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ABSTRACT

This paper describes a neural network ensemble that is made up of 8 convolutional networks
that are based on the Lenet-5 architecture, with a denser network, the addition of a per-
sonal bias for each neuron, and the move from a final Euclidean Radial Basis Function layer,
(RBF), into a regular convolutional layer. A transitional training program was created in
order to train the networks using a stochastic levenberg-marquadt gradient descent algo-
rithm with the addition of an adaptive momentum term and the integration of a neuronal
ranking system. The networks are then trained in parallel on the MNIST training set that
is elastically distorted and then combined together in order to classify the images in the
MNIST testing set. There are two different methods used to classify the images. The first
is the regularly used average output method in which the average output vector of all of
the networks is used to recognize a pattern. The other method used is a confidence based
method that uses the network that has the highest degree of confidence in its decision to
recognize an image. A controlled unsupervised learning system was then created to allow
the networks to continue to learn from experience efficiently after the initial training phase.
In addition to all of this, a system was included where the weights of the connections, as well
as the outputs of the neurons, were slightly mutated during training in order to simulate
real world neuron failure, and noise, to allow for improved generality. The results section
will show that this method is able to achieve a very accurate error rate of 0.38% on the
MNIST database.

iv



CHAPTER 1

INTRODUCTION

Figure 1.1: A biological and an artificial neuron.

Artificial neural networks have been around for quite a while. However, an increase in

computing technology and innovation by various researchers has allowed for these networks

to approach a new level of usability. This paper will describe a method that combines many

different techniques into a single neural network in an attempt to maximize it’s efficiency

and accuracy.

This paper describes a neural network ensemble that is made up of 8 convolutional

networks that are based on the Lenet-5 architecture introduced in [9], with a denser network,

the addition of a personal bias for each neuron, and the move from a final Euclidean Radial

Basis Function layer, (RBF), into a regular convolutional layer. A stochastic levenberg-

marquadt gradient descent algorithm[9] is used to train the network with the addition of

an adaptive momentum term[10]. The networks are then trained on the MNIST training

set that is elastically distorted using the technique described in [11] and the values listed

in [4]. The networks are trained in parallel and then combined together in order to classify

1



the images in the MNIST testing set. There are two different methods used to classify the

images. The first is the regularly used average output method in which the average output

vector of all of the networks is used to recognize a pattern. The other method used is a

confidence based method that uses the network that has the highest degree of confidence in

it’s decision to recognize an image. The results section will show that this method is able

to achieve a very accurate error rate of 0.4%.

Chapter 2 of this paper will introduce and explain the different aspects of how a feedfor-

ward artificial neural network works. It will then explain the characteristics of convolutional

networks and describe the specific architecture used in this project. Chapter 3 will describe

the different techniques that are used to train the networks to recognize images. Chapter 4

will then display the results obtained from training and testing the networks on the MNIST

database. Finally, chapter 5 will conclude the report with an overview of what was done.
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CHAPTER 2

NEURAL NETWORKS

2.1 Biological Model

When designing artificial neural networks it is important to remember that they are

based upon the biological neurological system that resides in every person. Therefore, in

order to fully understand how an artificial neural network works, it is necessary to first

study how a biological neural network functions.

In 1943 McCulloc and Pitts introduced a set of simplified neurons that represented mod-

els of biological networks that were formed into circuits that could perform computational

tasks. The core function of a neuron is to receive signals as input, process the input, and

then send signals as output. This procedure is repeated by all of the neurons in a network.

The combination of such a large number of simple processors is what allows the brain to be

so efficient and flexible.

Figure 2.1: A Biological Neuron.

Figure 2.1 shows the structure of a biological neuron. The neuron has input connections

from other neurons through it’s dendrites. The input signals then move into the cell body
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where the input signals are processed into the propagated action potentials that are sent

for output. The output signal is then sent along the axon of the neuron and out to the

axon branches that form output connections with other neurons. The synapses are the

gaps between the axons/dendrites of one neuron and the axons/dendrites of another. The

strength of the synapse affects how well the output signal of a neuron will be passed to

another. This allows a network to adjust the strength of it’s synapses in order to fit process

it’s signals efficiently. This is how a network learns.

2.2 Mathematical/Artificial Model

2.2.1 Artificial Neuron

Figure 2.2: An Artificial Neuron.

The mathematical model of a neuron works as a simple function that simulates the

process of a biological neuron. The neuron receives input from other neurons, the inputs are

then altered by connection weights that represent the synapses of the neurons connections.

Since the synapse of a neuron gives strength to the connections, the synapses are modeled

as weights that can be altered in order to adjust the power of an output connection. These

weights can be either positive or negative values which respectively represent excitatory and

inhibitory connections. The magnitude of the weight would determine the strength of the

connection.

The output signal of the neuron is achieved by summing together all of the input values,

after they are modified by the input weights, with a trainable bias. This is refereed to as

linear combination. An activation function is then applied to this input signal to determine

the output signal. The activation function is usually chosen so that the output of the neuron

lies either between 0 and 1, or -1 and 1. The purpose of the activation function is to make
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sure that the output of each neuron is within a specified range of values. This prevents any

’blowing up’ of values within the network.

With this model in place, the process of a neuron can be represented by the following

functions:

yi = bi +
k∑
j=1

wijxj (2.1)

xi = φ(yi) (2.2)

Here xi is the output value of the ith neuron, φ is the activation function, k is the total

number of input connections, wij is the weight parameter applied to the output value xj ,

and xj is the output value of the jth neuron that neuron i has an incoming connection

from. bi is the trainable bias that is applied to the total input sum of neuron xi.

Once this function is applied to an entire network of neurons with one input layer and

one output layer, the result is a functional artificial neural network.

Biases

Adding trainable biases into the input signals of each neuron is very important in ad-

justing the network. A bias acts as a neuron whose output value is always 1 and has a

connection with a trainable weight to each neuron.

Figure 2.3: Activation function output with no bias.

The function of the bias is to shift the output of the activation function to a more

desirable value. Consider the graph in figure 2.3. There are three plots of the hyperbolic
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tangent sigmoid function that will be described in the section on activation functions. Each

plot has the same input, but a different weight value. This shows that adjusting the weight

value only increases the steepness of the sigmoid function.

Figure 2.4: Activation function output with bias.

While adjusting the weights in the network does have a positive result, consider the

case where you would like to change the output of the function in figure 2.3 with input 1

to 0. This is where incorporating a trainable bias becomes useful. The bias value can be

added to the input of the sigmoid function in order to shift the output of the function to

the right or left in the graph. Figure 2.4 demonstrates the shift that can be achieved by

adding a bias of varying values. It is clear that including trainable bias values in a network

is important in achieving a high level of accuracy.

2.2.2 Artificial Network

An artificial neural network consists of an input layer, one or more hidden layers, and

an output layer. The input layer takes input from a pattern and then forward propagates it

through the neurons in the network layer by layer. The output layer consists of one neuron

for each category that the pattern can be classified as. The neuron in the output layer with

the highest output value represents the category that the input pattern is classified as. The

process that propagates the signals of the neurons through the network is called forward

propagation.

The next section explains the process of choosing an appropriate activation function.
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Figure 2.5: An Artificial Neural Network Model.

2.3 The Activation Function

The activation function of an artificial neural network acts as a squashing function that

places the output of a neuron within a certain range of values. There are generally three

types of activation functions that are used on artificial neural networks. These are the

Threshold function, the Piecewise-Linear function, and the Sigmoid function.

2.3.1 The Threshold Function

The Threshold function is used to assign an output value to a neuron based on a range

of input values to the function. An example would be a function that outputs 0 if the input

is below 0, and 1 if it is not.

φ(yi) =

{
1 yi ≥ 0

0 yi < 0
(2.3)

One of the main issues here is that the threshold function only returns a binary value

of 1 or 0. This places a heavy restriction on the network and is not an accurate model

of how a biological neuron functions. A biological neuron is an analog function that can

returns a range of different values. This allows for a much more complex relationship to

exist between the neurons in a network. Therefore, it is necessary for an artificial network

to contain analog neurons in order to correctly model the complex operations that are

undertaken by a biological network.
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The Piecewise-Linear Function

The Piecewise-Linear function is similar to the Threshold function as it can take on

values depending on certain thresholds. However, it also has the ability to take on inter-

mediate values depending on an amplification factor in a certain region of linear operation.

This helps to solve the problem of the digital threshold function by returning an analog

value.

φ(yi) =


1 yi ≥ 2

yi −2 < yi < 2

0 yi ≤ −2

(2.4)

The issue here is that the function is not continuously differentiable. This is a necessary

requirement that is explained in detail in the chapter on learning.

2.3.2 The Sigmoid Function

The sigmoid function is the most commonly used activation function in artificial neural

networks. The reason for this is that it more accurately represents the actual functions of a

biological neuron. This is due to its analog nature which allows a neuron to have an output

that is within a range of values. This is in contrast to the digital on/off behavior of the

Threshold function. The Piecewise-Linear function is a combination of both the Threshold

function and the Sigmoid function.

The fact that the Sigmoid function is analog allows a network to be carefully tuned to

an optimal solution. The range of values that the Sigmoid will output depends on which

Sigmoid function is used.

The next three sections will discuss three of the more common Sigmoid functions that are

found in artificial neural networks. These are the traditional logarithmic Sigmoid function,

the hyperbolic tangent Sigmoid function, and the softsign Sigmoid function.

The Logarithmic Sigmoid Function

φ(yi) =
1

1 + e−yi
(2.5)

The logarithmic Sigmoid function was once the most commonly used Sigmoid function.

This function places the output of a neuron on the range between 0 and 1 allowing the

function to return an analog value. Another positive aspect of the logarithmic sigmoid

function is that it is continuously differentiable. This allow it to be used in the neural

network learning algorithm described in the next chapter.
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Figure 2.6: The Logarithmic Sigmoid Function.

While logarithmic sigmoid function does work well with artificial neural networks, it

is not ideal. First of all, the function is not symmetric about the x-axis. This forces the

outputs of a neuron to lie in the range of 0 and 1.

This means that the function only returns excitatory values and not inhibitory values.

This does not allow a neurons output to represent the negative strength of it’s input.

Instead, when the neuron receives a negative value as it’s total input, it will only output

0 regardless of the value of the negative input. This is not good model to use. It is more

appropriate to have a neurons output represent it’s negative input on a the same range

as it does it’s positive input. Therefore, it is necessary to use a sigmoid function that is

symmetrical about the x-axis.

The Hyperbolic Tangent Sigmoid Function

φ(yi) = tanh(yi) =
e2yi − 1

e2yi + 1
(2.6)

The hyperbolic tangent Sigmoid function, introduced in [9] fixes the issue of the non-

symmetrical traditional logarithmic Sigmoid function by returning an output on the range

from -1 to 1.

This allows a neuron to represent negative input in the same way that it represents

positive input. This method, and variations of it are the most used today for this reason.

The function can be rewritten to:

φ(yi) = A tanh(Byi) (2.7)

Here A and B are constant values that can be used to alter the sigmoid function to fit

specific needs.
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Figure 2.7: The Hyperbolic Tangent Sigmoid Function.

Using this idea, an improvement of the hyperbolic tangent sigmoid function was de-

scribed in [9]. The function is multiplied by 1.7159 and the input is multiplied by 2
3 . This

allows for f(1) = 1 and f(−1) = −1, while keeping the input within the optimal operating

domain of the function. It also allows for the absolute value of the second derivative of the

sigmoid function to reach maximum values at 1 and -1. According to [9], this improves the

convergence of the network towards the end of the learning process.

φ(yi) = 1.7159 tanh(
2

3
yi) (2.8)

Figure 2.8: Dr. Lecun’s Hyperbolic Tangent Sigmoid Function.

One issue here, as explained in [2] is that this sigmoid function experiences a sequential
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saturation phenomenon which is not yet understood.

Another negative aspect of the hyperbolic tangent sigmoid is that it’s exponential struc-

ture causes it to have very steep asymptotes. This means that there is not a slow transition

of output values along the domain of the function. This causes issues when the input values

of the function lie close to edges of it’s domain.

The Softsign Sigmoid Function

φ(yi) =
yi

1 + |yi|
(2.9)

The softsign sigmoid function is a sigmoid function that is symmetric about the x-axis

and avoids the issue of sequential saturation. When using the softsign sigmoid the layers of

the network saturate simultaneously rather than sequentially[2].

Figure 2.9: The Softsign Sigmoid Function.

The asymptotes of the softsign sigmoid are also smoother than those of the hyperbolic

tangent sigmoid. Therefore, the function experiences a slower transition between the two

edges of it’s range. This is due to it’s polynomial, rather than exponential, structure. The

smoothness of the function results in a slower transition toward it’s extremities and a more

analog representation of it’s input. The histogram of the activation values also lie in an

area that has ”substantial non-linearity but where the gradients would flow well”[2].

φ(yi) =
ayi

b+ |yi|
(2.10)

The function can be rewritten using constant values in the same way that the hyperbolic

tangent sigmoid function did. There does not need to be a third constant value that is
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Figure 2.10: The Modified Softsign Sigmoid Function.

multiplied with |yi| since it can be represented by the other two constant values. For

example, if A = 6, B = 4, and C = 2, where C is the other constant value, then the

function can be rewritten so that A = 3, B = 2, and C = 1. This can be applied with any

value of C, so C can be assumed to equal 1.

Here it is helpful to apply all of the insights from [9] into this new sigmoid function.

In order for the function to equal 1 when the input is 1, and -1 when the input is -1, the

equation A = B+ 1 must be true. Also, A must equal the maximum approachable value of

the function. This is due to the fact that the limit of the function as yi approaches infinite

is equal to A and the limit of the function as yi approaches negative infinite is equal to

−A. Therefore, A = MAX and B = MAX − 1 where MAX is the maximum value of the

absolute value of the function.

Since the network used in this project is based on one that uses the hyperbolic tangent

sigmoid function described in [9], it seems appropriate to keep the maximum value constant

between the two sigmoid functions. Therefore, the new values will be A = 1.7159 and

B = 0.7159. This allows for f(1) = 1 and f(−1) = −1 while keeping the maximum of the

absolute value of the function to be 1.7159. Figure 2.10 shows the graph of this function.

One limitation to the softsign sigmoid function is that the absolute value of the second

derivative of the sigmoid function does not reach maximum values at 1 and -1. Since [9]

states that this improves the convergence of the network towards the end of the learning

process, the softsign sigmoid function may not perform as well as the hyperbolic tangent

sigmoid function on high accuracy networks.
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2.4 Network Architectures

While the activation function determines how an individual neuron will act, the structure

of the network will determine how the entire network will function. One of the important

aspects in the structure of a network is how the connections in the network will be organized.

Some of these organization techniques will be presented in this section.

2.4.1 Shallow vs. Deep

Shallow architectures are limited by their lack of depth. [1] states that functions that

can be compactly represented by an architecture of depth k, would require an exponential

number of computational elements to be represented by an architecture with a depth of

k − 1. Because of this, poor generalization may be experienced when using an architecture

that is too shallow for the problem. [3] also states that deep architectures yield a greater

expressive power than their shallow peers. Therefore, increasing the depth will not only

reduce the necessary complexity of a network, it will also improve generalization.

Deep architectures are able to represent a wide family of functions in a more compact

form because they trade breadth for depth[3]. Each succeeding layer combines the features

of the previous layer in order to form a higher level of abstraction than that of the layer

before it. This increasing level of abstraction from layer to layer allows deep networks to

produce strong generalizations for highly varying functions.

2.4.2 Convolutional Networks

Convolutional networks are special types of deep networks that were inspired by the

structure of the biological visual cortex. Convolutional networks do not suffer from the

typical convergence issues of other deep architectures[3]. There is currently no definitive

explanation for why this is true, however, it may be due to the heavily constrained param-

eterization and asymmetry of the convolutional architecture. Each layer of a Convolutional

network represents sets of progressively higher features, and the last layer represents cate-

gories for classification. The typical convolutional network contains a feature detection layer

followed by a feature pooling layer. The network can have many pairs of detection/pooling

sets, which are then followed by one or more classification layers.

The main differentiation between Convolutional networks and most other deep ar-

chitectures is the use of local receptive fields, shared weights, and spatial/temporal sub-

sampling[9]. For example, the Convolutional network Lenet-5 is shown in figure 2.11. The

input layer receives images of characters that are size normalized and centered. Each neuron

in a layer receives as input the output of a small neighborhood of neurons in the previous

layer. These local receptive fields can extract small features such as edges, corners, and
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end-points. These features are then combined together in the next layer in order to extract

higher level features. This process is repeated in each layer so that a network with a large

enough depth will be able to detect very high level features from the input images. Distor-

tions and shifts in the input of the network can result in varying positions of the features

that are to be detected. This problem is solved by sharing weight vectors among receptive

fields in different areas of the input. Therefore, neurons are organized in feature maps that

contain identical weight vectors. Each layer of the network contains a set of feature maps

that allow for the detection of a range of features within the same area of the input map.

The sub-sampling layers of a Convolutional network reduce the resolution of the features

that were extracted in the preceding layers. This reduces the sensitivity of the network to

shifts and distortions.

Convolutional Layers

One of the most important characteristics of a convolutional network is the use of convo-

lutional layers. In a convolutional layer, the feature maps of the previous layer are convolved

using a trainable kernel and then combined with a trainable bias. The result of this com-

bination is then run through an activation function in order to produce the output for the

feature map on the convolutional layer. Each output map may contain multiple feature

maps as input from the preceding layer. The equation below shows how this works:

xin = F (bi +
∑

wijn x
j
n−1) (2.11)

F is the activation function, xin is output of the ith neuron on the nth layer, wijn is the

weight shared by the neurons i and j, and bi is the bias weight that is applied to neuron i.

Sub-Sampling Layers

Sub-sampling is a technique that is used in some convolutional networks that can reduce

computation time and increase the spatial and configurable invariance of the network. The

sub-sampling layers used in this paper always follow a convolutional layer. The sub-sampling

layers have the same number of feature maps as the previous convolutional layer has. This

is so that the maps in the two layers match up. Each map in the sub-sampling layer has one

quarter the number of neurons that are the preceding layers feature maps. Each neuron in

a feature map of a sub-sampling layer takes as input a 2x2 neighborhood of neurons from

the matching feature map in the preceding convolutional layer. These 4 neurons are then

each multiplied by a trainable bias and divided by 4. This essentially finds the average of

the outputs of the 4 neurons once they are combined with their trainable parameters. This

average is then run through the activation function in order to create the output for the
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neuron in the sub-sampling layer. This process is repeated in each sub-sampling layer in

the network. The equation below shows how this works:

xin = F (

∑
wijn x

j
n−1

4
) (2.12)

F is the activation function, xin is the output of the ith neuron on the nth layer, wijn is

the weight shared by the neurons i and j.

Output Layer

The output layer of a convolutional network is normally a convolutional layer that has

as many neurons as there are categories to classify. In the case of digit recognition, this

would be ten with each neuron corresponding to a single digit. Once a pattern has been run

through the entire network, the final output values of the neurons in this layer are analyzed

and a classification is chosen based on which neuron in the output layer has the highest

output value. This is how a convolutional network recognizes an image. The next section

will describe an example of a convolutional network and the modifications that were made

to it for the purposes of this paper.

Lenet-5

Figure 2.11: Lenet-5

Lenet-5, Figure 2.11, is a Convolutional network with 8 layers that is described in [9].

It was created to recognize handwritten numerical digits. The input layer takes in a 28x28

image that is then padded to 32x32. This allows any features that may reside on the edges

of an image to lie in the center of the receptive field of the feature maps.

The first Convolutional layer has 6 feature maps that are 28x28 neurons. Each neuron

has a receptive field that is a 5x5 neighborhood of the input image. These neighborhoods
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overlap to allow for multiple features to be detected in the same locations. The outputs of

the receptive field are convolved with the weight vector of the feature map and then added

to a trainable bias. The biases in lenet-5 are shared among members of a feature map.

This sum is then put into the sigmoid function to produce the output of the neuron. The

equation below shows how this is done. This is same equation described in the section on

convolutional layers.

xin = F (bi +
∑

wijn x
j
n−1) (2.13)

F is the sigmoid function, xin is output of the ith neuron on the nth layer, wijn is the

weight shared by the neurons i and j, and bi is the bias weight that is applied to neuron i.

The second layer is a sub-sampling layer with the same number of feature maps as the

previous layer. Each feature map in this layer has half of the neurons that the feature maps

in the previous layer have. The neurons in this layer take as input a 2x2 non-overlapping

area of the corresponding feature map in the previous layer. The input is then averaged

and added to a trainable bias before being passed through the sigmoid function to produce

the output of the neuron.

Figure 2.12: Lenet-5 Connection Table

This process is repeated in the next two layers, this time using 16 feature maps. The

difference here is that while the first Convolutional layer had only one input map, the second

one has 6. The feature maps of the second Convolutional layer are connected to the feature

maps of the first sub-sampling layer according to the table in Figure 2.12. The columns

represent feature maps in the second convolutional layer, the rows represent feature maps in

the first sub-sampling layer, and an X denotes a connection between the two feature maps.

This allows for the connections to remain within reasonable bounds.

After the second sub sampling layer, the network has two fully connected layers. One

has 120 neurons, and the next has 84 neurons. The layer with 84 neurons is used to compute

the Euclidean Radial Basis Function units (RBF), each unit representing a different class
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of number. The output of each such RBF unit is computed by:

yi =
∑
j

(xj − wij)2 (2.14)

A Variation on Lenet-5

The network created for this project is almost identical to lenet-5 with some important

distinctions. First, every feature map is connected to allow the features detected in each

map to be considered in each layer. The second difference is the use of a unique personal

bias for each neuron. The biases are not shared and each neuron has a unique trainable

biases in [11]. The last difference in this network is the removal of the RBF layer. The

output layer is replaced with a regular fully connected layer. This, again, is similar to the

network described in [11]. This allows for simpler construction, propagation, and training

throughout the network.

2.5 Artificial Neural Network Ensemble

One method of improving the accuracy of recognizing images is to use a network ensem-

ble. In a network ensemble, multiple networks are used to recognize the same image. This

increases the variability and generality in the training of the networks. Network ensembles

have also become more attractive due to the increase in parallel computing. This allows

multiple networks to be trained in a much shorter amount of time.

The main drawback to this method is the extra time that needs to be taken to train

each of the networks. This can be alleviated, however, since the networks can be set up

to run as separate entities, they could be set up to run in parallel. This would allow for

each network to be trained simultaneously. They would only need to be combined when

recognizing patterns.

2.5.1 Confidence Based Classification

The usual method of choosing how to classify an image is to use the average output.

This is calculated by calculating the average output vector for all of the networks in the

ensemble and then using that to identify the image.

Another method that can be used to identify an image is to use the different levels of

confidence each network has in it’s personal classification of the image. The network with

the highest confidence in it’s choice is used to identify the image.

The confidence of a network is determined by first having it classify an image. Now the

mean squared error for the recognition of the image is calculated with the assumption that
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the classification is correct. This is done by using the equation below:

Epn =
1

2

∑
(xin −Di

n)2 (2.15)

Here xin represents the output of the ith neuron in the output layer. Each of these

neurons corresponds to a category. A value of 1 for xin means that that the image fits that

category, a -1 means that it does not. Di
n represents the desired output for xin. In this case,

if the network classifies an image to lie in category k, then Di
n will be 1 for i = k and -1 for

i 6= k.

This confidence factor allows for a network to be chosen to decide the classification of

a pattern depending on how confidant it is in it’s decision. With this in place it is possible

to use two, or more, differing networks to decide on what to recognize an image as based

on how sure they are in their recognition.
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CHAPTER 3

LEARNING

3.1 The MNIST Database

The MNIST is a database of handwritten digits with 60,000 training samples and 10,000

test samples. The images have been size-normalized and centered into 28×28 pixel images.

This allows for the images to vary only slightly from sample to sample, freeing the network

to concentrate on feature extraction. The MNIST database has become a standard by

which to train and test the strength of an artificial neural network. The results on this

database are also well documented, allowing it to be a suitable benchmark by which to test

the network[3].

3.2 Network Initialization

3.2.1 Input Normalization

The values of the input pixels of each image are normalized to lie between the values of

-0.1 and 1.175. The background will be -0.1 and the absolute foreground would be 1.175.

All other values will fall between these two values. This allows for the mean input to be

about 0.0, and the variance to be about 1.0. This is done to speed up the learning process[9].

3.2.2 Weight Initialization

When creating the network, the weights are initialized randomly initialized using a

uniform distribution between -2.4/Fi and 2.4/Fi where Fi is the number of connections

associated with that weight. This is done to keep the initial standard deviation of the

weighted sums within the same range for all neurons while having a small enough magnitude

to be applied to the sigmoid function properly[9].
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3.3 Gradient Descent

Gradient descent is a method that has been used for many years to accurately train

convolutional networks. The next few sections introduce some adaptive forms of gradient

descent that allow the network to learn each training pattern at a rate based upon the error

of the network.

3.3.1 Stochastic Diagonal Levenberg-Marquadt Gradient Descent

The stochastic Levenberg-Marquadt algorithm is an adaptive learning method that cre-

ates a unique learning rate that is used to update the weights in a neural network. It is

explained in depth in [9] and [8]. The algorithm is very similar to the standard stochastic

gradient descent algorithm. The main difference here is that second order derivatives are

used to adapt the learning rate to the problem.

The mean squared error of the output map is used to determine the error of the network

for each input. Therefore, the mean squared error function is first calculated for each neuron

in the last layer.

Epn =
1

2

∑
(xin −Di

n)2 (3.1)

Here Epn is the mean squared error for the output of the network on training pattern

p. xin represents the output value of neuron i on layer n. Di
n is the desired output of this

neuron for the pattern p. Once this error is calculated, the first and second order partial

derivatives of the error function can be calculated for each neuron in the output layer.

∂Epn
∂xin

= xin −Di
n (3.2)

∂2Epn

∂xin
2 = 1 (3.3)

These values will be back propagated through the network in order to determine how

the parameters in the network will be updated. In order to do this, it is necessary to create

a few more functions that will help with the calculation of these weight changes.

First, remember that the sigmoid function that is used in this network is the soft sign

sigmoid. This function determines the output values of each neuron in the network. Con-

sider the ith neuron in the nth layer, denoted xin, with a total input value of yin. The value

of this neuron is calculated using the sigmoid function. In this case that is the hyperbolic
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tangent function introduced in [9]:

xin = F (yin) = 1.7159 tanh(
2

3
yin) (3.4)

The derivative of this function will then be:

F ′(yin) =
3.4318

3
(1− tanh(

2

3
yin)2) (3.5)

Now the next first and second order partial derivatives of the error function can be

computed:

∂Epn
∂yin

= F ′(ain)
∂Epn
∂xin

(3.6)

∂2Epn

∂yin
2 = F ′(ain)2

∂2Epn

∂xin
2 (3.7)

These values can then be used to calculate the partial derivatives of the error function

with respect to the weight that is going to be updated, wijn . This is the weight shared

between neuron i on the nth layer and neuron j on the n− 1 layer. Since the network used

has a weight sharing architecture, the output values of each neuron that shares the weight

wijn with neuron i must be summed up in order to properly calculate the proper derivatives.

∂Epn

∂wijn
=
∂Epn
∂yin

∑
xjn−1 (3.8)

∂2Epn

∂wijn
2 =

∂2Epn

∂yin
2

∑
(xjn−1)

2 (3.9)

Now, since the error values need to be back propagated through the network, it is

necessary to send the error values through to each neuron sharing a connection with neuron

i in the preceding layer. Note the weight sharing summations.

∂Epn

∂xjn−1
=
∂Epn
∂yin

∑
wijn (3.10)

∂2Epn

∂xjn−1
2 =

∂2Epn

∂yin
2

∑
(wijn )2 (3.11)

The learning rate is then calculated using the second derivative of the error function

with respect to the weight being updated. ε is the global learning rate that is preset in the

network and µ is a constant that is used to keep the learning rate from blowing up in the
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case that ∂2Ep
n

∂wij
n

2 is very small.

εijn =
η

µ+ ∂2Ep
n

∂wij
n

2

(3.12)

Once this learning rate is computed, the weight update can finally be updated.

δwijn = −εijn
∂Epn

∂wijn
(3.13)

This process is repeated for every layer in the network that has input connections,

starting at the last layer, and working the way back to the first layer.

3.3.2 Adaptive Momentum

One other improvement can be further added to the gradient descent algorithm presented

in the previous section. This is the adaptive momentum method described in [10]. This

technique speeds the convergence of the weights and allows for a greater accuracy to be

achieved by the network in a shorter amount of training epochs.

Here, δk−1wijn is the most recent update that was applied to the weight wijn . αijn is

the adaptive momentum rate that determines the strength that the previous update to the

weight will play in the current update.

δkwijn = −εijn
∂Epn

∂wijn
+ αijn δ

k−1wijn (3.14)

The adaptive momentum rate is set so that when the inner product of ∂Ep
n

∂wij
n

and δk−1wijn

is less than zero and the weight update will be in the same direction as the previous update,

the momentum rate is set using the equation below. If the inner product is not less than 0

and the weight updates are not in the same direction, then no momentum is applied.

αijn =

 α
−εijn

∂E
p
n

∂w
ij
n
δk−1wij

n

||δk−1wij
n ||2

if ∂Ep
n

∂wij
n
δk−1wijn < 0

0 else

(3.15)

A variation to this algorithm has been made so that when the inner product of ∂Ep
n

∂wij
n

and δk−1wijn is greater than 0 and the weight updates are in different directions, a negative

momentum rate is applied to the update. This allows for updates to speed up when they

are similar to previous ones and slow down when they are not. In order to ensure that the

slow down is not too large, the negative momentum is divided by 2. If the inner product is
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0, then no momentum is applied.

αijn =


α
−εijn

∂E
p
n

∂w
ij
n
δk−1wij

n

||δk−1wij
n ||2

if ∂Ep
n

∂wij
n
δk−1wijn < 0

α
εijn

∂E
p
n

∂w
ij
n
δk−1wij

n

2||δk−1wij
n ||2

if ∂Ep
n

∂wij
n
δk−1wijn > 0

0 else

(3.16)

3.3.3 Stochastic vs. Batch

There are two methods of updating the weights of a network in a gradient descent

learning algorithm, batch and stochastic. Batch gradient descent is when the gradients

are collected over the whole training set and then updated after each epoch. This method

allows for faster computation and makes it simpler to parallelize the learning algorithm. The

disadvantage to batch training is that the gradients are averaged over the whole training

set before being applied to the network. This method eliminates the advantage of learning

similar patterns in the same training set. For example, imagine that the network was

trained on two similar images. Batch training would average the gradient from both training

patterns and then apply the average. This would be similar to training on just one of the

images. The advantage of both images being similar is lost[9].

Stochastic training solves this problem by updating the network after each training

pattern. This way the network is improved with each and every pattern that is shown to

it. The disadvantage here is that it requires much more computation to execute. However,

overall, stochastic gradient descent is usually much faster than batch learning[8].

3.3.4 Neuronal Ranking

One method that was added to the algorithm was that of neuronal ranking. Values are

assigned to each neuron to determine their specific impact on the network. The values for

the input neurons were generated by averaging the normalized input values at each input

neuron for the entire training set. The average was then added to 1 in order to generate a

ranking value that circled around 1. Since the input is normalized, this allows the ranking

values to be normalized as well. Once the values for the input layer were determined, the

values for the neurons in each succeeding layer were calculated by taking the average of

all of the ranking values of the neurons that it receives input from. This is done for each

neuron in the network. Biases receive a ranking value of 1 so that the ranking value will

have no effect.

During training, the ranking value of an output neuron is multiplied into the ∂Ep
n

∂wij
n

calculation so that the weight updates will be increased or decreased depending upon the
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overall importance of that neuron in the network.

∂Epn

∂wijn
=
∂Epn
∂yin

∑
(impjn−1)(x

j
n−1) (3.17)

3.3.5 Mutated Values

In addition to the neuronal ranking system, a method of mutating the outputs of neurons

and the strengths of the weights was added to the learning phase of the networks. This

was done in an attempt to simulate real world noise and signal failure. The idea is that

by allowing the signals to be slightly inaccurate, the network would gain greater generality

in recognizing images. The signals were only mutated during the initial learning phase in

order to ensure consistent performance once fully trained. In order to simulate the signal

failure, the equation for the input of a neuron, equation 2.11, was altered using the following

equations:

xin = F (bi +
∑

(wijn + (rw|wijn |m−
|wijn |m

2
))(xjn−1 + (rx|xjn−1|m−

|xjn−1|m
2

))) (3.18)

Here, rw and rx are uniformly generated random values from 0 to 1 created indepen-

dently for the weight value and the neuron output value respectively. m is a mutation

factor that allows for the scaling of the strength of the mutations. In this paper, m = 0.05.

The mutations were kept small so that the neuron signals were not distorted to a point of

negatively affecting the rate of learning.

3.4 Distortions

One of the issues encountered when training a network with a gradient descent algorithm

is that it requires labeled training data in order for the network to learn. The more varied

the data, the more general the network can be. However, there is a limited supply of labeled

training data available. A method has been proposed for expanding the training set using

elastic distortions to distort the training images in [11]. This allows the network to learn

from a more varied set of training data without the need of more labeled images.

The method used in this project employs the use of elastic distortions as well as trans-

lations, rotations, and scaling. All of the distortions are created randomly before training

on each image. This makes it very unlikely that the network would ever see the exact same

image more than once.

In order to perform randomized elastic distortions, two different random displacement

fields are created for each image, one for horizontal distortions and one for vertical dis-
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tortions. The values in these displacement fields are uniform random numbers between -1

and 1. The values are then convolved with a Gaussian of standard deviation σ pixels. The

values are then normalized to a value of 1 and multiplied by a constant that is used to con-

trol the strength of the distortion. These displacement fields now hold the new horizontal

and vertical positions of the pixels in the input image. These values are then applied using

interpolation in order to create the elastically distorted input image. The values used for

the elastic distortion are based on the values used in [4].

The elastically distorted images are then scaled by a random percentage between -15%

and 15%, rotated by a random angle between -15◦ and 15◦, and then translated by a random

step size between -1.5 and 1.5. These transformations are then applied using interpolation

to create a brand new training image.

3.5 Fine-Tuning

One of the issues with constantly distorting the training images is that the network does

not get a chance to settle it’s weights to some constant values. The ever changing input

images keep the weights circling around their ideal locations without being able to hit them.

One way to alleviate this issue is to train the network on the non-distorted training set for

a few epochs after the training has completed. This allows for the network to be trained

on the distorted training set, while also giving it time at the end to settle into its desired

state.

3.6 A Transitional Training Program

This project used the basic idea behind fine-tuning to create a training program designed

to reduce the learning rate at a faster pace as the network trained. The learning rate is first

initialized to 0.001. The learning rate is then degraded by 10% for the first two epochs and

then dropped by 10% every two epochs following that. After 20 epochs, the learning rate is

set to 0.0001 and then degraded by 10% every two epochs. This is done until the network

has been trained for 40 epochs. After this, the network is then trained for ten epochs on

the undistorted training set. This method of gradual decay of the learning rate allows the

training of the network to smoothly transition from a strong initial learning phase into a

soft fine-tuning. This transition helps situate the weights of the network into the desired

values for accurate predictions.
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3.7 Unsupervised Experience Learning

Since a network can be trained to such a high level of efficiency, it can be assumed that

the network will recognize unseen patterns accurately. This allows an unsupervised gradient

descent algorithm to be run while testing the network. This test/learning epoch will first

attempt to categorize a testing pattern and then learn the pattern based on how the network

categorized it. For example, if the testing pattern was recognized by the network to be a

2. Then the output neuron for 2 would be trained to a value of 1 while the other output

neurons would be trained to a value of -1. In other words, the network would be trained

on an image assuming that the networks original classification of the image were true. This

allows for the network to never stop learning patterns that it encounters. This is similar to

how a person learns how to read different types of handwriting. When a slightly unfamiliar

letter is read, the person will first figure out what they think the letter is, which in most

cases will be correct, then they store that image in their memory so that when another

similar letter is read it can be recognized quickly. This method helps to incorporate the

idea of learning from life experience into the network rather than just learning through a

specified training phase.

There are two drawbacks to this method. First, the network must first be trained to

a high enough level of accuracy so that a very large percentage of patterns encountered

will be recognized correctly. Second, if the network does come across a lot of ambiguous

patterns in a row and mis-recognizes them, it can negatively affect the performance of the

network. However, since the learning rate is kept low for unsupervised experience learning,

the likelihood that the network would come across such a situation is unlikely. Just in case,

the learning rate is altered depending on how confident the network is in it’s classification

of the pattern that it is learning. The more confident the network, the higher the learning

rate, the less confident, the lower the learning rate.

This process can be further controlled when done using network ensembles. In this

case a pattern would be classified by the same method that the ensemble would usually

classify it. Then the unsupervised experience learning will commence for each network in

the ensemble based on how the ensemble as a whole classified the image.
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CHAPTER 4

RESULTS

This section will display the results obtained from training an ensemble of 8 convolutional

networks on the MNIST training set. First, the benefit of using distorted training images

will be shown, Then, the advantage that can be gained by adding momentum to the training

algorithm will be discussed. And finally, the results of training the network ensemble will

be displayed.

Figure 4.1: Error Rate of Testing Set with Different Levels of Distortions.

It has been stated in a previous section that a large improvement can be made by

distorting the training images so that the network learns on an ever changing array of

data. Figure 4.1 shows that this is very true. After 20 epochs, the network trained with

no distortions ended with a error rate of 1.21% on the testing set with a best error rate

of 1.02% achieved after 12 epochs. The network trained using rotation, translation, and

scaling distortions finished with an error rate of 0.81% with a best error rate of 0.69%

achieved after 16 epochs. Once elastic distortions were added to the distorted training set,
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the network finished with a best error rate of 0.66%. This clearly shows the benefit of using

elastic distortions to train the network.

Figure 4.2: Error Rate of Testing Set using Adaptive Momentum.

Adding adaptive momentum to the gradient descent algorithm used to train the network

has a positive effect as well. This is shown in Figure 4.2. The results here show a network

trained without momentum, a network trained with adaptive momentum, and a network

trained with adaptive momentum using the softsign sigmoid function. The graph clearly

sows the benefit of using the adaptive momentum technique.

The graph also shows, as hypothesized, that the softsign sigmoid function does not

perform as well as the hyperbolic tangent function in high accuracy networks. This is

likely due to the previously mentioned issue of the absolute value of the second derivative

not having maximum values at 1 and -1. This characteristic would contribute to a slowed

convergence of the outputs to 1 and -1.

After 20 epochs, the network trained with no momentum ended with a best error rate

of 0.66%. The network trained with adaptive momentum using the softsign sigmoid func-

tion ended with an error rate of 0.79% with a best error rate of 0.75% achieved after 17

epochs. The network trained with adaptive momentum using the hyperbolic tangent sig-

moid function ended with an error rate of 0.66% with a best error rate of 0.61% achieved

after 18 epochs. The graph clearly shows the benefit of using adaptive momentum to train

the network.

Now that the best methods for training a singular network have been deduced, they can

be applied to an ensemble of many neural networks. Figure 4.3 shows a graph displaying

the results obtained by using an ensemble of 8 artificial neural networks. In this case, each

network is identical to the next except that they have different initial weight values. The
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Figure 4.3: Error Rate of Testing Set using an Ensemble of 8 Networks.

training images are distorted before being passed into each network so that each network is

trained on a slightly different set of images. This allows for more variability in the training

of the networks and leads to greater generality when classifying the images on the testing

set. For each epoch, the networks were trained in parallel on the distorted training sets and

then run sequentially in order to classify the testing set. The training method is described

in detail in the section on fine-tuning.

The two methods used to identify the testing set were average output and confidence

based classification. These are the methods that were discussed in a previous section.

From the graph, it is clear that the average output method outperforms the confidence

based method on most of the epochs. However, The confidence based technique responded

extremely well to the fine-tuning phase that used the undistorted training set. Prior to this

phase the confidence based method yielded results that were more erratic and less accurate

than the average output method, but once the final phase of fine-tuning commenced, the

results of the confidence based method leveled out and actually outperformed the average

output technique. This shows that the confidence of the networks in the ensemble increased

once they were trained on the undistorted training set.

After 50 epochs, the average output technique ended with an error rate of 0.43% and a

best error rate of 0.42% achieved after 21 epochs. The confidence based technique finished

with a best error rate of 0.4% that it first reached after 44 epochs. This is a very strong

result, especially considering the fact that the networks are all virtually identical and trained

on similar data as discussed previously. None of the networks were specialized for any type

of data, and the images passed into the networks were trained using the same techniques.

The integration of the mutated signals into the networks, as described in section 3.3.5,
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improved the overall accuracy of the ensemble slightly. The mutated values were only

used during the initial training phase with a mutation factor of 0.05. The values were not

mutated for the ensemble on the testing set. This improved the final error rate to a value

of 0.38%. This improvement is likely due to the increased generality that was gained due

to the networks not being trained with complete efficiency on the training set.

Paper Error Rate on the

MNIST Testing Set

Deep Big Simple Neural Nets Excel on

Handwritten Digit Recognition[4]

0.35%

This paper 0.38%

Best Practices for Convolutional Neural

Networks Applied to Visual Document

Analysis[11]

0.40%

What is the Best Multi-Stage Architecture

for Object Recognition?[5]

0.53

Deformation Models for Image

Recognition[6]

0.54%

A Trainable Feature Extractor for Hand-

written Digit Recognition[7]

0.54%

Gradient-based Learning Applied to Doc-

ument Recognition[9]

0.70%

The table above shows the results of various different methods of training artificial neural

networks on the MNIST training set. It can be seen from the table that the method used in

this paper has achieved an error rate on the MNIST testing set that is in line with some of

the top performing networks out there. The network used in [4] did perform better, however

that network was extremely dense with close to 10 million trainable parameters and took

hundreds/thousands of epochs to train. The networks used in this paper each have 61,492

trainable parameters and took only 50 epochs to train. Granted there are 8 networks, but

that is still only 491,936 trainable parameters when combined.

Once the training of the network was complete, the experience learning technique men-

tioned in a previous section was applied on the testing set. The network was then tested on

the testing set in the normal way. The experience learning epoch yielded an error rate of

0.38%, and the subsequent confidence based test yielded an error rate of 0.38%. While this

is not an improvement on the previous listed error rate, an improvement can be seen when

looking at the average mean squared error of the testing set. The average mean squared

error on the testing set before the experience learning epoch was 0.0143703, and it was
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0.0143199 after the experience learning. This shows that there is an advantage to having

a network learn from experience. Although the improvement is small, it should also be

greater when used to classify larger amounts of data as the testing set only contains 10,000

images.
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CHAPTER 5

CONCLUSION

This paper has presented a method for using an ensemble of artificial neural networks to

recognize handwritten digits. The networks were created based on the design presented

in [9], with some modifications. The networks were then trained with elastically distorted

training images using the values presented in [4] and the technique presented in [11]. The

technique for learning the images is a combination of the stochastic levenberg-marquadt gra-

dient descent algorithm presented in [9], and the adaptive momentum technique presented

in [10], again with some modifications.

The combination of these various techniques into a single convolutional network results in

a very accurate network. However, this accuracy has been improved by combing 8 different

versions of the network and using the network that is the most confident in it’s classification

of a test image to decide on how to recognize the image. This network ensemble performs

very well when recognizing the testing images on the MNIST database. It was able to

achieve an error rate of 0.0040 for the image set. This is a vast improvement over even the

best error rate earned by the single network system, 0.0066.

It is clear that a large improvement in the accuracy of an artificial neural network system

can be achieved by using ensembles of multiple neural networks.
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