead of using goal coordinates and inverse
kinematics for Aassist,t, we would like to use these predicted
actions as Aassist,t instead.

Lastly, incorporating obstacle avoidance with the assist
action would be very beneficial. In [36], it was shown that
the inverse LQR prediction method can incorporate waypoint
states sW,i into this inverse optimal control formulation with
an additional cost term in the cost function shown above.
Using this waypoint formulation, we believe it is possible
through arm demonstrations and including obstacle avoid-
ance using waypoints during training that a cost function can
be learned that provides next actions that avoid obstacles in
a testing environment. With the completion of the second
extension just mentioned above, this next action could be
used as Aassist,t.

ACKNOWLEDGMENT

We thank David Labak who helped out with writing code
and gathering data early in this work.

REFERENCES

[1] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Ta-
dokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, et al.,
“Emergency response to the nuclear accident at the fukushima daiichi
nuclear power plants using mobile rescue robots,” Journal of Field
Robotics, vol. 30, no. 1, pp. 44–63, 2013.

[2] K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara,
K. Kaneko, and H. Hirukawa, “A humanoid robot carrying a heavy
object,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. IEEE, 2005, pp. 1712–1717.

[3] T. S. Lendvay, B. Hannaford, and R. M. Satava, “Future of robotic
surgery,” The Cancer Journal, vol. 19, no. 2, pp. 109–119, 2013.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] J.-C. Latombe, Robot motion planning. Springer Science & Business
Media, 2012, vol. 124.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[8] A. D. Dragan and S. S. Srinivasa, Formalizing assistive teleoperation.
MIT Press, July, 2012.

[9] K. Muelling, A. Venkatraman, J.-S. Valois, J. Downey, J. Weiss,
S. Javdani, M. Hebert, A. B. Schwartz, J. L. Collinger, and J. A.
Bagnell, “Autonomy infused teleoperation with application to bci
manipulation,” arXiv preprint arXiv:1503.05451, 2015.

[10] W. Song, X. Guo, F. Jiang, S. Yang, G. Jiang, and Y. Shi, “Tele-
operation humanoid robot control system based on kinect sensor,” in
Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012
4th International Conference on, vol. 2. IEEE, 2012, pp. 264–267.

[11] G. Du, P. Zhang, J. Mai, and Z. Li, “Markerless kinect-based hand
tracking for robot teleoperation,” International Journal of Advanced
Robotic Systems, vol. 9, 2012.

[12] G. Du and P. Zhang, “Markerless human–robot interface for dual robot
manipulators using kinect sensor,” Robotics and Computer-Integrated
Manufacturing, vol. 30, no. 2, pp. 150–159, 2014.

[13] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
vision-based human motion capture and analysis,” Computer vision
and image understanding, vol. 104, no. 2, pp. 90–126, 2006.

[14] A. Shingade and A. Ghotkar, “Animation of 3d human model us-
ing markerless motion capture applied to sports,” arXiv preprint
arXiv:1402.2363, 2014.

[15] T. Shiratori, H. S. Park, L. Sigal, Y. Sheikh, and J. K. Hodgins,
“Motion capture from body-mounted cameras,” in ACM Transactions
on Graphics (TOG), vol. 30, no. 4. ACM, 2011, p. 31.

[16] M. R. Andersen, T. Jensen, P. Lisouski, A. K. Mortensen, M. K.
Hansen, T. Gregersen, and P. Ahrendt, “Kinect depth sensor evaluation
for computer vision applications,” Electrical and Computer Engineer-
ing Technical Report ECE-TR-6, 2012.

[17] J. Vertut, Teleoperation and robotics: applications and technology.
Springer Science & Business Media, 2013, vol. 3.

[18] M. Monfort, A. Liu, and B. D. Ziebart, “Intent prediction and tra-
jectory forecasting via predictive inverse linear-quadratic regulation,”
in Proceedings of The Twenty-Ninth AAAI Conference on Artificial
Intelligence, vol. 5, June 2015, pp. 3672–3678.

[19] Z. Ju, C. Yang, and H. Ma, “Kinematics modeling and experimental
verification of baxter robot,” in Control Conference (CCC), 2014 33rd
Chinese. IEEE, 2014, pp. 8518–8523.

[20] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia,
vol. 19, no. 2, pp. 4–10, 2012.

[21] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finoc-
chio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, et al., “Efficient
human pose estimation from single depth images,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, pp.
2821–2840, 2013.

[22] H. Reddivari, C. Yang, Z. Ju, P. Liang, Z. Li, and B. Xu, “Teleoperation
control of baxter robot using body motion tracking,” in Multisensor
Fusion and Information Integration for Intelligent Systems (MFI),
2014 International Conference on. IEEE, 2014, pp. 1–6.

[23] C. Hu, M. Q. Meng, P. X. Liu, and X. Wang, “Visual gesture
recognition for human-machine interface of robot teleoperation,” in
Intelligent Robots and Systems,(IROS 2003). Proceedings. IEEE/RSJ
International Conference on, vol. 2. IEEE, 2003, pp. 1560–1565.

[24] J. Y. Chen, E. C. Haas, and M. J. Barnes, “Human performance issues
and user interface design for teleoperated robots,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 37, no. 6, pp. 1231–1245, 2007.

[25] K. Hauser, “Recognition, prediction, and planning for assisted tele-
operation of freeform tasks,” Autonomous Robots, vol. 35, no. 4, pp.
241–254, 2013.

[26] R. Kalman, “When is a linear control system optimal?” Trans. ASME,
J. Basic Engrg., vol. 86, pp. 51–60, 1964.

[27] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, 2000, pp. 663–670.

[28] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. International Conference on Machine
Learning, 2004, pp. 1–8.

[29] N. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin
planning,” in Proc. International Conference on Machine Learning,
2006, pp. 729–736.

[30] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Human
behavior modeling with maximum entropy inverse optimal control.”
in Association for the Advancement of Artificial Intelligence Spring
Symposium: Human Behavior Modeling, 2009.

[31] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “The principle of
maximum causal entropy for estimating interacting processes,” IEEE
Transactions on Information Theory, vol. 59, no. 4, pp. 1966–1980,
2013.

[32] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in International Conference on Machine
Learning, 2012.

[33] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied linear regression
models. McGraw-Hill/Irwin, 2004.

[34] M. W. Spong and M. Vidyasagar, Robot dynamics and control. John
Wiley & Sons, 2008.

[35] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, 2013.

[36] A. Byravan, M. Montfort, B. Ziebart, B. Boots, and D. Fox, “Layered
hybrid inverse optimal control for learning robot manipulation from
demonstration,” in NIPS workshop on autonomous learning robots.
Citeseer, 2014.

