
Methods in Large Scale Inverse Optimal Control

by

Mathew Monfort
B.A. Mathematics (Franklin and Marshall College) 2009
M.S. Computer Science (Florida State University) 2011

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Brian Ziebart, Chair and Advisor
Tanya Berger-Wolf
Piotr Gmytrasiewicz
Lev Reyzin, Mathematical Computer Science
Peter Carr, Disney Research Pittsburgh

Copyright by
Mathew Monfort

2017

For Yella

iii

ACKNOWLEDGMENTS

I attribute the quality of the work in this thesis to my Advisor Brian Ziebart and the Pur-
poseful Prediction Lab for allowing me to work on a large variety of problems while a student
at UIC. I also want to thank my collaborators without whom much of the work in this thesis
would not have come to fruition: Anqi Liu, Xiangli Chen, Brenden Lake, Arunkumar Byravan,
Patrick Lucey, Matthew Johnson, Katja Hofmann, Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Lawrence D Jackel, Urs Muller, Xin Zhang, Karol
Zieba, Timothy Luciani, Liz Marai, Sima Behpour, Christopher Schultz, Kaiser Asif and Xiuwen
Liu.

iv

CONTRIBUTION OF AUTHORS

Chapter 1 intoroduces the general motivation and problem this document attempts to solve
and was written solely by me. Chapter 2 introduces related work to provide the broader scien-
tific context of this document and was written solely by me. Chapter 3 is a previously presented
in a workshop (51) but not formally published in any proceedings or journal. I developed the
conceptual framework. My advisor, Brian Ziebart, guided this project and provided very help-
ful feedback throughout the process. I was the primary author. Chapter 4 is a published
manuscript (50) for which I developed the conceptual framework and wrote the manuscript in
close collaboration with my advisor Brian Ziebart. I was the primary author. Chapter 5 provides
an overview and analysis of the results generated using the methods described in chapters 3
and 4. A large portion of this chapter is from a published manuscript (50) where I developed the
conceptual framework, designed and carried out the experiment, and performed the analysis.
The experiment was carried out on handwriting data collected by Brenden M. Lake and Josh
Tenenbaum and professional soccer data provided by Patrick Lucey. I was the primary author
of the paper. Chapter 6 is a published manuscript (52) for which I developed the conceptual
framework, designed and carried out the experiment, performed the analysis, and wrote the
manuscript in close collaboration with my advisor Brian Ziebart and Anqi Liu. I was the primary
author of the paper. Chapter 7 is partially work previously presented in a workshop (13) but not
formally published in any proceedings or journal and work from a published manuscript (12) of
which I was a contributing author. I developed the conceptual framework, designed and car-
ried out the experiment, and performed the analysis for all sections pertaining to the waypoint
guided linear quadratic regulation method that the chapter focusses on. The remainder of the
papers were completed with Arunkumar Byravan as the primary author with assistance from
myself, Brian Ziebart, Byron Boots, and Dieter Fox. Chapter 8 concludes the document with a
discussion of the presented methods and future directions of this work and was written solely
by me.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Overview . 2

2 BACKGROUND AND RELATED WORK . 4
2.1 Markov Decision Processes . 4
2.2 State-space graphs . 4
2.3 Heuristic-guided search . 5
2.4 Inverse Reinforcement Learning 6
2.5 Maximum Entropy Inverse Optimal Control 7
2.6 Approximate Maximum Entropy Inverse Optimal Control . . . 8
2.7 Maximum Margin Planning . 8
2.8 Continuous Maximum Entropy Inverse Optimal Control 9
2.9 Locally Optimal Continuous Inverse Optimal Control 10
2.10 Maximum Entropy Modeling via Symmetric Partition Functions 11

I Approximating Path Distributions in Weighted Graphs 12

3 HEURISTIC-GUIDED SOFTENED VALUE ITERATION 15
3.1 Heuristic-guided policy approximation 15
3.2 Greedy selection of the approximation set 16
3.3 Heuristic-Guided Softened Value Iteration 16

4 SOFTSTAR: BOUNDED APPROXIMATE PATH DISTRIBUTIONS VIA HEURISTIC-
GUIDED SEARCH . 18
4.1 Inference as softened planning 19
4.2 Challenges and approximation desiderata 21
4.3 Regimes of Convergence . 21
4.4 Computing approximation error bounds 22
4.5 SoftStar: Greedy forward path exploration and backward cost-

to-go estimation . 24
4.5.1 Increasing Efficiency in Single Goal Graphs via Bidirectional

Search . 26
4.6 Completeness guarantee . 28
4.7 Inference Comparisons on Synthetic Data 28
4.8 Feature expectations and gradient computation 29

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5 EXPERIMENTAL VALIDATION AND DISCUSSION 30
5.1 Comparison approaches . 30
5.2 Character drawing . 30
5.2.1 Demonstrated data . 30
5.2.2 State and feature representation 31
5.2.3 Heuristic . 31
5.2.4 Estimated parameters . 32
5.3 Professional Soccer . 32
5.3.1 Demonstrated data . 32
5.3.2 State and feature representation 32
5.3.3 Heuristic . 33
5.3.4 Estimated parameters . 33
5.4 Results . 33
5.4.1 Learning efficiency . 33
5.4.2 Inference efficiency . 34
5.5 Discussion . 35

II Inverse Linear Quadratic Regulation 36

6 INTENT PREDICTION VIA INVERSE LINEAR QUADRATIC REGULATION 38
6.1 Related Work . 38
6.2 Approach . 39
6.2.1 State Representation and Quadratic Cost Matrices 39
6.2.2 Inverse Linear-Quadratic Regulation for Prediction 40
6.2.2.1 Update Rule Derivation . 42
6.2.3 Bayesian Intention and Target Prediction 46
6.2.4 Complexity Analysis . 46
6.3 Experimental Setup . 46
6.3.1 Cornell Activity Dataset . 46
6.3.1.1 Modifications . 47
6.3.1.2 Test set . 47
6.3.2 Model Fitting . 47
6.3.2.1 Estimating the Quadratic Parameters 47
6.3.3 Target and Intention Sampling 47
6.3.3.1 Intention Sampling . 47
6.3.3.2 Target Sampling . 47
6.3.3.3 Segmentation and Duration Sampling 48
6.3.4 Prior Distributions . 48
6.3.4.1 Target Distance Prior . 48
6.3.4.2 Markov Intention Prior . 48
6.3.4.3 Combining for a Full Prior . 49

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.3.5 Prediction . 49
6.3.5.1 Current Target . 49
6.3.5.2 Next Target . 49
6.3.5.3 Notes on Segmentation Prediction 49
6.4 Evaluation . 49
6.4.1 Comparison Metrics . 49
6.4.2 Execution Time . 50
6.4.3 Predictive Results . 50
6.5 Discussion . 53

7 WAYPOINT GUIDED INVERSE LINEAR QUADRATIC REGULATION . . 54
7.1 Waypoint-based MaxEnt Inverse Linear-Quadratic Regulation 54
7.2 Approach . 55
7.3 Empirical Results . 59
7.3.1 Discrete Path Generation . 60
7.3.2 Continuous state-action representation 61
7.3.3 Evaluation measures . 61
7.3.4 Empirical Results . 62
7.3.4.1 Test Scenes . 62
7.3.4.2 Random Scenes . 62
7.4 Discussion . 63

8 CONCLUSION . 64
8.1 Future Work . 65

CITED LITERATURE . 66

APPENDIX . 74

viii

LIST OF TABLES

TABLE PAGE
I Accuracy and macro precision and recall with standard error for

current activity detection when different percentages of the sequence
are observed. 52

I Learning performance on the withheld set (Test) and the randomly
generated set (Random). 62

ix

LIST OF FIGURES

FIGURE PAGE
1 State expansion map. Rectangular nodes are members of the ap-

proximation set Sapprox. Though they lead to other states, a heuristic
function, V+(s), is employed to approximate their values rather than re-
cursively computing them. 16

1 The approximation state set (within solid line) and the approximation
neighbor set (between solid line and dashed line) with start and goal
states (non-shaded nodes). 23

2 A comparison of inference efficiency using varying ratios of the true
softmin distance as heuristic values. 28

1 Demonstrated construction of the character ‘K’ showing the sequence
of pen strokes and the nodal representation. 31

2 Training efficiency experiments on the Character domain (left) and
the Soccer domain (right). 33

3 Inference efficiency evaluations for the Character domain (left) the
Soccer domain (right). 34

1 Average predictive loss of current target with partially observed tra-
jectories. We compare the results of the distance and the distance-
activity full prior with LQR. 50

2 Average predictive loss of next target with partially observed trajec-
tories. We compare the results of the distance and the distance-activity
full prior with LQR. 51

1 PR2 robot completing a task in a cluttered environment. 54
2 Barrett Whole Arm Manipulator (BarrettWAM). 59
3 BarrettWAM and three objects with Start (transparent) and Goal

(solid) configurations from the Approach-Right (T1) task. The target
is the object closest to the end-effector. 60

x

SUMMARY

As our technology continues to evolve, so does the complexity of the problems that we
expect our systems to solve. The challenge is that these problems come at increasing scales
that require innovative solutions in order to be tackled efficiently. The key idea behind Inverse
Optimal Control (IOC) is that we can learn to emulate how a human completes these complex
tasks by modeling the observed decision process. This thesis presents algorithms that extend
the state-of-the art in IOC in order to efficiently learn complex models of human behavior.

We explore the use of an admissible heuristic in estimating path distributions through
weighted graphs. This includes a modified version of the softened policy iteration method
used in Maximum Entropy Inverse Optimal Control and present the SoftStar algorithm which
merges ideas from Maximum Entropy IOC and A* Search for an efficient probabilistic search
method that estimates path distributions through weighted graphs with approximation guaran-
tees.

We then explore IOC methods for prediction and planning in problems with linear dynamics
that require real-time solutions. This includes an inverse linear quadratic regulation (LQR)
method for efficiently predicting intent in 3-dimensional space and a discrete-continuous hybrid
version of inverse LQR that uses discrete waypoints to guide the continuous LQR distribution.

The presented techniques are evaluated on a number of different problem settings includ-
ing planning trajectories of handwritten characters, modeling the ball-handler decision process
in professional soccer, predicting intent in completing household tasks, and planning robotic
motion trajectories through a cluttered workspace.

xi

CHAPTER 1

INTRODUCTION

Partially published in the Proceedings of the Neural Information Processing Systems Conference
(https://papers.nips.cc/paper/5889-softstar-heuristic-guided-probabilistic-inference) (50).

The mechanical and cognitive properties of the human body and mind consistently bias
the way that we solve the problems we encounter. Human behavior is much more structured
than physical limitations require; variability in tasks ranging from manipulating an object (14)
to locomoting (70) is relatively small. In order to model human behavior we must first develop
systems that can learn this structure within the associated decision processes.

Inverse optimal control (IOC) (33), also known as inverse reinforcement learning (54; 1) and
inverse planning (5), has become a powerful technique for learning to control or make deci-
sions based on expert demonstrations (1; 63). Rather than directly imitating the demonstrated
control policy by learning a mapping from state to control (i.e., behavioral cloning) (61), IOC
estimates an underlying feature-based utility function that motivates the observed behavior
(rationalizes an expert’s demonstrated control sequences) (54). This estimated utility function
produces solution policies that typically generalize across different decision processes far bet-
ter than directly estimated policies. These estimated utilities can then be used in an (optimal)
controller to solve new decision problems, producing behavior that is similar to demonstrations.

Predictive extensions to IOC (53; 81; 4; 52; 62; 10) recognize the inconsistencies, and
inherent sub-optimality, of repeated behavior by incorporating uncertainty. For instance, Max-
imum Entropy IOC (81) methods estimate a stochastic policy that is most uncertain while still
guaranteeing the same expected cost as demonstrated behavior on an unknown cost function
(1). This allows for the optimal path to have the highest probability with non-optimal paths
becoming exponentially less likely under a stochastic policy that is dependent on the expected
cumulative cost of the succeeding trajectory. These methods provide probabilistic forecasts of
future decisions in which stochasticity is due to this uncertainty rather than the stochasticity
of the decision process’s dynamics. These models’ distributions over plans and policies can
typically be defined as softened versions of optimal sequential decision criteria.

A key challenge for predictive IOC is that many decision sequences of interest are embed-
ded within exceedingly large decision processes. Additionally, standard IOC requires solving
the ’forward’ task of finding the optimal policy for each update of the cost function. This is
needed to calculate the feature expectations necessary to update the cost function parame-
ters. This becomes expensive in large-scale problems with complex decision spaces. Symme-
tries in the decision process can be exploited to improve efficiency (75), but decision processes
are not guaranteed to be (close to) symmetric. Maximum Margin Planning (63) address the
problem of learning complex behavior by framing the problem as a maximum margin classifier
allowing for an optimal control solution to be used as a sub-routine rather than integrating over
the set of possible sequences in Maximum Entropy IOC (81), however it makes the assump-
tion that the demonstrated behavior is optimal and can be expressed via a single function.

1

2

Local optimality can also be exploited for efficiently learning complex continuous sequences
of behavior (46) by locally approximating the probability distribution, but the assumption of a
deterministic fixed horizon problem and the neglect of global optimality in the demonstrated
behavior limits its practicality in many complex tasks.

This thesis develops methods that address the problem of increased complexity and in-
tractable solutions for inverse optimal control in large decision processes in both discrete and
continuous settings.

We consider discrete and continuous decision process representations in our proposed
methods. For the discrete case, we incorporate ideas from A* search into the Maximum En-
tropy IOC (82) framework in order to efficiently approximate the probable behavior patterns
resulting from the estimated utility function. This allows for us to accurately model control
policies in large scale decision processes with reasonable complexity and approximation guar-
antees in discrete settings.

We then introduce a continuous IOC method (Inverse Linear Quadratic Regulation) for
developing real-time predictions in complex settings. This is beneficial for any task that requires
interaction with the modeled system (e.g., human-robot interaction). We extend this method
further to incorporate discrete paths, which can be generated from a discrete IOC model, that
bind the predicted/planned continuous trajectory distributions as waypoints guiding the LQR
system.

The presented methods each address a specific problem related to modeling large scale
decision processes including discrete sampling, discrete searching, continuous prediction and
hybrid discrete-continuous planning. The main goal of this work is to develop techniques that
will allow for more complex behavior models to be formed as the scale of the problems being
discovered increase in complexity.

Overview

This thesis is separated into three parts: Introduction and Background, Approximating Path
Distributions in Weighted Graphs, and Inverse Linear Quadratic Regulation. This separation
helps to organize the work into two major areas of contribution: discrete and continuous IOC.

The first part (Introduction and Background) introduces the general problems associated
with large scale inverse optimal control and includes a background chapter describing any pre-
requisite knowledge that may be needed in order to gain a full understanding of the rest of the
thesis.

The second part (Approximating Path Distributions in Weighted Graphs) explores the use
of an admissible heuristic to aid in estimating near optimal path distributions through weighted
graphs. This includes a modified version of the softened value iteration method used in Maxi-
mum Entropy Inverse Optimal Control (IOC) (82) and introduces the SoftStar algorithm which
merges ideas from Maximum Entropy IOC and A* Search (29) in order to form an efficient
probabilistic search algorithm that estimates path distributions through weighted graphs with

3

approximation guarantees. We end this part with a chapter highlighting the experimental re-
sults of the proposed algorithms in two complex discrete decision problems.

The third part (Inverse Linear Quadratic Regulation) focuses on continuous IOC methods
for prediction and planning in problems that require real-time solutions under assumed linear
dynamics. We begin with a chapter detailing an inverse linear quadratic regulation (LQR)
method for efficiently predicting intent and forecasting future trajectories in three dimensional
space. We then extend that idea in the following chapter to incorporate discrete trajectories in
the form of waypoints that guide the continuous LQR distribution. Both of the chapters in this
part include experimental results on complex problem settings requiring the unique benefits of
each algorithm respectively.

We then finish with a final chapter detailing closing remarks, directions for future research,
and general thoughts regarding the presented material.

CHAPTER 2

BACKGROUND AND RELATED WORK

Partially published in the Proceedings of the Neural Information Processing Systems Conference
(https://papers.nips.cc/paper/5889-softstar-heuristic-guided-probabilistic-inference) (50).

Markov Decision Processes

A Markov decision process is defined by a tuple (S,A, T , R) of states s ∈ S, actions a ∈ A, a
probabilistic state transition mapping T : S × A → S, and a reward function R : S × A → R
mapping state transitions to reward values. A policy π : S → A maps states to actions and
represents a decision making process1. The optimal policy maximizes the expected cumulative
reward,

π∗(si) = argmax
π

Eπ
[T∑
t=i

R(st, at)
]
. (2.1)

In practice, the anticipated reward of taking action at when in state st is represented by a
state-action value function Q(st, at). Maximizing over the set of possible actions results in the
state value function and optimal policy,

V(st) = max
at
Q(st, at), (2.2)

π(st) = argmax
at

Q(st, at). (2.3)

Equivalently, the optimal policy satisfies the Bellman equation (9),

Q(st, at) = E[V(st+1)|st, at] + R(st, at), (2.4)

which can be obtained with value iteration—a dynamic programming algorithm that iteratively
computes V(st) and Q(st, at) to obtain the cumulative expected rewards of the optimal policy
when starting from state s1.2

1More generally, a policy estimates the probability distribution over possible actions, Π : S → ∆A, which is then
sampled to select a particular action

2Dijkstra’s algorithm (20) is a similar dynamic program for finding optimal paths for decision processes with
deterministic dynamics.

4

5

State-space graphs

The space of plans and their costs can be succinctly represented using a state-space graph,
G = (S, E , cost). Vertices, s ∈ S, represent states of the planning task and directed edges,
eab ∈ E , represent available transitions between states corresponding to vertices sa and sb.
The neighbor set of vertex s, N (s), is the set of vertices to which s has a directed edge. A cost
function, cost(s, s ′), represents the relative desirability of transitioning between states s and
s ′, and can be incorporated into the state-space graph on each edge.

The optimal plan from state s1 to goal state sT is a variable-length sequence of states,
(s1, s2, . . . , sT) forming a path through the state-space graph that minimizes a cumulative penalty.
Letting h(s) represent the cost of the optimal path from state s to the goal state sT (i.e., the
cost-to-go or value of s) and defining h(sT) , 0, the optimal path corresponds to a fixed-point
solution of the next state selection criterion (9):

h(s) = min
s ′∈N (s)

h(s ′) + cost(s, s ′), (2.5)

st+1 = argmin
s ′∈N (st)

h(s ′) + cost(st, s
′). (2.6)

The optimal path distance from the start state, d(s), can be similarly defined (with d(s1) , 0)
as

d(s) = min
s ′:s∈N(s ′)

d(s ′) + cost(s ′, s). (2.7)

Dynamic programming algorithms, such as Dijkstra’s algorithm (20), search the space of
paths through the state-space graph in order of increasing d(s) to find the optimal path. Doing
so implicitly considers all paths up to the length of the optimal path to the goal state.

Heuristic-guided search

Additional knowledge can significantly reduce the portion of the state space needed to be ex-
plored to obtain an optimal plan. For example, A* search (29) explores partial state sequences
by expanding states that minimize an estimate,

f(s) = d(s) + ĥ(s), (2.8)

combining the minimal cost to reach state s, d(s), with a heuristic estimate of the remaining
cost-to-go ĥ(s).

6

When the heuristic estimate is admissible (i.e., a lower bound, ĥ(s) ≤ h(s) for all s ∈ S),
the algorithm can terminate with the guaranteed optimal solution once the best “unexpanded”
state’s estimate, f(s), is worse than the best discovered path to the goal state.

Algorithm 1 A* Search with admissible heuristic
Input: State-space graph G, start state s1, goal state sT, heuristic function ĥ
Output: Optimal path cost
Set d(s) =∞ for all s ∈ S Insert (s1, ĥ(s1)) into priority queue P
while d(sT) ≥ min estimate in P do

(s, f(s))← state/estimate of min element popped from P
if (f(s) − ĥ(s) < d(s)) then

Set d(s) = f(s) − ĥ(s)
for s ′ ∈ N(s) do

(Re-)Insert (s ′, d(s) + cost(s, s ′) + ĥ(s ′)) in P
end

end
end
return d(sT)

A* search using an admissible heuristic is described in Algorithm 1. Note that if s ′ already
exists in the priority queue, its estimate can be updated to the minimum of the new insertion
estimate and previous estimate rather than including repeated states with different estimates in
the priority queue. Any additions that are worse than previously expanded states can likewise
be discarded. Further, when the heuristic function is monotonic, subsequent exploration (i.e.,
popping from the priority queue) of the same state in A* (Algorithm 1) will always have larger
distances. Thus, the A* algorithm can terminate when the goal state is explored, and, more
generally, only states that have not already been explored need to be added to the queue (18).

Extensions to A* for parametric planning leverage the concavity of weighted multi-criterion
planning objective functions to efficiently provide optimal plans for different trade-offs in plan
criteria (80).

7

Inverse Reinforcement Learning

Reinforcement learning (69) is the process by which an agent finds the optimal policy given
a reward function in an unknown environment. If we can consider Equation 2.4 with a given
reward function and unknown stochastic dynamics, T : S ×A× S ′ → P(S ′|S,A),

Q(st, at) =
∑
st+1∈S

p(st+1|st, at)V(st+1) + R(st, at)

= E[V(st+1)|st, at] + R(st, at), (2.9)

the goal of reinforcement learning is to find the optimal policy that maximizes the given reward
function.

Inverse reinforcement learning (56) optimizes the reward function with the goal of match-
ing the policy found by reinforcement learning to the observed policy in a set of demonstrated
behavior. An initial reward function is used to generate a policy which is then evaluated and
compared to the demonstrated policy. Using this information, the reward function is then up-
dated in order to reduce the error between the value of the demonstrated policy and that of the
policy dictated by the current reward function,

[
V∗(s) − Vπ(s)

]
.

Maximum Entropy Inverse Optimal Control

Inverse Optimal Control (IOC) (33; 11; 55) estimates the reward/cost function that makes
demonstrated sequential behavior optimal in a known environment (given transition dynam-
ics). Abbeel and Ng (2) solved this problem by constructing a distribution over optimal policies
that matches feature counts with demonstrated behavior:

EP̂

[
T∑
t=1

f(st, at)

]
= EP̃

[
T∑
t=1

f(st, at)

]
. (2.10)

When we model the unknown cost function as a linear function of these features, f , and a set
of learned parameters, θ,

cost(st, at) , θ
Tf(st, at), (2.11)

matching feature counts guarantees that the estimated control policy (mixture) will realize the
same expected cost as the demonstrated behavior.

Maximum entropy IOC algorithms (81; 78) achieve this by obtaining a stochastic action
policy that is most uncertain while still guaranteeing the same expected cost as demonstrated
behavior on an unknown cost function (1). This is done by obtaining the stochastic policy that

8

is least biased while still satisfying Equation 2.10. Maximum entropy IOC allows for the optimal
path to have the highest probability with non-optimal paths becoming exponentially less likely
under a stochastic policy that is dependent on the expected cumulative cost of the succeeding
trajectory,

P̂(s1:T ,a1:T) =
1

Z
e−
∑T
t cost(st,at), (2.12)

where Z is the partition function that requires knowledge of the complete policy under the
current cost function.

Calculating the marginal state probabilities of this distribution is important for making pre-
dictions and estimating model parameters. The forward-backward algorithm (6) can be em-
ployed, but for large state-space graphs it may not be practical.

To ensure the maximum entropy conditions are satisfied, we replace the max(·) operation
in (Equation 2.2) with a continuous relaxation (the softmax) using the log-sum-exponential
expression (78),

V(st) = softmax
a∈Ast

Q(st,at) , log
∑

a∈Ast

eQ(st,at). (2.13)

With a probabilistic policy formed using a Gibbs distribution (rather than a deterministic
policy mapping states to actions),

π̂(at|st) = e
Q(st,at)−V(st). (2.14)

The optimization problem is to learn a cost function (Equation 2.11) that explains the ob-
served behavior preferences of a given set of demonstrations. We can solve this by first
forming the objective function,

L(θ) = Eπ̂
[
V(s1)

]
− Eπ̃

[T̃∑
t=1

θT f(st,at)
]
, (2.15)

and then updating the weight vector, θ, with a gradient derived from Equation 2.15 which
computes the difference in the feature expectations found using the computed policy, π̂, and
those of the demonstrated policy, π̃ (81),

∇L(θ) = Eπ̂
[T̂∑
t=1

f(st,at)
]
− Eπ̃

[T̃∑
t=1

f(st,at)
]
. (2.16)

9

Approximate Maximum Entropy Inverse Optimal Control

An approximation of Maximum Entropy IOC via Approximate Value Iteration (AVI) (32) has
been proposed to address the inefficiency of calculating the log-partition (softened) value func-
tion in Equation 2.13. The main idea is that by employing AVI and estimating the expectation
via Monte Carlo sampling the high complexity of calculating the log-partition function can be
reduced.

The problem is that the added complexity of performing Monte Carlo sampling negates
a large portion of the speedup generated via Approximate Value Iteration (50). This thesis
outlines an analogous method for approximating the partition function in Maximum Entropy
IOC without the need for value iteration or Monte Carlo sampling resulting in a more efficient
approach while preserving bounded error approximation guarantees.

Maximum Margin Planning

Maximum Margin Planning (63) addresses the problem of learning a complex cost function
that motivates demonstrated behavior by reducing imitation learning to a maximum margin
classification problem. This is done by utilizing the hinge-loss to form the following convex
objective function,

Cq(θ) =
1

n

n∑
i=1

βi

(
max
µ̂∈Gi

(θTFi + l
T
i)µ̂− θTFiµ̃i

)q
+
λ

2
||θ||2, (2.17)

here µ̂ are expected state exploration counts under the Markov Decision Process G, µ̃i are
observed exploration counts for trajectory i, and li is the state loss, li : S → R, that penalizes
states explored in trajectory i.

The method detailed in Algorithm 2 functions by optimizing the parameter vector θ so that
the set of cost-augmented demonstrated trajectories are optimal.

10

Algorithm 2 Maximim Margin Planning

Input: State features f and empirical feature expectations Ẽ
[∑
j=1

f
]
i

for each cost map i

Output: Parameter vector θ
Set θ = 0
for t = 1:T do

Compute π∗ and E
[∑
j=1

f(si)|π
∗
]
i

for each loss-augmented cost map (θT fi + l
T
i).

Set θ =
1

t

[
(t− r)θ− rC

∑
i=1

(
E
[∑
j=1

f |π∗
]
i
− Ẽ

[∑
j=1

f
]
i

)]
.

end
return θ

While this approach finds a unique solution under ideal settings and requires an optimal
control solution as a sub-routine rather than integrating over the set of possible sequences, it
assumes the demonstrated behavior is optimal and can be explained by a single cost function
which is not always the case in complex tasks. Maximum Entropy IOC (82) addresses this
issue by maximizing the causal entropy of the policy distribution allowing for sub-optimal and
non-uniform behavior in the demonstration set.

Continuous Maximum Entropy Inverse Optimal Control

Maximum Entropy IOC in continuous settings is difficult in general because distribution normal-
ization and expectation calculations require integrating over state and action variables where
the softmax function in Equation 2.13 is a smoothed interpolation of the maximum function,

softmax
a∈Ast

Q(st,at) = log

∫
x

eQ(st,at)dat. (2.18)

The recursion in Equation 2.4, Equation 2.13 and Equation 2.14 can be analytically solved
for continuous state-action representations of high-dimensional settings when the dynamics
are linear (78; 77; 46),

~st+1 = A~st + B~at, (2.19)

11

and the features are quadratic, with parameter matrix M,

cost(~s1:T) =M ·
∑T
t=1~st~s

T
t =
∑T
t=1~s

T
tM~st. (2.20)

Under these assumptions, the normalization factors for the distribution over trajectories
((Equation 2.13)) can be obtained in closed form and correspond to a conditional Gaussian
distribution for the control policies (78; 77; 46; 52). This linear-quadratic assumption for IOC
has been employed in linear-quadratic regulation settings (77; 52), and for non-linear-quadratic
systems by locally making linear and quadratic approximations (46).

Locally Optimal Continuous Inverse Optimal Control

Locally optimal continuous inverse optimal control (46) addresses the complexity problem of
calculating the partition function by locally approximating the probability distribution using local
cost approximation.

In the continuous setting, Equation 2.12 can be expressed as,

P(a|s0) = e
−cost(a)

∫
e−cost(ã)dã. (2.21)

where cost(a) is the expected cumulative cost of the path from state s0. A second order Taylor
expansion of the cost around a can then be used to approximate the log likelihood function
without computing the partition function,

L =
1

2
(gTH−1g + log |−H|) −

da

2
log 2π, (2.22)

with gradient g and Hessian H.
Unfortunately this method only works for deterministic fixed horizon problems and assumes

cost functions are solely locally optimal ignoring any useful information from globally optimality
when it exists. Additionally, while the method can be applied for inverse linear quadratic reg-
ulation (LQR) tasks, its deterministic assumption does not allow for the inclusion of Gaussian
noise reducing the space of problems to which it can be applied. The predictive and perfor-
mance guarantees of inverse optimal control also only apply within the local neighborhood
of the trajectory under the approximation assumptions making the resulting model difficult to
apply in new situations in which an appropriate reference trajectory is not known.

12

Maximum Entropy Modeling via Symmetric Partition Functions

Symmetric partition functions have been used to address the intractability of using maxi-
mum entropy methods to form probabilistic models of continuous path distributions in high-
dimensional spaces with features that possess low-dimensional structures (75).

This can be done without inefficient sampling based inference methods and without as-
suming the demonstrated sequences lie near a low dimensional sub-manifold, as in standard
dimensionality-reduction methods.

The key assumption of this method is that if we can express features as integrals of feature
potentials ψj over trajectories ξ,

fj(x) =

∫ T
0

ψj(ξ)ds, (2.23)

then ψj can be compressed into a lower dimensional subspace without losing information,

ψj(s) = ψj(WW
Ts), ∀j, s, (2.24)

for an N-dimensional state s ∈ RN and some given Nxd matrix W where d < N. This implies
that the corresponding partition function is compressible as well which can then be calculated
more efficiently via dynamic programming than the original, higher-dimensional, form.

Unfortunately this approach requires that the feature potentials are derived from states in
RN and can be compressed losslessly in order to efficiently calculate the partition function
which is not guaranteed in decision problems with complex features.

Part I

Approximating Path Distributions in
Weighted Graphs

13

14

Partially published in the Proceedings of the Neural Information Processing Systems Conference
(https://papers.nips.cc/paper/5889-softstar-heuristic-guided-probabilistic-inference) (50).

Approximation approaches to probabilistic structured prediction include approximate max-
ent IOC (32) and graph-based IOC (12). However, these methods require exploring large areas
of sub-optimal paths and provide few guarantees on the accuracy of the approximations; they
are not complete and the set of variable assignments uncovered may not be representative of
the model’s distribution.

Probabilistic inference models (72; 26; 71) estimate plan distributions that can be used to
update a learned cost/reward function to more accurately match the feature preferences of
observed behavior (15; 45). Unfortunately, many of the these probabilistic inference models
fail to scale well to large decision processes and again provide few approximation guarantees.

Seeking to provide stronger guarantees and improve efficiency over previous methods,
we present a heuristic-guided probabilistic search framework for estimating path near-optimal
distributions in weighted graphs. Our approach generalizes the A* search algorithm (18) to
calculate distributions over decision sequences through a state- space graph. This distribution
can then be used to update a set of trainable parameters, θ, that motivate the behavior of the
decision process via a cost/reward function (54; 1; 5; 81).

In the next chapter we first present an algorithm for heuristic-guided softened value iteration
that enables the maximum entropy inverse optimal control framework to be more efficiently
scaled to large decision processes by reducing the exploration of sub-optimal paths to the
goal.

Despite the improved computational performance of this method in practice, as a sampling
based approach it does not provide strong approximation guarantees. To address this issue
we then present SoftStar, a heuristic-guided probabilistic search algorithm for inverse optimal
control. This approach generalizes the A* search algorithm (18) to calculate distributions over
decision sequences in predictive IOC settings allowing for efficient bounded approximations
of the near-optimal path distribution through a decision space. We establish and analyze the
theoretical guarantees of this approach and discuss the analogies to A* search.

We then demonstrate the effectiveness of the proposed algorithms in two settings: learning
a predictive model for planning stroke trajectories for Latin characters and modeling the ball-
handling decision process of professional soccer.

The first task of planning a sequence of pen strokes that produce a written character
(41; 42) requires a state-space that includes remembering which of the previous line seg-
ments of the character have already been drawn—a power-set of the number of line segments.
When re-tracing of line segments and pen lifts are allowed (both common in demonstrations),
the set of trajectories that successfully complete the character grows infinitely. Yet, human
demonstrations of writing trajectories in these tasks are typically within a very small portion of
this feasible set of trajectories and are characterized by specific measurable tendencies (e.g.
smooth transition angles between consecutively drawn line segments).

We also examine the task of spatially modeling the ball-handling decision processes of
professional soccer players in single possession plays from given tracking data. There has
been a lot of recent work in the area of modeling the outcomes of sports matches (48; 7; 35).

15

However, there has been little work on modeling the actual decision process of a professional
soccer player on an action-by-action basis. This may be in large part due to the lack of needed
tracking data on the player positions and the difficulty of framing the problem in an appropriate
manner. When considering the types of actions that a player may take (pass, shot, clear,
dribble, or cross) and the possible destination of the ball given that action (anywhere on the
field for most of the actions), we are left with a very large action space and sequential decision
process. However, we hypothesize that learning the common characteristics of the behavior
of professional soccer players should reduce the feasible space of these decisions to a much
smaller set that those players actually employ.

CHAPTER 3

HEURISTIC-GUIDED SOFTENED VALUE ITERATION

Inspired by techniques for efficient planning and heuristic-guided (A*) search (29), this chapter
introduces a heuristic-guided value iteration algorithm for maximum entropy inverse optimal
control that efficiently approximates near-optimal path distributions through large state-space
graphs.

Standard value iteration methods begin without knowledge of the possible values of the
neighboring states. This leads to the exploration of large areas of sub-optimal paths to the
goal. By incorporating an admissible heuristic as an estimate for the neighboring state values
that have not been calculated, we can greatly reduce the area of the state-space that needs to
be explored before converging to an appropriate estimation of the state values and the resulting
policy. This allows for us to efficiently perform value iteration in large decision processes.

In this chapter we develop a method for heuristic-guided value iteration that significantly
improves the efficiency of standard value iteration when an admissible heuristic can be formed.
This enables the maximum entropy inverse optimal control framework to be more efficiently
scaled to large decision processes by reducing the exploration of sub-optimal paths to the
goal leading to faster convergence on the near-optimal path distribution. We apply this method
to the inverse optimal control problems of learning human behavior preferences in writing latin
characters and the ball handler decision process in professional soccer. We refer to Chapter
5 for more detail on the results of these experiments.

Heuristic-guided policy approximation

We begin by reducing the space of the decision process by truncating the softmax value it-
eration recurrence of Equation 2.13 at different states s ∈ Sapprox, as shown in Figure 1 (for
notational convenience, we employ time-invariant value functions). At those states, the ex-
act softmax value function Vsoft(s) that would need to be computed, is instead replaced by a
heuristic value, the upper bound V+

soft(s) (Vsoft(s) ≤ V+
soft(s)). We assume monotonic heuristic

functions for estimating the values of unexplored states,

V+
soft(s) ≥ softmax

a
E[V+

soft(st)|a, s] + rewardθ(a, s)]

—i.e., subsequent heuristics are not looser bounds.
We could choose the approximate state set and directly employ this approximate policy

for rejection sampling or importance sampling. Sampling-based approaches of this sort have
been recently investigated (3; 10). However, since the true solution policy πsoft is unknown,

16

17

S0

S2

S1

S3

S4

Figure 1: State expansion map. Rectangular nodes are members of the approximation set
Sapprox. Though they lead to other states, a heuristic function, V+(s), is employed to approxi-
mate their values rather than recursively computing them.

this may be extremely sample-inefficient. Instead, we propose to iteratively refine our policy
estimate.

Greedy selection of the approximation set

A natural approach for choosing set Sapprox is to sequentially expand the most potentially ben-
eficial state. If rewards are unbounded (i.e., can be −∞), this suggests the following optimiza-
tion:

argmax
sq∈s1:T

Eπ+T [V(sq)+]. (3.1)

This algorithm is very similar to A* search and fast convergence to the true distribution is easily
shown in finite state settings. However, one key difference is that the priority for expanding
a state sq depends on the softmax of all paths to sq, which is equivalent to the expected
occurrence of state sq in the approximate sequence distribution, Eπ+T [sq ∈ s1:T]. Unfortunately,
this small difference has large computational implications. In optimal path planning with an
admissible monotonic heuristic, the minimum cost path to a state does not change. However,
since Eπ+T [V(sq)+] depends on all paths to state sq, all paths created by modifying Sapprox
must be considered.

18

Heuristic-Guided Softened Value Iteration

To avoid the expensive computations needed for greedily constructing the approximation set,
we instead randomize. The following algorithm iteratively improves our softmax policy es-
timate, πsoft, by selectively refining the set of approximated states Sapprox using trajectory
samples. The algorithm samples these trajectories according to the current policy estimate,
at|st ∼ π

+
soft(at|st) , sample(st, π+soft) and transition function T (st+1|at, st). When an approx-

imated state, s ∈ Sapprox, is encountered, it is removed from the approximation set and its
possible subsequent states are added to the set. This continues until the trajectory either
reaches a goal state or a maximum allowable length. The values along this sampled trajectory
are then updated using softened maximum entropy value iteration via (Equation 2.13). The
values and the policy of each state in the sequence are updated in reverse allowing for the
updated policy of each state to take into account the value of each potential future state in the
sequence.

Consider the state map depicted in Figure 1. Here, states S0, S2, and S3 have been fully
expanded and have updated state values according to (Equation 2.13). States S1 and S4 are
members of Sapprox as they have not been fully expanded and their state values are approx-
imated using an admissible heuristic value V+

soft. The algorithm expands the states that have
a higher probability of having large approximation loss. Once a state is expanded, its value is
updated according to (Equation 2.13) and its policy is updated according to (Equation 2.14).

19

Algorithm 3 Heuristic-Guided Stochastic Softened Value Iteration
Input: Heuristic function V+

Output: A policy estimate, π+soft, and state value estimates, V
Set V = V+

Calculate π+soft via (Equation 2.14)
while V not converged do

clear sequence
add initial state to sequence
while st 6= sgoal and |sequence| 6= maxHorizon do

at = sample(st, π
+
soft) if precomputed or via (Equation 2.14)

st = T (st, at)
add st to sequence.

end
for i = (sequence size-1) : 1 do

update V(si) via (Equation 2.13)
update πsoft(si|at) via (Equation 2.14)

end
end

It is worthwhile to note that while the heuristic function is problem specific, the inference
algorithm functions with no knowledge of the problem domain and is completely generalizable
graph-based decision problems.

CHAPTER 4

SOFTSTAR: BOUNDED APPROXIMATE PATH DISTRIBUTIONS VIA
HEURISTIC-GUIDED SEARCH

Partially published in the Proceedings of the Neural Information Processing Systems Conference
(https://papers.nips.cc/paper/5889-softstar-heuristic-guided-probabilistic-inference) (50).

The problem with the sampling based approach presented in the previous chapter is that
there is a lack of bounded approximation and complexity guarantees. Symmetries in the de-
cision process can be exploited to improve efficiency (75), but decision processes are not
guaranteed to be (close to) symmetric. Other approaches to approximate probabilistic struc-
tured prediction include approximate maxent IOC (32), heuristic-guided sampling (Algorithm 3
(51)), and beam search (40; 72; 71) which considers a bounded-width best-first search over
possible variable assignments (47; 17; 24; 59). However, few guarantees are provided by
these approach; they are not complete and the set of variable assignments uncovered may
not be representative of the problems true distribution.

Seeking to provide stronger guarantees and more efficiency than previous methods, we
present SoftStar, a heuristic-guided probabilistic search algorithm for predictive inverse op-
timal control. Our approach parallels the A* search algorithm (18) to calculate distributions
over decision sequences in predictive inverse optimal control settings allowing for an efficient
bounded approximation of the near-optimal path distribution through a decision space. We
establish and analyze the theoretical guarantees of this approach, discuss the analogies to A*
search, and demonstrate its effectiveness in three settings: a synthetic task, learning a predic-
tive model for planning stroke trajectories for Latin characters, and modeling the ball-handling
decision process of professional soccer.

Motivated by the efficiency improvements of heuristic-guided search algorithms for opti-
mal planning, we define an analogous approximation task in the predictive inference setting
and present algorithms that leverage heuristic functions to accomplish this task efficiently with
bounded approximation error.

In this section we consider an action cost rather than a reward such that maximum entropy
IOC algorithms (81; 78) estimate a stochastic action policy that is most uncertain while still
guaranteeing the same expected cost as demonstrated behavior on an unknown cost function
(1). For planning settings, this formulation yields a probability distribution over state sequences
that are consistent with paths through the state-space graph, P̂(s1:T) ∝ e−costθ(s1:T), where

costθ(s1:T) =

T−1∑
t=1

θTf(st, st+1) is a linearly weighted vector of state-transition features com-

bined using the feature function, f(st, st+1), and a learned parameter vector, θ. Calculating the
marginal state probabilities of this distribution is important for estimating model parameters.
The forward-backward algorithm (6) can be employed, but for large state-spaces it may not be
practical.

20

21

Inference as softened planning

We begin our investigation for finding a more efficient inference algorithm to support prediction
and learning in predictive inverse optimal control models by recasting the inference task from
the perspective of softened planning.

We define the desired next state at time-step t as at. This is the decision/action made
at time-step t and is identical to the next state in deterministic settings. In this setting the
probability of transitioning to state st+1 from state st when taking action at is p(st+1|st, at)
given the transition mapping T : S ×A×S ′ → P(S ′|S,A). The cost of a decision can then be
represented via a linear combination of state-action features and the set of learned parameters,
cost(st, at) = θ

T f(st, at), such that the predictive inverse optimal control distribution over state
sequences factors into a stochastic policy (81),

π(at|st) = e
Eτ[hsoft(st+1)|st,at]−hsoft(st)−θ

Tf (st,at), (4.1)

according to a softened cost-to-go1, hsoft(s), recurrence relationship that is a relaxation of the
Bellman equation:

hsoft(st) = softmin
at∈A(st)

 ∑
st+1∈N (st)

p(st+1|st, at)hsoft(st+1) + θ
Tf(st, at)

= softmin
at∈A(st)

{
Eτ[hsoft(st+1)|st, at] + θ

Tf(st, at)
}
, (4.2)

taking into account the expected cost-to-go of the next state, Eτ[hsoft(st+1)|st, at], given the
transition probabilities, T , where Ξst,sT is the set of all paths from st to sT; the softmin, softmin

x
α(x) ,

− log
∑
x

e−α(x), is a smoothed relaxation of the min function2; p(st+1|st, at) is the probability of

transitioning into state st+1 from state st when taking action at; and the terminal state value is
initially 0 for the goal state (−∞ for others).

1We assume a time-invariant softened cost-to-go function in our formulation for notational convenience. Time-
varying formulations are also easily obtained.

2Equivalently, min
x
α(x) + softmin

x

{
α(x) −min

x
α(x)
}

is employed to avoid overflow/underflow in practice.

22

A similar softened minimum distance exists in the forward direction from the start state.
Here we consider the probability that each action will transition state st−1 to state st in order to
calculate the expected cost of the transition, Eτ[θTf(st−1, at−1)|st, st−1]:

dsoft(st) = softmin
st−1∈N (st)

dsoft(st−1) +
∑

at−1∈A(st−1)

p(st|st−1, at−1)θ
Tf(st−1, at−1)

= softmin
st−1∈N (st)

{
dsoft(st−1) + Eτ[θ

Tf(st−1, at−1)|st, st−1]
}
. (4.3)

By combining forward and backward soft values, important marginal probabilities and ex-
pectations can be obtained that are needed to predict state visitation probabilities and fit the
maximum entropy inverse optimal control model’s parameters (81). For example, the probabil-
ity of the transition from sa to sb under the soft path distribution is:

e−dsoft(sa)−Eτ[hsoft(sb)|sa,a]−θ
Tf (sa,a)+dsoft(sT). (4.4)

Thus, efficient search and learning require accurate estimates of dsoft and hsoft values.
Likewise, combining the softened minimum distance, dsoft, with an admissible (lower bound)

heuristic for estimating the expected softened cost-to-go, ĥsoft, allows us to estimate the ex-
pected cumulative cost of a trajectory from the initial state to the goal that travels through state
st,

fsoft(st) = dsoft(st) + ĥsoft(st), (4.5)

which is essential for utilizing the A* framework of heuristic-guided search outlined in Section
2.3.

The softened cost-to-go and distance functions for deterministic graphs can be computed in
closed-form using a geometric matrix series (with actions represented by succeeding states):

A =

e−cost(s1,s1) e−cost(s1,s2) · · · e−cost(s1,sn)

e−cost(s2,s1) e−cost(s2,s2) · · · e−cost(s2,sn)

...
...

. . .
...

e−cost(sn,s1) e−cost(sn,s2) · · · e−cost(sn,sn)

B = A(I − A)−1 = A + A2 + A3 + A4 + · · · . (4.6)

The (i, j)th entry of B is related to the softmin of all the paths from si to sj. Specifically, the
softened cost-to-go can be written as hsoft(si) = − log bsi,sT . Unfortunately, the required matrix
inversion operation is computationally expensive, preventing its use in typical inverse optimal
control applications. In fact, power iteration methods used for sparse matrix inversion closely

23

resemble the softened Bellman updates of (Equation 4.2) that have instead been used for IOC
(78).

Challenges and approximation desiderata

In contrast with optimal control and planning tasks, softened distance functions, dsoft(s), and
cost-to-go functions, hsoft(s), in predictive inverse optimal control are based on many paths
rather than a single (best) one. Thus, unlike in A* search, each sub-optimal path cannot simply
be ignored; its influence must instead be incorporated into the softened distance calculation
(Equation 4.2). This key distinction poses a significantly different objective for heuristic-guided
probabilistic search:
Find a subset of paths for which the softmin distances closely approximate the softmin of the
entire path set.

While we would hope that a small subset of paths exists that provides a close approxima-
tion, the cost function weights and the structure of the state-space graph ultimately determine
if this is the case. With this in mind, the desiderata for an algorithm that seeks a small approx-
imation set are that it provides:

1. Known bounds on approximation guarantees;

2. Convergence to any desired approximation guarantee;

3. Efficient finding small approximation sets of paths.

We construct algorithms with these considerations in mind and analyze their guarantees
and behaviors.

Regimes of Convergence

In A* search, theoretical results are based on the assumption that all infinite length paths have
infinite cost (i.e., any cycle has a positive cost) (29). This avoids a negative cost cycle regime
of non-convergence. Leading to a stronger requirement for our predictive setting are three
regimes of convergence for the predictive inverse optimal control distribution, characterized
by:

1. An infinite-length most likely plan;

2. A finite-length most likely plan with expected infinite-length plans; and

3. A finite expected plan length.

24

The first regime results from the same situation described for optimal planning: reachable
cycles of negative cost. The second regime arises when the number of paths grows faster
than the penalization of the weights from the additional cost of longer paths (without negative
cycles) and is non-convergent. The final regime is convergent. When inverse optimal control is
based on finite-length demonstrations and sufficiently expressive feature representations (e.g.,
including a constant-value feature), the IOC cost estimate will correspond to this regime.

An additional assumption is needed in the predictive IOC setting to avoid the second regime
of non-convergence. We assume that a fixed bound on the entropy of the distribution of paths,
H(s1:T) , E[− log P(s1:T)] ≤ Hmax, is known.

Theorem 1. Expected costs under the predictive IOC distribution are related to entropy and
softmin path costs by:

E[costθ(s1:T)] = H(s1:T) − dsoft(sT).

Proof. By writing the definition of the entropy, we have:

H(s1:T) = E [− log P(s1:T)] = E

[
− log

e−costθ(s1:T)∑
s1:T

e−costθ(s1:T)

]
= E [costθ(s1:T)] − dsoft(sgoal).

Together, bounds on the entropy and softmin distance function constrain expected costs under
the predictive IOC distribution (Theorem 1).

Computing approximation error bounds

A* search with a non-monotonic heuristic function guarantees optimality when the priority
queue’s minimal element has an estimate dsoft(s) + ĥsoft(s) exceeding the best start-to-goal
path cost, dsoft(sT). Though optimality is no longer guaranteed in the softmin search setting,
approximations to the softmin distance are obtained by considering a subset of paths (Lemma
1).

Lemma 1. Let Ξ represent the entire set (potentially infinite in size) of paths from state s to sT.
We can partition the set Ξ into two sets Ξa and Ξb such that Ξa ∪ Ξb = Ξ and Ξa ∩ Ξb = ∅ and
define dΞsoft as the softmin over all paths in set Ξ. Then, given a lower bound estimate for the
distance, d̂soft(s) ≤ dsoft(s):

e−d
Ξ
soft(s) − e−d

Ξa
soft(s) ≤ e−d̂

Ξb
soft(s). (4.7)

25

Figure 1: The approximation state set (within solid line) and the approximation neighbor set
(between solid line and dashed line) with start and goal states (non-shaded nodes).

Proof. By definition,∑
path∈Ξ

e−cost(path) =
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−cost(path) ≤
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−
^cost(path)

for ^cost(path) ≤ cost(path). Equivalently, for d̂soft(s) ≤ dsoft(s): e−d
Ξ
soft(s)−e−d

Ξa
soft(s) ≤ e−d̂

Ξb
soft(s).

We establish a bound on the error introduced by considering the set of paths through a set of
states S≈ in the following Theorem.

Theorem 2. Given an approximation state subset S≈ ⊆ S with neighbors of the approximation
set defined as N (S≈) ,

⋃
s∈S≈

N (s) − S≈, the approximation loss of exact search for paths

through this approximation set (i.e., paths with non-terminal vertices from S≈ and terminal
vertices from S≈ ∪N (S≈)) is bounded by the softmin of the set’s neighbor’s estimates:

e−dsoft(sT) − e−d
S≈
soft (sT) ≤ e− softmins∈N (S≈)

{
d
S≈
soft (s)+ĥsoft(s)

}
, (4.8)

where dS≈soft(s) is the softmin of all paths with terminal state s and all previous states within S≈.

Proof. Theorem 2 follows directly from Lemma 1 by choosing the set of paths in the approxi-
mation set for Ξa and the set of paths not contained within the approximation set for Ξb. The
costs of Ξb are lower bounds estimated by adding the cost within the approximation set to the
heuristic found at the path’s first state outside of the approximation set.

26

Thus, for a dynamic construction of the approximation set S≈, a bound on approximation
error can be maintained by tracking the weights of all states in the neighborhood of that set
(Figure 1). In practice, even computing the exact softened distance function for paths through
a small subset of states may be computationally impractical. Theorem 3 establishes the ap-
proximate search bounds when only a subset of paths in the approximation set are employed
to compute the soft distance.

Theorem 3. If a subset of paths Ξ ′S≈ ⊆ ΞS≈ (and Ξ̄ ′S≈ ⊆ ΞS≈ − Ξ ′S≈ represents a set of paths
that are prefixes for all of the remaining paths within S≈) through the approximation set S≈ is
employed to compute the soft distance, the error of the resulting estimate is bounded by:

e−dsoft(sT) − e−d
Ξ ′S≈
soft (sT) ≤

exp

{
− softmin

(
softmin
s∈N (S≈)

{
d
Ξ ′S≈
soft (s) + ĥsoft(s)

}
,

softmin
s∈S≈

{
d
Ξ̄ ′S≈
soft (s) + ĥsoft(s)

})}
.

Proof. Following directly from Lemma 1, the paths can be partitioned into the subset Ξ ′S≈ and
the subset of all other paths. The set of all other paths either terminate at S≈’s neighbor set or
have prefixes represented by the set Ξ̄ ′S≈ .

SoftStar: Greedy forward path exploration and backward cost-to-go estimation

Our algorithm greedily expands nodes by considering the state contributing the most to the ap-
proximation bound (Theorem 3). This is accomplished by extending A* search in the following
algorithm.

27

Algorithm 4 SoftStar: Greedy forward and approximate backward search with fixed ordering
Input: State-space graph G, initial state s1, goal sT, heuristic ĥsoft, and approximation bound ε
Output: Approximate soft distance to goal hS≈soft and approximate soft distance from initial dS≈soft
Set hsoft(s) = dsoft(s) = fsoft(s) =∞ ∀ s ∈ S, hsoft(sT) = 0, dsoft(s1) = 0 and fsoft(s1) = ĥsoft(s1)
Insert 〈s1, fsoft(s1)〉 into priority queue P and initialize empty stack O
while softmin

s∈P
(dsoft(s)) + ε ≤ dsoft(sT) do

Set s→ min element popped from P
Push s onto O
for s ′ ∈ N (s) do
dsoft(s

′) = softmin
s ′′∈N (s ′)

{
dsoft(s

′′) + Eτ[θ
Tf(s ′′, a)|s ′′, s ′]

}
(Equation 4.3)

fsoft(s
′) = dsoft(s

′) +ĥsoft(s
′)) (Equation 4.5)

(Re-)Insert 〈s ′, fsoft(s
′)〉 into P

end
end
while O not empty do

Set s→ top element popped from O
hsoft(s) = softmin

a∈A(s)

{
Eτ[hsoft(s

′)|s, a] + θTf(s, a)
}

(Equation 4.2)

end
return hsoft and dsoft.

For insertions to the priority queue, if s ′ already exists in the queue, its estimate is updated
for both dsoft and fsoft and it is resorted into the queue. Additionally, the softmin of all of the
estimates of elements on the queue can be dynamically updated as elements are added and
removed.

The queue contains some states that have never been explored and some that have. The
former correspond to the neighbors of the approximation state set and the latter correspond
to the search approximation error within the approximation state set (Theorem 3). The softmin
over all elements of the priority queue thus provides a bound on the approximation error of the
returned distance measure. The exploration order, O, is a stack containing the order that each
state is explored/expanded.

A loop through the reverse of the node exploration ordering (stack O) generated by the
forward search computes complementary backward cost-to-go values, hsoft. The expected
number of occurrences of state transitions can then be calculated for the approximate distri-
bution (Equation 4.4). The bound on the difference between the expected path cost of this
approximate distribution and the actual distribution over the entire state set is established in
Theorem 4.

28

It should be noted that the backward approximate search algorithm is far more efficient than
greedy forward search as the space is reduced to the set of nodes expanded by the forward
pass.

Theorem 4. The cost expectation inaccuracy introduced by employing state set S≈ is bounded
by: |E[costθ(S1:T)] − ES≈ [costθ(S1:T)]| ≤ ed

S≈
soft (sT)−softmin(P)∣∣EP[costθ(S1:T)] − ES≈ [costθ(S1:T)]

∣∣,
where: ES≈ is the expectation under the approximate state set produced by the algorithms;
softmin(P) is the softmin of elements remaining on the priority queue after the first while loop
of Algorithm 4; and EP is the expectation over all paths not considered in the second while loop
(i.e., remaining on the priority queue). EP is unknown, but can be bounded using Theorem 1.

For learning purposes, appropriate regularization can be incorporated into parameter esti-
mation based on these bounds (23).

Increasing Efficiency in Single Goal Graphs via Bidirectional Search

In problems with a single goal state we can further increase the search efficiency of the Soft-
Star algorithm, and utilize modern multi core CPU architecture by parallelizing the forward and
backward passes through the state-space graph via bidirectional search, algorithm 5.

29

Algorithm 5 Bidirectional SoftStar
Input: State-space graph G, initial state s1, goal sT, heuristic ĥsoft, and approximation bound ε
Output: Approximate soft distance to goal hS≈soft and approximate soft distance from initial dS≈soft
Set hsoft(s) = dsoft(s) = fsoft(s) = ∞ ∀ s ∈ S, hsoft(sT) = 0, dsoft(s1) = 0, fsoft(s1) = ĥsoft(s1)
and fsoft(sT) = d̂soft(sT)

Forward Search:
while softmin

s∈Pforward
(dsoft(s)) + ε ≤ dsoft(sT) do

Set s→ min element popped from Pforward
for s ′ ∈ Nforward(s) do
dsoft(s

′) = d̂soft(s
′) = softmin

s ′′∈N (s ′)

{
dsoft(s

′′) + Eτ[θ
Tf(s ′′, a)|s ′′, s ′]

}
fsoft(s

′) = d̂soft(s
′) + ĥsoft(s

′))
(Re-)Insert 〈s ′, fsoft(s

′)〉 into Pforward
end

end
Reverse Search:
while softmin

s∈Preverse
(hsoft(s)) + ε ≤ hsoft(s1) do

Set s→ min element popped from Preverse
for s ′ ∈ Nreverse(s) do
hsoft(s

′) = ĥsoft(s
′) = softmin

a∈A(s ′)

{
Eτ[hsoft(s

′′)|s ′, a] + θTf(s ′, a)
}

fsoft(s
′) = d̂soft(s

′) + ĥsoft(s
′))

(Re-)Insert 〈s ′, fsoft(s
′)〉 into Preverse

end
end
return hsoft and dsoft.

The key idea is that while performing a forward search from the initial state to the goal
motivated by a heuristic for the softened cost-to-go, ĥsoft, we can also do a reverse search
from the goal to the initial state motivated by a heuristic for the softened distance, d̂soft. In the
reverse case we would be updating hsoft in the same way that the forward pass updates dsoft.
If either pass (forward/backward) adds a state to its respective queue that has previously been
expanded by the other pass, then the updated value for either hsoft or dsoft will be used in
place of the heuristic for calculating fsoft. This eliminates the need for the additional backward
pass with fixed ordering through the explored stack O in algorithm 4. When run in parallel, this
should elicit a strong speed up while reducing overhead by using updated values in place of
the heuristics once the search directions overlap.

30

Completeness guarantee

The notion of monotonicity extends to the probabilistic setting, guaranteeing that the expansion
of a state provides no looser bounds than the unexpanded state (Definition 1).

Definition 1. A heuristic function ĥsoft is monotonic iff
∀s ∈ S, ĥsoft(s) ≥ softmin

a∈A(s)

{
Eτ[ĥsoft(s

′)|s, a] + θTf(s, a)
}
.

Assuming this, the completeness of the proposed algorithm can be established (Theorem 5).

Theorem 5. For monotonic heuristic functions and finite softmin distances, convergence to
any level of softmin approximation is guaranteed by Algorithm 4.

Inference Comparisons on Synthetic Data

In this section we demonstrate the effectiveness of the SoftStar algorithm on a synthetic
dataset in which we can control the degree of heuristic sub-optimality. We generate a ran-
dom full cost matrix with 20,000 state nodes and compute exact soft distance values via
(Equation 4.6), requiring over 10 minutes of CPU time for the inversion of the deterministic
matrix. We evaluate our approach using a heuristic function ĥsoft(s) = αhsoft(s) for different
values of α ∈ [0, 1].

Softmin Distance Estimation as a Function of Time

E
st

. S
o

ft
m

in
 D

is
ta

nc
e

0

5

10

15

20

25

Seconds
0 20 40 60 80 100

0% Heuristic 25% Heuristic
50% Heuristic 75% Heuristic
MCMC

Figure 2: A comparison of inference efficiency using varying ratios of the true softmin distance
as heuristic values.

31

Figure 2 shows the efficiency of our approach with heuristic functions of varying tightness.
Without a heuristic (α = 0%), over 26 minutes of CPU time is required for the soft distance
estimate to converge, whereas for α ≥ 75% convergence occurs in about 1 second. MCMC
performs poorly, getting caught in local optima and taking over 45 minutes of CPU time to
converge.

Feature expectations and gradient computation

In order to generate the desired path distribution we must first run the SoftStar algorithm in
order to calculate the softened cost-to-go values, dsoft, on the ordered set, O. We then use
Equation 4.4 to compute the probability of each state transition in O as well as the expected
feature distributions needed to generate the gradient:

∇L(θ) = Eπ̂

T̂−1∑
t=0

f(st,at)

− Eπ̃

T̃−1∑
t=0

f(st,at)

 . (4.9)

CHAPTER 5

EXPERIMENTAL VALIDATION AND DISCUSSION

Previously published in the Proceedings of the Neural Information Processing Systems Conference
(https://papers.nips.cc/paper/5889-softstar-heuristic-guided-probabilistic-inference) (50).

We demonstrate the effectiveness of our presented approaches on datasets for Latin char-
acter construction using sequences of pen strokes and ball-handling decisions of professional
soccer players.

We employ stochastic accelerated gradient descent with an adagrad learning rate and
accelerated momentum (21; 68) to estimate the cost parameters, θ. We refer to those papers
for details of the methods.

Comparison approaches

We compare our approach with reasonable alternatives: heuristic guided maximum entropy
sampling (Algorithm 3), approximate maximum entropy sampling (32), reversible jump Markov
chain Monte Carlo (MCMC) (28), beam search with a priority queue limited by a constant
bound, and a search that is not guided by heuristics (comparable to Dijkstra’s algorithm for
planning). For consistency, we use the softmin distance to generate the values of each state
in a sampled MCMC trajectory. If dsoft(s) = ∞, we use the optimistic heuristic defined in
Equation 5.1 generating a lower bound on dsoft.

Character drawing

We apply our approach to the task of predicting the sequential pen strokes employed to draw
different characters from the Latin alphabet. Despite the apparent simplicity of these tasks,
applying standard inverse optimal control methods is challenging due to the large planning
graph that corresponds to a fine-grained representation of the task. We demonstrate the over-
all effectiveness of both the SoftStar algorithm and heuristic-guided value iteration (heuristic
sampling) in learning a model that provides accurate predictions against other commonly em-
ployed techniques.

32

33

Demonstrated data

A handwritten character, such as the one depicted in Figure 1, is converted into a skeleton of
nodes within a unit character frame. The character in Figure 1 was drawn using two strokes,
red and green respectively. The numbering indicates the start of each stroke (42).

Figure 1: Demonstrated construction of the character ‘K’ showing the sequence of pen strokes
and the nodal representation.

The data consists of a randomly separated training set of 400 drawn characters, each with
a unique demonstrated trajectory, and a separate test set of 52 examples.

State and feature representation

The state consists of a two node history (previous node and current node) and a bitmap signi-
fying which edges are covered/uncovered. The size of the state space is 2|E|(|V | + 1)2 with |E|

edges and |V | nodes. The number of nodes is increased by one to account for the initial state.
For example, the character in Figure 1 has 16 nodes and 15 edges. It has a corresponding
state space of about 9.47 million states.

The initial state has no previously traversed nodes and a bitmap with all uncovered edges.
The goal state will have a two node history as defined above, and a fully set bitmap repre-
senting all of the required edges being covered. Any transition between nodes in the skeleton
is allowed, with transitions between neighboring nodes characterized as edge draws and all
other transitions as pen lifts.

There are 28 Euclidean features including inverse features that improve the fine tuning of
the preference relationships. The features are separated into three groups:

34

• Four initial transition features: Destination node distance from each edge.

• Nine edge draw features: Angles of the edge being drawn, with respect to the previous
transition angle, to the horizontal, to the vertical, the inverse of these 4 features, and a
constant edge draw feature.

• 15 pen lift features: Each of the edge draw features and initial transition features as
well as the distance of the lift and the inverse of the distance of the lift.

Heuristic

We consider a heuristic function that combines the (soft) minimum costs of covering each
remaining uncovered edge in a character assuming all moves that do not cross an uncovered
edge have zero cost. Formally, it is expressed as

ĥsoft(s) =
∑
ei∈Eu

softmin
ei

cost(ei), (5.1)

with Eu representing the set of uncovered edges and cost(ei) the set of all possible costs of
traversing edge i.

Estimated parameters

The learned weights indicate that the preferred starting position for a character is in the top left
of the frame, drawing an edge is more desirable than a pen lift and that a smoother transition
angle is preferred when drawing an edge than when executing a pen lift matching previous
empirical results on drawing preferences (27).

Professional Soccer

In addition, we apply our approach to the task of modeling the discrete spatial decision process
of the ball-handler for single possession open plays in professional soccer. As in the case
for the character drawing task, we demonstrate the overall effectiveness of our against other
commonly employed techniques.

35

Demonstrated data

The data contains tracking information from 93 games consisting of player locations and time
steps of significant events/actions. We pre-processed the data into sets of sequential actions
in single possessions. Each possession may include multiple different team-mates handling
the ball at different times resulting in a team decision process on the ball actions rather than
single player actions/decisions.

Due to the nature of the task, it is necessary to discretize the soccer field into cells lead-
ing to a very large decision process when considering actions to each cell at each step. To
increase generalization and the relevance of the training data, we reformatted the field coor-
dinates so that the origin lies in the center of the possessing teams goal and all playing fields
are normalized to a standard 105m by 68m, discretized into 5x4m cells. Formatting the field
coordinates based on the target, x/y distances from the goal, of the team in possession dou-
bles the amount of training data for similar coordinates. The positive and negative half planes
of the y axis capture which side of the goal the ball is located on.

We train a spatial decision model on 92 of the games and evaluate the learned ball tra-
jectories on a single test game. Once formatted and pre-processed the data contains 20,337
training possession sequences and 230 test sequences.

State and feature representation

The state consists of a two action history where an action is designated as a type-cell tuple
where the type is the action type (pass, shot, clear, dribble, or cross) and the cell is the desti-
nation cell with the most recent action containing the current cell location of the ball. Limiting
shot actions to only be aimed at the goal gives us an action space of 1433 possible actions at
each step in a trajectory resulting in about 2.05 million possible states.

There are 28 Euclidean features for each action type and 29 that apply to all action types
resulting in 168 total features. We use the same features as the character drawing model and
include a different set of features for each action type in order to learn unique action based
cost functions.

Heuristic

We use the softmin cost over all possible actions from the current state as a heuristic. It is
guaranteed to be admissible as it assumes that the next state will always be the goal: ĥsoft(s) =
softmin
s ′∈N (s)

{
cost(s, s ′)

}
.

36

Estimated parameters

The learned weights indicate that the players prefer close range shots in front of the goal,
crosses from the sides of the field, and players tend to take actions that move the ball closer
to the goal in short distances. A more detailed analysis of learned behavior will be reserved
for future work.

Results

Learning efficiency

We compare SoftStar and heuristic sampling to another inference procedure estimating path
distributions in large scale IOC and measure the average test set log-loss, equivalent to the
difference between the cost of the demonstrated path, cost(s1:T), and the softmin distance to
the goal, dsoft(goal), − log P(path) = cost(s1:T) − dsoft(goal).

Log-Loss After Each Training Epoch

A
ve

ra
g

e
Te

st
 L

o
g

-L
o

ss

5

10

15

20

25

30

35

40

Training Epoch
0 2 4 6 8 10

Approximate Max Ent
Heuristic Max Ent
SoftStar

A
ve

ra
g

e
Te

st
 L

o
g

-L
o

ss

50

100

150

200

250

Training Epoch
0 5 10 15 20 25

Approximate Max Ent
Heuristic Max Ent
SoftStar

Figure 2: Training efficiency experiments on the Character domain (left)
and the Soccer domain (right).

37

Figure 2 shows the decrease of the test set log-loss after each training epoch. SoftStar
learns the models far more efficiently than both approximate max ent IOC (32) and heuristic
guided sampling (Algorithm 3). This is likely due to the more accurate estimation of the feature
expectations that results from searching the graph rather than sampling trajectories.

The improved efficiency of the SoftStar method is also evident if we analyze the respective
time taken to train each model. SoftStar took ~5 hours to train 10 epochs for the character
model and ~12 hours to train 25 epochs for the soccer model. To compare, heuristic sampling
took ~9 hours for the character model and ~17 hours for the soccer model, and approximate
max ent took ~10 hours for the character model and ~20 hours for the soccer model.

Inference efficiency

In addition to evaluating our learning efficiency, we compare the time efficiency for generating
lower bounds on the estimated softmin distance to the goal on a single random test example
from each model in Figure 3.

Softmin Distance Estimation as a Function of Time

E
st

. S
o

ft
m

in
 D

is
ta

nc
e

0

50

100

150

Seconds
0 20 40 60 80 100

MCMC
Unguided search
Beam search
Soft Star

E
st

. S
o

ft
m

in
 D

is
ta

nc
e

0

10

20

30

40

50

60

70

Seconds
0 20 40 60 80 100

MCMC
Unguided search
Beam search
Soft Star

Figure 3: Inference efficiency evaluations for the Character domain (left) the Soccer domain
(right).

The results for both models are comparable to those found using the synthetic data in
Figure 2. The MCMC approach has trouble with local optima where the estimated softmin
distance has difficulty improving at a competitive rate. While the unguided algorithm (α = 0%)
does not experience this problem, it instead explores a large number of improbable paths

38

to the goal. This exhaustive search is both time consuming and memory intensive. Beam
search performs better than the unguided algorithm, but suffers from a lack of completeness
guarantees where it may never find a solution (65).

The SoftStar algorithm avoids low probability paths and converges efficiently converging
much faster than the comparison methods. MCMC fails to converge on both examples even
after 1,200 seconds, matching past experience with the character data1. It should be noted
that while these examples were chosen at random, average convergence time on the test
set characters after training was about 12 seconds and 21 seconds for the soccer data using
SoftStar.

Discussion

We introduced a heuristic-guided inference algorithm that used sampling-based softened value
iteration to efficiently infer near-optimal path distributions through state-space graphs. We then
extended this idea to create a heuristic-guided search technique for estimating path distribu-
tions with approximation guarantees in both deterministic and stochastic decision graphs.

We validated our proposed methods on two complex decision problems for inverse opti-
mal control (IOC) and found significant performance improvements compared to other IOC
inference methods. This is especially evident in the SoftStar algorithm where the increase
in information generated from the approximation guarantees results in a much more informed
gradient update and significantly faster convergence in optimizing the cost parameters.

Probabilistic search in these settings is significantly more computationally demanding than
A* search, both in theory and practice, primarily due to key differences between the min and
softmin functions. However, this increase in complexity is necessary to approximate the distri-
bution of near optimal paths to the goal rather than simply finding the shortest path.

A weakness of the heuristic search algorithms presented lies in the need to discretize and
search the state space which can be prohibitive in problems that require real-time solutions.
With this in mind, the following chapters will present two continuous IOC methods for real time
prediction and planning in complex scenes.

1Previous inference methods (e.g., MCMC) were incapable of the efficiency needed to enable learning without
first employing significant simplifying abstractions to the state representation

Part II

Inverse Linear Quadratic Regulation

39

40

Partially published in the Association for the Advancement of Artificial Intelligence Conference
(http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9897) (52).

Depth cameras, like the Microsoft Kinect, have been used to detect human activities (38;
58; 67) and provide rich information including human skeleton movement data and 3D envi-
ronment maps. Critical to this task are the roles of high-dimensionality and uncertainty. Many
co-robotics tasks are performed within high-dimensional control spaces where there are a va-
riety of ways for a human to reasonably accomplish the task. Behavior modeling techniques
for intent recognition and trajectory forecasting must scale to these high-dimensional control
spaces and incorporate uncertainty over inherently ambiguous human behavior.

The problem with discrete inference procedures is that the discretization of a high-dimensional
state space results in a very inefficient IOC method that becomes infeasible in conditions
where real time solutions are required. For instance, there has been an increasing desire for
co-robotic applications that situate robots as partners with humans in cooperative and tightly
interactive tasks (73; 66; 34). Unlike previous generations of human-robot interaction applica-
tions, which might need to respond to recognized human behavior (60), co-robotics requires
robots to act in anticipation of future human behavior to realize the desired levels of seamless
interaction.

Additionally, the desirable space of manipulation trajectories in typical robotic arms with
many degrees of freedom (DOF) is often multi-modal and non-linear due to collision avoidance
with discrete obstacles. However, discrete planners fail to capture continuous motion dynamics
and require discretizing high-dimensional joint angles.

In this chapter we present an inverse linear quadratic regulation algorithms for efficiently
modeling continuous trajectories for task prediction, forecasting and planning. The first section
covers an inverse linear quadratic regulation method for predicting household activities and
target objects while inferring a distribution of predicted future trajectories. In the next section
we extend the inverse linear quadratic regulation model from the first section to bind the contin-
uous distribution around discrete feature representations, in the form of inferred discrete paths
learned from demonstrated behavior. This allows for a model to incorporate discrete features,
such as obstacles, while avoiding the inherent inefficiency of planning full discrete trajectories.

CHAPTER 6

INTENT PREDICTION VIA INVERSE LINEAR QUADRATIC REGULATION

Previously published in the Association for the Advancement of Artificial Intelligence Conference
(http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9897) (52).

In this chapter we present a continuous inverse optimal control (IOC) approach using
Linear-Quadratic Regulation (LQR) for intention recognition and trajectory forecasting of tasks
involving hand motion trajectories. We utilize the recently developed technique of maximum
entropy IOC with LQR (78; 77; 46), allowing us to efficiently apply the inverse optimal control
approach to continuous-valued three-dimensional positions, velocities, accelerations, etc.

We base our approach on prior work on inverse linear quadratic regulation for predicting
computer cursor targets (77). We extend this method by incorporating an additional learned
penalty to the final state for deviating far from the desired goal state features and apply it to the
3-dimensional problem of predicting human activities from depth videos. This formulation is
inherently probabilistic and enables the inference of the user’s intent based on partial behavior
observations and forecasts of future behavior.

We evaluate our results on the Cornell Activity Dataset (CAD-120) (37) and compare to the
previous state-of-the-art approach for detecting/predicting human sub-activities.

Related Work

There has been a significant amount of recent work on forecasting the future behavior of peo-
ple to improve intelligent systems. In the robotic navigation domain, this has been manifested
in robots that plan paths that are complementary to a pedestrian’s future movements (83) or
navigate through crowds based on anticipated movements (31; 74; 39). In robotic manipula-
tion, techniques that interpret and aid in realizing a teleoperator’s intentions to complete a task
(30) have had success.

Our work is most closely related, but complementary, to anticipatory temporal conditional
random fields (ATCRF) (37). Under that approach, discriminative learning is employed to
model the relationships between object affordances and sub-activities at the “discrete” level
and a simple generative model (based on a Gaussian distribution) of human pose and object
location trajectories is employed at the “continuous” level.

We extend discriminative learning techniques, in the form of inverse optimal control, to
the continuous level of human pose trajectories. The two approaches are complementary in
that any inferred object affordances and sub-activities at the discrete level can be employed
to shape the prior distributions at the continuous level, and the posterior inferences at the
continuous-level can feed into inferences at the discrete level. Our approach differs in its appli-

41

42

cability to continuous-valued control settings and in employing a maximum entropy formulation
rather than a non-probabilistic maximum-margin estimation approach.

Maximum entropy inverse optimal control (81) has been shown to elicit strong results by
maximizing the uncertainty in the probabilistic inference task (82). Extensions to the linear-
quadratic setting have been applied to predicting the intended targets of computer cursor
movements (77) detailing the benefit of using demonstrated continuous trajectories for tar-
get prediction. There has also been recent work in the area of action inference and activity
forecasting from video (36), however this work discretizes the state space in such a way that
would be impractical for inferring at useful granularities in higher dimensional (three or more)
spaces.

We extend the maximum entropy inverse optimal control linear quadratic regulator model
(77) to the task of predicting target intentions and inferring continuous hand motion trajectories
using depth camera data. This is directly applicable to the areas of activity prediction (37) and
behavior forecasting (83).

Approach

We propose a predictive model of motion trajectories trained from a dataset of observed depth
camera motions using a linear quadratic regulation framework. Under this framework, a linear
state dynamics model and a quadratic cost function are assumed.

We consider the state of the hand, st, to be represented by its position, velocity, and ac-
celeration, and control actions to be represented by the velocity vector, which is the change
of position from current state to the next state. The state transition dynamics follow a linear
relationship in this setting and we additionally assume the cost function to be quadratic with
respect to state and action. The optimal control problem for this formulation is to find the best
control action for each possible state that minimizes the expectation of the cost function over
time. In contrast, we estimate the cost function that best rationalizes demonstrated trajectories
in this work. Our approach provides a probabilistic model that allows us to reason about the
intentions of partially completed trajectories and generate an optimal trajectory from the origin
to the target.

State Representation and Quadratic Cost Matrices

One of the main benefits of the proposed technique is the ability to use a simple and gener-
alizable state model. For the task at hand, we consider the xyz positions of the center of the
hand as well as the velocities and accelerations in each respective axis. Adding one constant

43

term to capture the temporal, linear and state invariant costs gives us a 10-dimensional state
representation at time t,

st = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, 1]
T ,

where (ẋt, ẏt, żt) represent the velocities, and (ẍt, ÿt, z̈t) represent the accelerations. A con-
stant of 1 is added to the state representation in order to incorporate linear features into the
quadratic cost function formulation described later.

Importantly, when actions, at represent the velocities specifying changes in positions be-
tween current state and next state, the state dynamics follow a linear relationship: st+1 =
Ast+Bat+εt, where the noise, εt, is drawn from a zero-mean Gaussian distribution. We rep-
resent the distribution over next state using the transition probability distribution P(st+1|st,at).
Though many tasks may have non-linear dynamics or be motivated by non-quadratic cost
functions, the LQR simplification is important when considering the fast execution time needed
for true human-robot interaction. If needed, additional features can be added to the state
in order to further incorporate higher-order attributes of the trajectory, like jerks. In addition
to efficiency, this state definition provides a strong set of informative features for defining (or
estimating) a cost function. While the position is clearly correlated with the intended target,
the motion dynamics offer a more distinct descriptive behavior in terms of completing differing
tasks (25).

In order to account for the high level of variance with respect to the xyz goal positions of the
demonstrated trajectories obtained from the depth camera data, we extend the LQR method
(77) and add an additional parameter matrix to the existing cost matrix M. We call this matrix
Mf to signify that it only applies to the final state of the trajectory. This set of parameters adds
an additional penalty to the final state for deviating far from the desired goal state features. So
the cost functions are:

cost(st,at) =

[
at
st

]T
M

[
at
st

]
, t < T, (6.1)

cost(sT) = (sT − sG)
TMf (sT − sG). (6.2)

To increase the generalization of the model to all possible xyz conditions, we sparsify the
two parameter matrices so that we only train parameters relating to the dynamics features,
velocity and acceleration, for M, and only train parameters relating to xyz positions for Mf .
Therefore, all quadratic feature combinations that include an xyz position feature in M or a
velocity, or acceleration, feature in Mf will have a parameter value of 0. This is helpful in the
case where the xyz coordinates differ greatly across the demonstrated trajectories and allows
for M to learn the behavior of the trajectories rather than the true positions. Likewise, Mf can
then serve solely as a position penalty for the final inferred position deviating from the desired
goal location and avoid penalizing the velocity and acceleration of the final state. This helps to
generalize the model across different orientations and behaviors.

44

Inverse Linear-Quadratic Regulation for Prediction

We employ maximum causal entropy inverse optimal control (79) in the linear quadratic regu-
lation setting to obtain estimates for our cost parameter matrices, M and Mf. These estimates
result from a constrained optimization problem maximizing causal entropy,

H(a||s) , Eπ̂

[
−

T∑
t=1

log π̂(a||s)

]
,

so that the predictive policy distribution, π̂(a||s) = π(a1|s1)π(a2|s2) · · ·π(aT |sT), matches the
quadratic state properties of the demonstrated behavior, π̃, in feature expectation where:

Eπ̂

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
= Eπ̃

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
and (6.3)

Eπ̂
[
(sT − sG)(sT − sG)

T
]
= Eπ̃

[
(sT − sG)(sT − sG)

T
]
.

This set of constraints ensures that the trajectory’s dynamic properties are maintained by the
control policy estimate, π̂. Solving this problem, we obtain a state-conditioned probabilistic
policy π̂ over actions that are recursively defined using the following equations:

π̂(at|st) = e
Q(st,at)−V(st), (6.4)

Q(st,at) = Eτ(st+1|st,at)[V(st+1|st,at)] + cost(st,at), (6.5)

V(st) =

{
softmax

at
Q(st,at), t < T

(st − sG)
TMf (st − sG), t = T,

(6.6)

where sG represents a goal state that is used to specify a penalty for a trajectory’s final distance
from the desired goal and the softmax function is a smoothed interpolation of the maximum

function, softmax
x

f(x) = log

∫
x

ef(x)dx.

Using this formulation, the recurrence of Equation 6.5 and Equation 6.6 can be viewed as a
probabilistic relaxation of the Bellman criteria for optimal control; it selects actions with smaller
expected future costs in Equation 6.5 and recursively computes those future costs using the
expectation over the decision process’s dynamics in Equation 6.6. The Q and V functions are
softened versions of the optimal control state-action and state value functions, respectively.
Inference is performed by forming a set of time-specific update rules that are used to compute
state and action values which are conditioned on the goal state, trajectory length, and the
cost parameter values. The probability of a trajectory of length T is then easily computed as:

45

t∏
τ=1

π(at|st, G, I, T) = e
∑t−1
τ=1Q(at,st)−V(st), where G is the goal location of the trajectory and I is

the characteristic intention/behavior of the movement (ex. reaching, placing, eating, etc.).
The recursive Q and V calculations simplify to a set of matrix updates in the LQR setting:

Q(st,at)=

[
at
st

]T[
Cat,at Cat,st

Cst,at Cst,st

][
at
st

]
+

[
at
st

]T[
Fat
Fst

]
+Qcvt ,

V(st) = sTtDtst+sTtGt+Vcvt ,

where Qcvt and Vcvt are scalars. The matrices of these values are recursively defined as:

DT = Mf; GT = −2MfsG;

for t in T − 1...1

Cat,at = BTDt+1B+Ma,a;Cat,st = BTDt+1A+Ma,s;

Cst,at = ATDt+1B+Ms,a;Cst,st = ATDt+1A+Ms,s;

Fat = BTGt+1; Fst = ATGt+1;

Dt = Cst+1,st+1 −CT
at+1,st+1

C−1
at+1,at+1

Cat+1,st+1 ;

Gt = Fst+1 −CT
at+1,st+1

C−1
at+1,at+1

Fat+1 ,

which are derived in the following section.
Update Rule Derivation

Since recurrence values in Equations Equation 6.5 and Equation 6.6 are of quadratic forms,
we break down the matrices into time dependent components:

Q(st,at)=

[
at
st

]T[
Cat,at Cat,st

Cst,at Cst,st

][
at
st

]
+

[
at
st

]T[
Fat
Fst

]
+Qcvt ,

V(st) = sTtDtst+sTtGt+Vcvt ,

where Qcvt and Vcvt are the respective constants derived from the Q and V functions at time
t.

46

Combining the above definitions with Equations Equation 6.5 and Equation 6.6 yields:

Q(st,at)=Eτ(st+1|st,at)[s
T
t+1Dtst+1+sTt+1Gt+Vcvt |st,at]

+cost(st,at),

= (Ast+Bat)
TDt(Ast+Bat)+tr(DtΣ)

+aTtB
TGt+sTtA

TGt+

[
at
st

]T
M

[
at
st

]
=

[
at
st

]T [
BTDtB BTDtA

ATDtB ATDtA

] [
at
st

]
+

[
at
st

]T [
Mat,at Mat,st

Mst,at Mst,st

] [
at
st

]
+

[
at
st

]T [
BTGt

ATGt

]
.

When t < T ,

V(st) =

ln

∫
at

ea
T
tCat,atat+2a

T
tCat,stst+s

T
tCst,stst+s

T
tFst+a

T
tFat+Qcvtdat

= sTtCst,stst+sTtFst+Qcvt

+ln(
1

Zt
)

∫
at

Zte
−0.5aTt (−2Cat,at)at+a

T
t (2Cat,stst+Fat)dat

= sTtCst,stst+sTtFst+Qcvt

+ln(
1

Zt
)

∫
at

N[at|2Cat,stst+Fat ,−2Cat,at]dat

= sTtCst,stst+sTtFst+Qcvt − lnZt,

where

Zt=
e(−

1
2
)(2Cat,stst+Fat)

T (−2Cat,at)
−1(2Cat,stst+Fat)

|2π(−2Cat,at)
−1|1/2

.

47

V(st)=sTt (Cst,st−CT
at,stC

−1
at,atCat,st)st

+sTt (Fst−CT
at,stC

−1
at,atFat)

+Qcvt+
1

2
ln |2π(−2Cat,at)

−1|−
1

4
FTatC

−1
at,atFat

=sTt (Cst,st−CT
at,stC

−1
at,atCat,st)st

+sTt (Fst−CT
at,stC

−1
at,atFat)+Qcvt

+
1

2
ln |2π(−2Cat,at)

−1|−
1

4
FTatC

−1
at,atFat ,

allowing for,

Dt = Cst,st −CT
at,stC

−1
at,atCat,st ,

Gt = Fst −CT
at,stC

−1
at,atFat ,

with,

Vcvt = Qcvt+
1

2
ln |2π(−2Cat,at)

−1|−
1

4
FTatC

−1
at,atFat .

The set of update rules for the quadratic functions are:

DT = Mf;

GT = −2MfsG;

for t in T − 1...1

Cat,at = BTDt+1B+Mat+1,at+1 ;

Cat,st = BTDt+1A+Mat+1,st+1 ;

Cst,at = ATDt+1B+Mst+1,at+1 ;

Cst,st = ATDt+1A+Mst+1,st+1 ;

Fat = BTGt+1;

Fst = ATGt+1;

Dt = Cst+1,st+1 −CT
at+1,st+1

C−1
at+1,at+1

Cat+1,st+1 ;

Gt = Fst+1 −CT
at+1,st+1

C−1
at+1,at+1

Fat+1 .

The model parameters in matrix M and Mf are fit from the demonstrated examples. The
likelihood of a demonstration is a convex function ofM andMf guaranteeing gradient optimiza-
tion converges to paramters that best explain the demonstrations (77). Under the maximum

48

entropy framework, the gradients have intuitive interpretation: they are just the differences of
the optimization constraints,

∇ML =Eπ̂

[
T∑
t=1

[
at
st

] [
at
st

]T]
−Eπ̃

[
T∑
t=1

[
at
st

] [
at
st

]T]
,

∇MfL=Eπ̂
[
(sT−sG)(sT−sG)

T
]
−Eπ̃

[
(sT−sG)(sT−sG)

T
]
.

which can be calculated via the state Gaussian distribution (77). Concretely, if x is normally
distributed with mean µx and covariance Σx, E[xxT] = µxµ

T
x +Σx. Here, according to the

Gaussian properties, if the distribution of st is N(µst , Σst):

log(π̂(at|st))=Q(st,at)−V(st)

=

[
at
st

]T[
Cat,at Cat,st

Cst,at Cst,st

][
at
st

]
+

[
at
st

]T [
Fat
Fst

]
−sTtDtst−sTGt

−
1

2
log |2π(−2Cat,at)

−1|+
1

4
FTatC

−1
at,atFat ,

which means π̂(at|st))∝N[at|2Cat,stst+Fat ,−2Cat,at],

which is N((−Cat,at)
−1Cat,stst−

1

2
C−1
at,atFat , (−2Cat,at)

−1).

So at ∼ N(µat , Σat) where:

µat=−C−1
at,atCat,stµst−

1

2
C−1
at,atFat ,

Σat=(−2Cat,at)
−1

+(−Cat,at)
−1Cat,stΣ

T
st((−Cat,at)

−1Cat,st)
T .

We obtain,
[
at
st

]
∼ N(µat,st , Σat,st) from this:

µat,st=

[
µat
µst

]
,

Σat,st=

[
Σat (−Cat,at)

−1Cat,stΣst
ΣTst((−Cat,at)

−1Cat,st)
T Σst

]
.

49

This will be used to compute E

[∑
t

[
at
st

] [
at
st

]T]
in every timestep. Similarly, it is easy to

compute N(st+1|st,at):

µst+1=Aµst+Bµat ,

Σst+1=Σerror+[
A
B

]T[
Σst ΣTst((−Cat,at)

−1Cat,st)
T

(−Cat,at)
−1Cat,stΣst Σat

]T[
A
B

]
= Σerror+AΣTstA

T+BΣTatB
T+B(−Cat,at)

−1Cat,stΣstA
T

+AΣTst((−Cat,at)
−1Cat,st)

TBT .

We iteratively compute the distribution of of states, actions and state-action pairs and obtain
the distribution of sT , which will be used to compute E[(sT − sG)(sT − sG)

T].

Bayesian Intention and Target Prediction

Given a unique learned trajectory model for each intention, I, the observed partial state se-
quence, s1:t, the prior probability distribution over the duration of the total sequence, T , and
the goal, G, we employ Bayes’ rule to form the posterior probability distribution of the possible
targets:

P(G, I, T |s1:t) ∝
t∏
τ=1

π(at|st, G, I, T)P(G, I, T). (6.7)

The Bayesian formulation enables us to use a flexible prior distribution over the goals and
intentions that reflects our initial belief given relevant environment information, such as pre-
defined task type, object affordance and distance with objects. This allows for any method that
estimates a strong prior distribution to be combined with the LQR model in order to improve
the predictive accuracy.

Complexity Analysis

When the dynamics are linear, the recursive relation of Equations Equation 6.5 and Equa-
tion 6.6 have closed-form solutions that are quadratic functions and the action distribution is a
conditional Gaussian distribution. This enables more efficient computation for large time hori-

50

zons, T , with a large continuous state and action space than could be computed in the discrete
case.

For trajectory inference, the proposed technique only requires O(T) matrix updates. A
strong advantage of this model is the fact that the matrix updates only need to be computed
once when performing inference over sequences sharing the same time horizon and goal
position. In order to further improve the efficiency of our computation we employ the Armadillo
C++ linear algebra library for fast linear computation (64).

Experimental Setup

We employ the Cornell Activity Dataset (CAD-120) (37) in order to analyze and evaluate our
predictive inverse linear-quadratic regulation model.

Cornell Activity Dataset

The dataset consists of 120 depth camera videos of long daily activities. There are ten
high-level activities: making cereal, taking medicine, stacking objects, unstacking objects, mi-
crowaving food, picking objects, cleaning objects, taking food, arranging objects and having
a meal. These high-level activities are then divided into ten sub-activities: reaching, mov-
ing, pouring, eating, drinking, opening, placing, closing, cleaning and null. Here, we regard
different types of sub-activity as different intentions.

Consider the task of pouring cereal into a bowl. We decompose this high-level activity into
the following sub-activities: reaching (cereal box), moving (cereal box above bowl), pouring
(from cereal box to a bowl), moving (cereal box to table surface), placing (cereal box to table
surface), null (moving hand back).
Modifications

The goal of the moving sub-activity is dependent on the sub-activity it precedes. For in-
stance, if the next sub-activity is placing, then the goal of moving will be some location above
the target surface of the placing sub-activity, but if the next sub-activity is eating, then the goal
will be the area around the mouth. Therefore, we regard the moving sub-activity as the begin-
ning portion of the latter sub-activity and combine them as one. We ignore the null sub-activity
due to its lack of intention or goal.

In a similar fashion, we also separate the opening sub-activity into two different sub-
activities, opening a microwave and opening a jar. The actions in these two tasks have very
different movements and goals, and thus are considered as separate sub-activities. This re-
sults in nine sub-activity classifications, each of which we regard as a trajectory type with a
target and intent.

51

Test set

The data is randomly divided into a training set and a test set. The test set consists of 10%
of the demonstrated sequences with at least one sequence belonging to each sub-activity. The
model is then trained on the training set and evaluated using the test set.

Model Fitting

Estimating the Quadratic Parameters

Our LQR model uses two separate parameter matrices, M and Mf . We employ acceler-
ated stochastic gradient descent with an adaptive (adagrad) learning rate and L1 regulariza-
tion (22; 68) on both parameter matrices simultaneously. This regularized approach prevents
over-fitting of the parameter matrices for sub-activities with a low number of demonstrated
trajectories.

Target and Intention Sampling

Intention Sampling

In the prediction task we separate the sub-activities into two categories, those that require
an object in the hand and those that do not. This eliminates tasks from consideration that
lack the required presence or absence of an object. For example, when the task is placing an
object and there is no object in the hand.
Target Sampling

Target points are chosen for each sub-activity according to a Gaussian distribution of the
observed endpoints of the active hand and the target object in the training data. The target
object for the eating and drinking sub–activities are the head joint and the target for the placing
sub-activity is the true endpoint of the active hand trajectory. The skeleton and object track-
ing data are then used with this observed distribution to compute the probable endpoints for
the test trajectories. Since the placing sub-activity has no target object, points are randomly
chosen on the placeable surfaces in the scene.
Segmentation and Duration Sampling

When deployed in real world applications the separation of intentions may not be clear. For
this reason it is necessary to include a method to detect segmentation. The incorporation of T
in Equation 6.7 allows for the direct inclusion of segmentation inference as an inherent feature
of the proposed LQR method. This is due to the fact that goals, intentions, and duration are
grouped together in each prediction.

52

The inclusion of duration is important as a poor prediction of the end of the current sub-
activity will lead to an inaccurate starting step for the next sub-activity. For this reason it is
necessary to achieve an accurate estimate of the length of each sub-activity.

Our LQR model requires that we specify a length for the total trajectory. Since we are
only observing a part of this trajectory prior to forming a prediction, it is necessary to infer
this duration. Here we use the observed average distance covered by each action for each
sub-activity with the remaining distance to be covered from the current point and the sampled
target point in order to infer a probable duration. This is done using the following equation:
T = t + dist(st, sg)/avgdista. This value, T , represents the inferred segmentation for sub-
activity a and target sg.

Prior Distributions

In order to improve the predictive accuracy, it is often helpful to include a prior distribution
on the sampled target points. This allows for the inclusion of additional knowledge about the
problem domain to be added to the inference model. Here, the priors enable us to use the
context information of the human robot interaction which is not included in trajectory data in
our model. We use two prior distributions for this purpose which we join together into a single
distribution due to the tuple nature of the sampled sub-activity and target points.

We evaluate the inverse LQR technique against 4 different probabilistic prediction methods,
nearest target, nearest target from extended trajectory, a sub-activity sequence Naive Bayes
distribution, and a combination of nearest target and the sub-activity sequence distribution
which is also used as a prior distribution for our proposed LQR method.
Target Distance Prior

For the nearest target prior we use the Euclidean distance from the final state of the ob-
served trajectory, st, and the sampled target, sg, and a strength coefficient, α, in order to form
a probability distribution over the possible target points using the following equation:

p(sg|st) ∝ e−αdist(st,sg). (6.8)

Markov Intention Prior

Here we use a second order Markov model to form the probability distribution of a sub-
activity given the previous two observed sub-activities in the sequence:

p(ai|ai−1, ai−2) =
N(ai, ai−1, ai−2)

N(ai−1, ai−2)
, (6.9)

with N(ai, ai−1, ai−2) being the number of occurrences of activity ai being preceded by the two
activities, ai−1 and ai−2 in the training dataset.

53

Combining for a Full Prior

The above two prior distributions are then combined together in order to form a distribution
over both the sub-activity and the location of the sampled target points with a simple method:
p(sg, ai) ∝ p(ai|ai−1, ai−2)p(sg|st).

Prediction

Current Target

We calculate probabilistic predictions for each sampled target using our LQR method
(Equation 6.7). Here the trajectory of the most active hand is observed and used to develop a
likelihood model for each target.
Next Target

When predicting the probability of the next target (the target following the not-yet-reached
current target), we use the calculated probability of the current target and the target points
in order to develop a distribution for the next target point. Since there is no trajectory to
observe for the next target, this reduces to simply using the prior distribution of the next tar-
gets and the probability distribution of the current target given the current partial trajectory:
P(Gi+1, Ii+1, Ti+1|s1:t) ∝ P(Gi, Ii, Ti|s1:t)P(Gi+1, Ii+1, Ti+1|Gi, Ii, Ti).
Notes on Segmentation Prediction

In addition to the direct inference of segmentation, many sub-activities contain clear dis-
cernible goal behaviors. For instance, the placing sub-activity will end with the active hand
releasing an object. If the object is tracked, which is necessary for target sampling, we can
easily determine when this takes place and the hand moves away from the placed object. This
is also the case for reaching, which ends when the hand is in contact with an object.

Utilizing these characteristics and accurate estimates of the duration yields impressive re-
sults for segmentation inference. We are able to achieve perfect segmentation detection once
the hands move close enough to the inferred target to get an accurate estimate of the remain-
ing duration, notably once the goal is reached or passed. This is also evident in the improved
log-loss, which represents the probability of the true duration, goal, and intention.

Evaluation

Comparison Metrics

We evaluate the inverse LQR technique against the probability distributions obtained from
calculating the three prior methods. These are the nearest target distribution, the Markov

54

model on the sub-activity sequence, and the full prior distribution that is a combination of the
two.

We compare these distributions against the LQR model with a flat distribution prior, and
with each of the above respective distributions as priors.

Execution Time

In many tasks using predictive inference, it is important to minimize the execution time of the
inference task. In this case, the proposed LQR method models, infers and makes predictions
for the 63 trajectories of the test set in 1.052 seconds total with the parallel training of the
parameters for all nine of the sub-activity types taking less than an hour. These execution
times were collected on an Intel i7-3720QM CPU at 2.60GHz with 16 GB of RAM.

The use of linear dynamics in the models allows for this efficient computation which is
extremely important when inferring over quickly executed sequences that require fast reactions
using the predicted results. In addition, relative positions were not used in the state formulation
since the time to compute a different relative sequence of states/actions for each possible
target combination could result in non-real-time computation which is of key importance for
human-robot-interaction. The speeds described above for the entire dataset translates to a
target inference rate of over 1000Hz for real-time applications. This is a frequency that is many
orders of magnitude greater than the discrete ATCRF method of inference (37).

Predictive Results

We compare the predictive accuracy of our method against the aforementioned techniques
using the averaged mean log-loss (8; 57). This allows us to compare the likelihood of the
demonstrated trajectory to the distance and activity measures previously discussed.

55

Average log-loss for current target prediction

A
ve

ra
g

e
lo

g
-lo

ss

0

1

2

3

4

5

Fraction of trajectory observed
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance
Distance and activity
LQR flat prior
LQR distance prior
LQR activity prior
LQR full prior

Figure 1: Average predictive loss of current target with partially observed trajectories. We
compare the results of the distance and the distance-activity full prior with LQR.

As we show in Figure 1, the presented LQR method outperforms the other predictive tech-
niques. This is mainly due to the incorporation of our sophisticated LQR likelihood model for
the demonstrated sequence trajectories with the prior target distribution.

The activity prior is independent of the percentage of the sequence that is observed with
an averaged mean log-loss for the activity model of 4.54. While this is not very good on its
own, it does add a significant improvement to the LQR model when incorporated as a prior.
Likewise, the nearest-target distance model gives an additional boost to the results of the LQR
model when added as a prior with the combination of the two priors gave the best results.

56

Average log-loss for next target prediction

A
ve

ra
g

e
lo

g
-lo

ss

2

2.5

3

3.5

Percentage of current trajectory observed
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

22
16
13
10
7
4

Distance
Distance and activity
LQR flat prior
LQR distance prior
LQR activity prior
LQR full prior

Figure 2: Average predictive loss of next target with partially observed trajectories. We com-
pare the results of the distance and the distance-activity full prior with LQR.

The improvement seen in Figure 1 is then extended to the predictive results for the target
of the next sub-activity in Figure 2. Each of the models uses the same technique to compute
the next target distribution and then their respective methods for the computation of the current
target distribution.

While the focus of this work is to improve the predictive log-loss of the model, it is helpful
to use a classification accuracy in order to allow us to compare our results to prior techniques
used on this data. In this case we choose the most probable target given the partially observed
trajectory as the classified goal. Table I compares the results of the presented LQR technique
with the ATCRF method (37) where macro precision and recall are the averages of precision
and recall respectively for all sub-activities.

57

Results Comparison with Ground Truth Segmentation
Method Accuracy Macro

Precision
Macro
Recall

LQR 20% sequence 80.9 ± 2.4 65.0 ± 3.1 77.3 ± 2.4
LQR 40% sequence 82.5 ± 3.2 73.4 ± 2.2 91.4 ± 0.6
LQR 60% sequence 84.1 ± 0,9 79.1 ± 2.5 94.2 ± 0.6
LQR 80% sequence 90.4 ± 0.4 87.5 ± 1.8 96.2 ± 0.3
LQR 100% sequence 100 ± 0.0 100 ± 0.0 100 ± 0.0
ATCRF 100% sequence 86.0 ± 0.9 84.2 ± 1.3 76.9 ± 2.6

Results Comparison without Ground Truth Segmentation
Method Accuracy Macro

Precision
Macro
Recall

LQR 20% sequence 66.7 ± 3.9 50.1 ± 3.7 62.4 ± 3.8
LQR 40% sequence 69.8 ± 3.9 50.5 ± 4.4 56.7 ± 3.3
LQR 60% sequence 76.1 ± 2.7 72.2 ± 2.7 93.3 ± 0.5
LQR 80% sequence 77.8 ± 3.4 75.7 ± 2.9 93.5 ± 0.5
LQR 100% sequence 100 ± 0.0 100 ± 0.0 100 ± 0.0
ATCRF 100% sequence 68.2 ± 0.3 71.1 ± 1.9 62.2 ± 4.1

TABLE I: Accuracy and macro precision and recall with standard error for current activity de-
tection when different percentages of the sequence are observed.

As we show in Table I, our LQR method has significantly improved upon the previous state
of the art results with perfect classification accuracy when detecting the activity given the entire
demonstrated trajectory. This is especially true when ground truth segmentation is not given.
A likely reason for this is that obtaining perfect segmentation detection allows for us to use the
true starting point for each sub-activity.

In addition, the LQR technique, given only 40% of the sequence obtains comparable results
to the ATCRF model given the entire sequence. This is a significant result since the ability to
predict the target and intention early on in a sequence is highly beneficial to many applications
including human-robot interaction.

We note that the ATCRF results are on the unmodified CAD-120 dataset. As mentioned
previously, we have merged the moving sub-activity with its succeeding sub-activity and sep-
arated the opening task into two different sub-activities. While this produces a more straight
forward sampling task, it also makes the first half of the demonstrated sequences more am-
biguous and segmentation more difficult. This is due to the similar dynamics of the moving
sub-activity as compared to the other sub-activities. However, our results show that the pro-

58

posed LQR method is robust enough to generate strong performance after only observing the
first 20% of the sequence.

Discussion

In this section we have shown that incorporating the dynamics of a trajectory sequence into
a predictive model elicits a significant improvement in the inference of target locations and
activities for human task completion. We did this using linear quadratic regulation trained
with maximum entropy inverse optimal control and have shown that using linear dynamics in
forming a model for task and target prediction improves intention recognition while providing
efficient computation of the inferred probability distributions.

The combination of efficient inference with strong predictive results yields a very promising
technique for any field that requires the predictive modeling of decision processes in real time.
This is especially important in the area of human-robot collaboration where a robot may need
to react to the inferred intentions of a human collaborator before they complete a task, which
is an application that the authors plan to undertake in the near future.

While the results reported improve upon the conditional random field (ATCRF) technique
(37), we feel the best results can be obtained by incorporating the discrete distribution learned
using the ATCRF as an additional prior into the proposed LQR model. Any methods that
improve the prior distribution (e.g., (67; 37)) will improve the log-loss since it is additive over
the likelihood function and prior when taking the log of Equation 6.7. This combination of
discrete and continuous learned models should return a strong predictive distribution of the
targets and intentions by accounting for both the linear dynamics of the motion trajectories and
the object affordances of the activity space during inference.

CHAPTER 7

WAYPOINT GUIDED INVERSE LINEAR QUADRATIC REGULATION

Part of this chapter was previously published in the International Joint Conference on Artificial Intelligence
(http://www.ijcai.org/Abstract/15/266) (12).

Waypoint-based MaxEnt Inverse Linear-Quadratic Regulation

To better imitate the dynamics of continuous demonstrated trajectories, we construct a con-
tinuous MaxEnt IOC model that estimates a distribution of trajectories given a discrete path
through our approximation graph. We learn a continuous path distribution through the dis-
crete graphs that match the preferences elicited in the demonstrated trajectories. This allows
for us to infer a path through the graph that correlates to the discretely inferred trajectory de-
scribed previously while retaining the same continous motion patterns of the the demonstrated
examples.

While the inverse linear quadratic regulation method described in the previous chapter
performs very well in prediction tasks for standard linear motion, its limitations in more complex
settings become prevalent when we consider the task on manipulating a robotic arm through
a cluttered environment.

Figure 1: PR2 robot completing a task in a cluttered environment.

59

60

The many degrees of freedom (DoF) of typical robotic arms pose significant challenges for
using inverse optimal control on manipulation tasks. IOC relies on solving the optimal control
problem, but this is generally intractable and state-of-the-art planning methods provide no opti-
mality guarantees. Furthermore, to robustly learn cost functions from non-optimal demonstra-
tions requires the ability to reason about distributions over paths, rather than only computing
the optimal one (81). For the specific case of systems with linear dynamics and quadratic cost
functions, efficient inverse optimal control methods have been developed (46; 77; 52). How-
ever, these assumptions rarely hold in manipulation tasks. The desirable space of manipulation
trajectories is often multi-modal and non-linear due to collision avoidance with discrete obsta-
cles. Despite this, IOC methods have leveraged the special case of linear-quadratic systems by
locally rationalizing demonstrated trajectories using a linear-quadratic approximation centered
around the demonstrated trajectory itself (46). Unfortunately, when a controller applies the
resulting cost function to a new situation, the correct reference trajectory for linear-quadratic
approximation is unknown. Other reference trajectories may produce inherently non-human-
acceptable manipulation trajectories.

Previous IOC applications either employ discrete, but low-dimensional, decision process
representations (2; 81) or make linear-quadratic assumptions about the state dynamics and
cost function (46; 77). Thus, the linear-quadratic assumption is limited to obtaining cost func-
tion estimates that locally rationalize demonstrated trajectories around one of these modes
(in practice: the mode defined by the demonstrated trajectory itself) (46). However, when
the controller applies the resulting cost function to a new situation, the correct mode needed
as a starting point is unknown. Other modes may produce inherently non-human-acceptable
manipulation trajectories—even when the best of those is locally selected.

Motivated by the weaknesses of existing IOC methods for handling higher-dimensional
control tasks and the limitations of linear quadratic control in the presence of discrete features
such as obstacles, we propose a waypoint guided inverse linear quadratic regulation algorithm
for learning continuous path distributions bounded by discrete paths. We demonstrate the
effectiveness of this approach with several experiments conducted on a 7-DOF robotic arm.

In this section we extend the inverse linear quadratic regulation model presented in the
previous chapter (52) in order to bind the continuous distribution around discrete feature rep-
resentations, in the form of inferred discrete paths learned from demonstrated behavior. This
allows for a model to incorporate discrete features, such as obstacles, while avoiding the in-
herent inefficiency of planning full discrete trajectories.

61

Approach

We begin with the quadratic cost functions presented in the previous chapter via Equation 6.1
and Equation 6.2,

cost(st,at) =

[
at
st

]T
M

[
at
st

]
, t < T,

cost(sT) = (sT − sG)
TMf (sT − sG),

and add a new cost function that penalizes the state at time step t for deviating from some
subgoal, or waypoint, temporally associated with step t,

cost(st) = (st − swt)
TMw(st − swt). (7.1)

This penalty functions in the same fashion as Equation 6.2 with a separate learned parameter
matrix, Mw, that is shared for each waypoint in the sequence. The sequence of waypoints
can be generated via a discrete planner that infers a low fidelity trajectory through the problem
space.

Similar to the previous chapter, in order to learn the appropriate parameters that model the
demonstrated behavior we maximize the causal entropy under three constraints. Where at is
the action at time step t, st is the state at time step t, sG is the goal position, and swt is the
position of the waypoint at t, if one exists. Here the waypoints function as intermediary goals
where the task is to learn some cost function that penalizes states that deviate from the goal
and waypoints. To optimize these parameters we aim to minimize the loss,

L =H(a1:T ||s1:T) +M ·

(
Ep̂

[∑
t

[
at
st

] [
at
st

]T]
− Ep̃

[∑
t

[
at
st

] [
at
st

]T])
+Mf ·

(
Ep̂[(sT − sG)(sT − sG)

T] − Ep̃[(sT − sG)(sT − sG)
T]
)

+Mw ·

(
Ep̂[
∑
t∈tw

(st − sw)(st − sw)
T] − Ep̃[

∑
t∈tw

(st − sw)(st − sw)
T]

)

62

and maximize the entropy,

maxH(A1:T ||S1:T)

s.t. Ep̂

[∑
t

[
at
st

] [
at
st

]T]
= Ep̃

[∑
t

[
at
st

] [
at
st

]T]

Ep̂[(sT − sG)(sT − sG)
T] = Ep̃[(sT − sG)(sT − sG)

T]

Ep̂

[∑
t∈tw

(st − sw)(st − sw)
T

]
= Ep̃

[∑
t∈tw

(st − sw)(st − sw)
T

]

Solving the above optimization problem give us the following recursive relationship formed
using the quadratic cost matrices M, Mf and Mw.

π̂(at|st) = e
Q(st,at)−V(st)

Q(st,at) = Eτ(st+1|st,at)[V(st+1|st,at)] + cost(st,at)

V(st) =

{
It∈tw(st − swt)

TMw(st − swt) + softmax(Q(st,at)), t < T

(st − sG)
TMf(st − sG), t = T

where cost(st,at) =
[
at
st

]T
M

[
at
st

]
and an indicator function, I, signifying whether time step t

is associated with a waypoint.
We can rewrite Q and V as quadratic functions in a similar manner to the inverse LQR

method described in the previous chapter:

Q(st,at) =

[
at
st

]T [
Ca,a Ca,s
Cs,a Cs,s

] [
at
st

]
+

[
at
st

]T [
Fa
Fs

]
+ const(Q),

V(st) = sTtDst + sTtG+ const(V),

63

which similarly leads to a set of recursive update rules:

DT = Mf;

GT = −2Mfsf

for t in T − 1...1

Ca,a = BTDB+Ma,a;

Ca,s = BTDA+Ma,s;

Cs,a = ATDB+Ms,a;

Cs,s = ATDA+Ms,s;

Fa = BTG;

Fs = ATG;

D = Cs,s −CTa,sC
−1
a,aCa,s + It∈twMw;

G = Fs −CTa,sC
−1
a,aFa − It∈tw(2Mwswt);

The matrices above can then be used to compute the policy at time step t:

π̂(at|st) = e
Q(st,at)−V(st)

=

[
at
st

]T [
Ca,a Ca,s
Cs,a Cs,s

] [
at
st

]
+

[
at
st

]T [
Fa
Fs

]
− sTtDst − sTG

− sTwtMwswt −
1

2
log |2π(−2Ca,a)

−1|+
1

4
FTaC

−1
a,aFa

∝ N[at|2Ca,sst + Fa,−2Ca,a]

which is N((−Ca,a)
−1Ca,sst −

1

2
C−1
a,aFa, (−2Ca,a)

−1).

64

In addition to the policy at time step t, the state and action distributions can be computed
from the matrices formed from the iterative update rule procedure. If p(st) = N(µst , Σst) and
p(at) = N(µat , Σat) according to the Gaussian identities:

µat = −C−1
a,aCa,sµst −

1

2
C−1
a,aFa;

Σat = (−2Ca,a)
−1 + (−Ca,a)

−1Ca,sΣ
T
st((−Ca,a)

−1Ca,s)
T ;

µat,st =

[
µat
µst

]
Σat,st =

[
Σat (−Ca,a)

−1Ca,sΣst
ΣTst((−Ca,a)

−1Ca,s)
T Σst

]
;

µst+1 = Aµst + Bµat ;

Σst+1 = Σerror +AΣTstA
T + BΣTatB

T + B(−Ca,a)
−1Ca,sΣstA

T +AΣTst((−Ca,a)
−1Ca,s)

TBT .

Sampling from this trajectory distribution generates smooth paths that incorporate discrete
features while preserving the continuous motion dynamics of the demonstrated behavior.

The parameters of the above model can then be trained on a set of demonstrated trajec-
tories and an associated set of discrete waypoints for each trajectory. This forms a convex
optimization problem where the gradients are formed via expectation matching:

∇L(M) = Eπ̂

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
− Eπ̃

[
T−1∑
t=1

[
at
st

] [
at
st

]T]
,

∇L(Mw) = Eπ̂

[∑
t∈tw

(st − sw)(st − sw)
T

]
− Eπ̃

[∑
t∈tw

(st − sw)(st − sw)
T

]
,

∇L(Mf) = Eπ̂
[
(sT − sG)(sT − sG)

T
]
− Eπ̃

[
(sT − sG)(sT − sG)

T
]
.

Empirical Results

We evaluate our approach on three separate tasks with a 7-DOF Barrett Whole Arm Manipu-
lator (BarrettWAM) shown in Figure 2.

65

Figure 2: Barrett Whole Arm Manipulator (BarrettWAM).

The tasks involve the arm moving in a specific manner through a workspace to reach a
target object while avoiding obstacles:

T1. Approach the target object from the right side (from the arm’s perspective)
T2. Approach the target object from the left side
T3. Carry a liquid filled can to a target destination without spilling

Figure 3: BarrettWAM and three objects with Start (transparent) and Goal (solid) configurations
from the Approach-Right (T1) task. The target is the object closest to the end-effector.

66

For each task, we collected 16 demonstrations each from four different users with different
start, goal and obstacle configurations. Half of the users had never used the robotic platform
while the rest had some experience with it. In each case we recorded the joint angles of
the demonstrated trajectories as well as the obstacle positions (segmented point clouds and
bounding boxes) via kinesthetic teaching. We use the OpenRAVE (19) virtual environment
for testing our system as it provides good primitives for manipulator kinematics, geometry
and visualization. Figure 3 shows an OpenRAVE render of a tabletop scene from one of our
datasets.

Discrete Path Generation

In order to generate the waypoints needed to guide our LQR model we trained a discrete plan-
ner using graph-based inverse optimal control (12) which learns trajectory preferences through
a coarse discrete approximation of the trajectory space and then ”fine-tunes” the resulting path
with a local trajectory optimizer based on the learned cost function.

Trajectories are projected through a coarse graph by computing the shortest path through
the graph that most closely matches the demonstrated trajectory using a modified Dijkstra
algorithm (20). Path nodes are chosen based on a mixed transition cost,

Vn = min
k=[i,...,g]

(||Vj − ξk||2),

for argmin
Vj∈N (Vi)

γ||Vj − Vi||2, (7.2)

where Vi is the current node and min
k=[i,...,g]

(||Vj−ξk||2) represents the minimum distance between

the closest (minimum cost chosen via argmin
Vj∈N (Vi)

γ||Vj−Vi||2) neighboring node Vj and its closest

point on the demonstrated trajectory ξk.
Maximum entropy inverse optimal control is then used (81) to optimize the cost functions

of trajectories on the graph and local trajectory optimization is done on samples from the
maximum entropy distribution to infer smooth paths adhering to the coarse discrete structure
of the graph. We refer to the literature for more details of ths method (12).

we trained our discrete planner using the following features:

1. Distance from robot to objects (min, average, target distance from end-effector, etc.);

2. Histogram over distance to objects;

3. Self-collision distances and corresponding histograms;

4. Histograms of position differences between end effector and target, right/left flags; and

5. Histograms over difference in end-effector orientation from start configuration

67

and additional features based on the start, goal and target object and a constant feature.
In total, we have 95 discrete features for all of our tasks, a majority being integer or binary
features and the rest individually scaled to be between 0-1.

Continuous state-action representation

For the continuous linear-quadratic regulation (LQR) representation we define the state, st =
[φ1t , ..., φ

7
t , φ̇

1
t , ..., φ̇

7
t , φ̈

1
t , ..., φ̈

7
t , 1]

T , and action, at = [φ̇1t , ..., φ̇
7
t]
T , at time t where (φ1, ..., φ7)

denotes the joint angles, (φ̇1, ..., φ̇7) the joint velocities, and (φ̈1, ..., φ̈7) the joint accelerations.
A unit constant is added to the state representation to incorporate linear features into the
quadratic cost function formulation.

We use this representation, and the dynamics of the continuous demonstrated trajectories,
to construct a waypoint guided LQR model that estimates a distribution of trajectories given
a discrete path through the approximation graph generated via graph-based IOC (12). This
allows for us to infer a path through the graph that correlates to the discretely inferred trajectory
while retaining the same continuous motion patterns of the the demonstrated examples.

Evaluation measures

We evaluate the trajectories sampled from the proposed approach against the demonstrated
data. Inferred trajectories need to be collision-free while satisfying task-dependent metrics.
For the Can-Moving task, we require that the end-effector’s maximum deviation in pitch and
roll from the start configuration be less than that of the demonstration. This ensures that a
successful trajectory will not spill the liquid in the can. For the Approach tasks, we compute
the percentage of the final 25% of the demonstration that stays on the desired side of the target
requiring that the learned trajectory match or exceed this in order to be considered successful.

Additionally, we test on randomly generated scenes which each have a varying number of
randomly generated box shaped objects (random number and size) in random configurations.
The target object and the start and goal configuration of the robot are chosen randomly (subject
to task constraints) as well. The metrics are similar for the random tests compared to the Can-
Moving and Approach tasks, but fixed a priori.

68

Task Collision-Free (%) Completes Task (%) Overall Success (%)

Approach-Right Test 93 96 90

Random 96 99 96

Approach-Left Test 98 91 88

Random 90 93 86

Can-Moving Test 92 70 66

Random 95 58 58

TABLE I: Learning performance on the withheld set (Test) and the randomly generated set
(Random).

Empirical Results

For each task, we trained our system using 70% of the demonstrations and test it on 30% of
the demonstrations. In addition, we generated 20 random scenes per run for testing. In all
tests, the discrete graph had 210,000 nodes with 15NN edges. We trained the LQR model on
the fly using least-cost graph trajectories post learning and the training demonstrations. Table
Table I shows the performance from our learned LQR model, averaged over six random trials.
Test Scenes

On the two Approach tasks the algorithm performs very well, avoiding obstacles and suc-
cessfully completing the task on 89% of the scenes. For the Can-Moving task, the algorithm
learns to avoid obstacles but fails to satisfy the task metric in nearly 30% of the scenes. One
reason for reduced performance on the Can-Moving task is primarily due to the sparseness
of the graph and projections in the discrete planner, leading to a poor representation of the
small pitch and roll changes in the demonstrations. Instead, the projections themselves have
larger variations (compared to the demonstrations); ultimately resulting in learned distributions
that do not satisfy the maximum orientation difference metric. In this case the addition of the
continuous motion dynamics into the model via waypoint guided inverse LQR resulted in a
significant improvement in task completion (66% with LQR compared to 45% without).
Random Scenes

Additionally, we measure the performance on a set of randomly generated scenes using
our previously-defined evaluation measures to quantify success. The proposed approach per-
forms quite well on two of the three tasks it was tested on, successfully avoiding obstacles and
completing the task in 91% of the random Approach scenes. For the can-moving task, the al-
gorithm learns to avoid obstacles, but often fails to satisfy the task metric due to the limitations
of the discrete planner for this task as described in the previous paragraph.

69

Discussion

This chapter addresses the limitations of the discrete approaches presented in Part I (eg.
time efficiency) and proposes alternatives that can be used for real time tasks. For many
tasks involving both discrete and continuous features it would be beneficial to incorporate the
discrete distribution generated by the SoftStar algorithm of Part I as waypoints that guide the
LQR distribution described in this chapter. This would allow for a model to be trained using
accurate approximations of the discrete feature space while maintaining the dynamic linear
features of a continuous model.

We applied the proposed waypoint guided inverse LQR method to three test scenarios with
a 7DOF robot manipulator. The key strength of this approach is the ability to incorporate both
discrete and continuous features efficiently into an IOC model. This is evident in the 21%
improvement made in the can-moving task when waypoint guided LQR was added. Unfor-
tunately it is sensitive to paths generated by the discrete planner and fails to produce strong
results when the discrete path is very sparse.

CHAPTER 8

CONCLUSION

As our technology continues to evolve, so do the problems that we encounter. The challenge
is that these problems come at increasing scales that require innovative solutions in order to
be tackled efficiently. The key idea behind Inverse Optimal Control (IOC) is that we can learn
to emulate how a human completes these complex tasks by modeling the observed decision
process. In this thesis we presented algorithms that extend the state-of-the art in IOC in order
to efficiently learn complex models of human behavior.

In Part I we presented two approaches to estimating the near-optimal path distribution
through a weighted graph. In the first chapter we described a heuristic-guided policy iteration
algorithm that builds on the Maximum Entropy Inverse Optimal Control framework (82). The
following chapter addresses the limitations of sampling based policy iteration by proposing
the SoftStar algorithm for probabilistic heuristic-guided search which estimates the same path
distribution with added approximation guarantees.

We validated the presented methods on two complex decision problems; modeling hand-
writing trajectories of Latin characters, and modeling the ball-handling decision process of
professional soccer teams. The results show that while heuristic-guided policy iteration per-
forms well, the SoftStar algorithm clearly performs better due to the utilization of more informed
updates generated from the approximate search leading to significantly faster convergence in
optimizing the cost parameters.

Unfortunately, the computational cost of discretizing and searching a state-space can be
problematic when a real-time solution is needed (eg. human-robot interaction). To address
this issue we described two approaches in Part II for modeling continuous trajectories for pre-
diction and planning. In the first section we presented an inverse LQR algorithm for predicting
intent and forecasting trajectories for human-robot interaction. We achieved strong results
that greatly improved on the previous state-of-the-art while maintaining the strong level of effi-
ciency in terms of prediction time needed for such tasks. In the second section we extended
this method to incorporate a discrete path that guides the continuous LQR distribution around
discrete obstacles. This is important as many planning tasks are multi-modal and require
knowledge of discrete features as well as the ability to model continuous motion dynamics.

Part II addresses the limitations of the discrete approaches presented in Part I (eg. time
efficiency) and proposes alternatives that can be used for real time tasks. For many tasks
involving both discrete and continuous features it would be beneficial to incorporate the dis-
crete distribution generated by the SoftStar algorithm of Part I as waypoints that guide the
LQR distribution described in the second chapter of part II. This would allow for a model to
be trained using accurate approximations of the discrete feature space while maintaining the
dynamic linear features of a continuous model further increasing the area of problems that can
be efficiently solved.

70

71

Future Work

While we developed a number of different methods for handling large-scale inverse optimal
control problems, there are always limitations and new challenges that can be addressed.
Modeling behavior in increasingly large scale decision processes presents challenges that
continually require further research and exploration.

Adversarial methods have been applied to inverse optimal control problems where the
demonstrated trajectories derive from a different decision process than the model being learned
(16). These types of problem settings reduce the constraints of the model and allow for ef-
ficiently reduced decision processes to be applied to demonstrated behavior collected in a
previously prohibitively complex decision process. Extending the methods developed in this
thesis to take advantage of these ideas would lead to very efficient solutions to problems lying
in previously intractable decision spaces.

Additionally, a current limitation of many of the presented approaches to inverse reinforce-
ment learning is the use of a cost/reward function formed via a weighted linear combination
of hand engineered features with a set of learnable parameters. Choosing these features re-
quires low-level knowledge of the problem being solved which is not guaranteed in complex
domains.

Recent work in deep reinforcement learning addressed this limitation by using neural net-
works to estimate state-action values Q a given raw visual input (49) using a variant of the
Q-learning algorithm (76) and deep convolutional networks (43; 44). This eliminates the need
for hand engineered features and learns a model free policy. The problem here is that this
policy does not generalize to new tasks and the network must be retrained for each problem
setting. Additionally, the use of epsilon greedy Q learning (76) results in the exploration of a
large amount of sub-optimal sates before an efficient policy can be learned. An exploration
in merging these methods with the maximum entropy IOC framework could greatly extend
the scope of the problems currently being addressed by both IOC and deep reinforcement
learning.

The limitations of hand-engineered features and the requirement of modeling the decision
process when learning demonstrated behavior are just a few examples of ways the methods
presented in this thesis could be expanded. The challenges of modeling behavior in increas-
ingly large scale decision processes and complex stat-spaces will require new and innovative
solutions to be continually developed. The methods developed in this thesis provide a step
towards this goal.

72

CITED LITERATURE

1. Abbeel, P. and Ng, A. Y.: Apprenticeship learning via inverse reinforcement learning. In
Proceedings International Conference on Machine Learning, pages 1–8, 2004.

2. Abbeel, P. and Ng, A. Y.: Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the International Conference on Machine learning, page 1. ACM,
2004.

3. Aghasadeghi, N. and Bretl, T.: Maximum entropy inverse reinforcement learning in contin-
uous state spaces with path integrals. In Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on, pages 1561–1566, Sept 2011.

4. Babes, M., Marivate, V., Subramanian, K., and Littman, M. L.: Apprenticeship learn-
ing about multiple intentions. In Proceedings International Conference on Machine
Learning, pages 897–904, 2011.

5. Baker, C., Tenenbaum, J., and Saxe, R.: Goal inference as inverse planning. In
Proceedings of the cognitive science society, 2007.

6. Baum, L. E.: An equality and associated maximization technique in statistical estimation
for probabilistic functions of markov processes. Inequalities, 3:1–8, 1972.

7. Beetz, M., Kirchlechner, B., and Lames, M.: Computerized real-time analysis of football
games. IEEE Pervasive Computing, 4(3):33–39, July 2005.

8. Begleiter, R., El-yaniv, R., and Yona, G.: On prediction using variable order Markov mod-
els. journaltitle of Artificial Intelligence Research, 2004.

9. Bellman, R.: A Markovian decision process. journaltitle of Mathematics and Mechanics,
6:679–684, 1957.

10. Boularias, A., Kober, J., and Peters, J.: Relative entropy inverse reinforcement learn-
ing. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, pages 182–189, 2011.

11. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V.: Linear matrix inequalities in
system and control theory. SIAM, 15, 1994.

73

12. Byravan, A., Monfort, M., Ziebart, B., Boots, B., and Fox, D.: Graph-based inverse op-
timal control for robot manipulation. In International Joint Conference on Artificial
Intelligence, 2015.

13. Byravan, A., Montfort, M., Ziebart, B., Boots, B., and Fox, D.: Layered hybrid inverse opti-
mal control for learning robot manipulation from demonstration. In NIPS workshop
on autonomous learning robots, 2014.

14. Castiello, U.: The neuroscience of grasping. Nature Reviews Neuroscience, 6(9):726–
736, 2005.

15. Chajewska, U., Koller, D., and Ormoneit, D.: Learning an agent’s utility function by
observing behavior. In Proceedings of the International Conference on Machine
Learning, pages 35–42, 2001.

16. Chen, X., Monfort, M., Ziebart, B. D., and Carr, P.: Adversarial inverse optimal control for
general imitation learning losses and embodiment transfer. In UAI, 2016.

17. Daumé III, H. and Marcu, D.: Learning as search optimization: Approximate large mar-
gin methods for structured prediction. In Proceedings of the 22nd international
conference on Machine learning, pages 169–176. ACM, 2005.

18. Dechter, R. and Pearl, J.: Generalized best-first search strategies and the optimality of a*.
Journal of the ACM (JACM), 32(3):505–536, july 1985.

19. Diankov, R. and Kuffner, J.: Openrave: A planning architecture for autonomous robotics.
Robotics Institute, Pittsburgh, PA, Technical Report, page 79, 2008.

20. Dijkstra, E. W.: A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

21. Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. journaltitle of Machine Learning Research, July 2011.

22. Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. journaltitle of Machine Learning Research, 12:2121–
2159, July 2011.

74

23. Dudı́k, M. and Schapire, R. E.: Maximum entropy distribution estimation with generalized
regularization. In Proceedings Computational Learning Theory, pages 123–138,
2006.

24. Feng, S., Manmatha, R., and McCallum, A.: Exploring the use of condi-
tional random field models and hmms for historical handwritten document
recognition. In Document Image Analysis for Libraries, 2006. DIAL’06. Second
International Conference on, pages 30–37. IEEE, 2006.

25. Filipovych, R. and Ribeiro, E.: Combining models of pose and dynamics for human motion
recognition. In International Symposium on Visual Computing, 2007.

26. Giffin, A. and Caticha, A.: Updating probabilities with data and moments. In Bayesian
Inference and Maximum Entropy Methods in Science and Engineering, volume

954, pages 74–84, 2007.

27. Goodnow, J. J. and Levine, R. A.: the grammar of action: Sequence and syntax in chil-
dren’s copying. Cognitive Psychology, 4(1):82 – 98, 1973.

28. Green, P. J.: Reversible jump markov chain monte carlo computation and bayesian model
determination. Biometrika, 82:711–732, 1995.

29. Hart, P., Nilsson, N., and Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

30. Hauser, K.: Recognition, prediction, and planning for assisted teleoperation of freeform
tasks. Autonomous Robots, 2013.

31. Henry, P., Vollmer, C., Ferris, B., and Fox, D.: Learning to navigate through crowded
environments. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 981–986. IEEE, 2010.

32. Huang, D.-A., massoud Farahman, A., Kitani, K. M., and Bagnell, J. A.: Approximate
maxent inverse optimal control and its application for mental simulation of human
interactions. In AAAI, 2015.

33. Kalman, R.: When is a linear control system optimal? Trans. ASME, J. Basic Engrg.,
86:51–60, 1964.

75

34. Kidokoro, H., Kanda, T., Brscic, D., and Shiomi, M.: Will I bother here? A robot anticipating
its influence on pedestrian walking comfort. In Human Robot Interaction, 2013.

35. Kim, K., Grundmann, M., Shamir, A., Matthews, I., Hodgins, J., and Essa, I.: Motion fields
to predict play evolution in dynamic sport scenes. In In CVPR, 2010.

36. Kitani, K., Ziebart, B., Bagnell, J., and Hebert, M.: Activity forecastin. In Computer Vision
European Conference on Computer Vision 2012, 2012.

37. Koppula, H. and Saxena, A.: Anticipating human activities using object affordances for
reactive robotic response. In Robotics: Science ad Systems, 2013.

38. Koppula, H. S., Gupta, R., and Saxena, A.: Learning human activities and object affor-
dances from rgb-d videos. International journaltitle on Robotic Research, 2013.

39. Kuderer, M., Kretzschmar, H., Sprunk, C. R. I., and Burgard, W.: Feature-based prediction
of trajectories for socially compliant navigation. In Robotics: Science and Systems,
2012.

40. Lafferty, J., McCallum, A., and Pereira, F.: Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Proceedings International
Conference on Machine Learning, pages 282–289, 2001.

41. Lake, B. M., Salakhutdinov, R., Gross, J., and Tenenbaum, J. B.: One shot learning
of simple visual concepts. In Proceedings of the 33rd Annual Conference of the
Cognitive Science Society, 2011.

42. Lake, B. M., Salakhutdinov, R., and Tenenbaum, J.: One-shot learning by inverting a
compositional causal process. In NIPS, pages 2526–2534, 2013.

43. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput., 1(4):541–551, December 1989.

44. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

45. Lee, S. J. and Popović, Z.: Learning behavior styles with inverse reinforcement learning.
In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10. ACM, 2010.

76

46. Levine, S. and Koltun, V.: Continuous inverse optimal control with locally optimal exam-
ples. In ICML ’12: Proceedings of the 29th International Conference on Machine
Learning, 2012.

47. Lowerre, B. T. and Reddy, D. R.: The harpy speech understanding system. In Trends in
Speech Recognition, pages 340–360. Prentice Hall, 1980.

48. Lucey, P., Bialkowski, A., Carr, P., Yue, Y., and Matthews, I.: how to get an open shot:
Analyzing team movement in basketball using tracking data. In Workshop on
Uncertainty in Artificial Intelligence, pages 55–63, 1988.

49. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.:
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533, 02 2015.

50. Monfort, M., Lake, B. M., Lake, B. M., Ziebart, B., Lucey, P., and Tenenbaum, J.: Soft-
star: Heuristic-guided probabilistic inference. In Advances in Neural Information
Processing Systems 28, eds, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, pages 2764–2772. Curran Associates, Inc., 2015.

51. Monfort, M., Lake, B. M., Ziebart, B. D., and Tenenbaum, J. B.: Predictive inverse optimal
control in large decision processes via heuristic-based search. In ICML Workshop
on Robot Learning, 2013.

52. Monfort, M., Liu, A., and Ziebart, B.: Intent prediction and trajectory forecasting via pre-
dictive inverse linear-quadratic regulation. In AAAI, 2015.

53. Neu, G. and Szepesvári, C.: Apprenticeship learning using inverse reinforcement learning
and gradient methods. In Proceedings UAI, pages 295–302, 2007.

54. Ng, A. Y. and Russell, S.: Algorithms for inverse reinforcement learning. In Proceedings
International Conference on Machine Learning, 2000.

55. Ng, A. Y. and Russell, S.: Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, pages 663–670. Morgan Kaufmann, 2000.

56. Ng, A. Y. and Russell, S. J.: Algorithms for inverse reinforcement learning. In Proceedings
of the International Conference on Machine Learning, 2000.

77

57. Nguyen, N. and Guo, Y.: Comparisons of sequence labeling algorithms and extensions.
In International Conference on Machine Learning, 2007.

58. Ni, B., Wang, G., and Moulin, P.: Rgbd-hudaact: A color-depth video database for human
daily activity recognition. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1147–1153, Nov 2011.

59. Pal, C., Sutton, C., and McCallum, A.: Sparse forward-backward using min-
imum divergence beams for fast training of conditional random fields.
In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, volume 5, pages V–V. IEEE, 2006.

60. Pineau, J., Montemerlo, M., Pollack, M., Roy, N., and Thrun, S.: Towards robotic assistants
in nursing homes: Challenges and results. Special issue on Socially Interactive
Robots, Robotics and Autonomous Systems, 2003.

61. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems 1, 1989.

62. Ramachandran, D. and Amir, E.: Bayesian inverse reinforcement learning.
In Proceedings International Joint Conferences on Artificial Intelligence, pages
2586–2591, 2007.

63. Ratliff, N., Bagnell, J. A., and Zinkevich, M.: Maximum margin planning. In Proceedings
International Conference on Machine Learning, pages 729–736, 2006.

64. Sanderson, C.: Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyp-
ing and Computationally Intensive Experiments. Technical report, NICTA, Septem-
ber 2010.

65. Shapiro, S.: Encyclopedia of artificial intelligence. Number v. 1 in Encyclopedia of Artificial
Intelligence. Wiley, 1992.

66. Strabala, K., Lee, M. K., Dragan, A., Forlizzi, J., Srinivasa, S., Cakmak, M., and Mi-
celli, V.: Towards seamless human-robot handovers. journaltitle of Human-Robot
Interaction, 2013.

67. Sung, J., Ponce, C., Selman, B., and Saxena, A.: Unstructured human activity detection
from RGBD images. In International Conference on Robotic Automation, 2012.

78

68. Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E.: On the importance of initial-
ization and momentum in deep learning. In International Conference on Machine
Learning, pages 1139–1147, 2013.

69. Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Introduction. The MIT Press,
1998.

70. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. Biological
Cybernetics, 73(2):97–111, 1995.

71. Toussaint, M.: Robot trajectory optimization using approximate inference. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages 1049–

1056, 2009.

72. Toussaint, M. and Storkey, A.: Probabilistic inference for solving discrete and continuous
state Markov Decision Processes. In Proceedings of International Conference on
Machine learning, pages 945–952. ACM, 2006.

73. Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, P., Khemlani, S. S., and Schultz,
A. C.: Act-r/e: An embodied cognitive architecture for human-robot interaction.
journaltitle of Human-Robot Interaction, 2013.

74. Trautman, P. and Krause, A.: Unfreezing the robot: Navigation in dense, interacting
crowds. In International Conference on Intelligent Robots and Systems, 2010.

75. Vernaza, P. and Bagnell, D.: Efficient high dimensional maximum entropy modeling
via symmetric partition functions. In Advances in Neural Information Processing
Systems, pages 575–583, 2012.

76. Watkins, C. J. and Dayan, P.: Q-learning. Machine learning, 8(3):279–292, 1992.

77. Ziebart, B., Dey, A., and Bagnell, J. A.: Probabilistic pointing target prediction via in-
verse optimal control. In Proceedings of the 2012 ACM international conference
on Intelligent User Interfaces, pages 1–10. ACM, 2012.

78. Ziebart, B. D., Bagnell, J. A., and Dey, A. K.: Modeling interaction via the principle of
maximum causal entropy. In International Conference on Machine Learning, 2010.

79

79. Ziebart, B. D., Bagnell, J. A. D., and Dey, A.: The principle of maximum causal entropy
for estimating interacting processes. IEEE Transactions on Information Theory,
February 2013.

80. Ziebart, B. D., Dey, A. K., and Bagnell, J. A.: Fast planning for dynamic preferences. In
Proceedings ICAPS, 2008.

81. Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.: Maximum entropy inverse
reinforcement learning. In AAAI, pages 1433–1438, 2008.

82. Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.: Human behavior modeling with
maximum entropy inverse optimal control. In Association for the Advancement of
Artificial Intelligence Spring Symposium: Human Behavior Modeling, 2009.

83. Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C. R. I., Peterson, K., Bagnell, J. A., Hebert,
M., Dey, A. K., and Srinivasa, S.: Planning-based prediction for pedestrians. In
International Conference on Intelligent Robots and Systems, 2009.

80

APPENDIX

COPYRIGHT POLICIES

Association for the Advancement of Artificial Intelligence (AAAI)

Authors who publish with this journal agree to the following terms:
1. Author(s) agree to transfer their copyrights in their article/paper to the Association for the

Advancement of Artificial Intelligence (AAAI), in order to deal with future requests for reprints,
translations, anthologies, reproductions, excerpts, and other publications. This grant will in-
clude, without limitation, the entire copyright in the article/paper in all countries of the world,
including all renewals, extensions, and reversions thereof, whether such rights current exist
or hereafter come into effect, and also the exclusive right to create electronic versions of the
article/paper, to the extent that such right is not subsumed under copyright.

2. The author(s) warrants that they are the sole author and owner of the copyright in the
above article/paper, except for those portions shown to be in quotations; that the article/paper
is original throughout; and that the undersigned right to make the grants set forth above is
complete and unencumbered.

3. The author(s) agree that if anyone brings any claim or action alleging facts that, if
true, constitute a breach of any of the foregoing warranties, the author(s) will hold harmless
and indemnify AAAI, their grantees, their licensees, and their distributors against any liability,
whether under judgment, decree, or compromise, and any legal fees and expenses arising
out of that claim or actions, and the undersigned will cooperate fully in any defense AAAI may
make to such claim or action. Moreover, the undersigned agrees to cooperate in any claim or
other action seeking to protect or enforce any right the undersigned has granted to AAAI in the
article/paper. If any such claim or action fails because of facts that constitute a breach of any
of the foregoing warranties, the undersigned agrees to reimburse whomever brings such claim
or action for expenses and attorneys fees incurred therein.

4. Author(s) retain all proprietary rights other than copyright (such as patent rights).
5. Author(s) may make personal reuse of all or portions of the above article/paper in other

works of their own authorship.
6. Author(s) may reproduce, or have reproduced, their article/paper for the authors per-

sonal use, or for company use provided that AAAI copyright and the source are indicated, and
that the copies are not used in a way that implies AAAI endorsement of a product or service of
an employer, and that the copies per se are not offered for sale. The foregoing right shall not
permit the posting of the article/paper in electronic or digital form on any computer network,
except by the author or the authors employer, and then only on the authors or the employers
own web page or ftp site. Such web page or ftp site, in addition to the aforementioned re-
quirements of this Paragraph, must provide an electronic reference or link back to the AAAI
electronic server, and shall not post other AAAI copyrighted materials not of the authors or

81

APPENDIX (Continued)

the employers creation (including tables of contents with links to other papers) without AAAIs
written permission.

7. Author(s) may make limited distribution of all or portions of their article/paper prior to
publication.

8. In the case of work performed under U.S. Government contract, AAAI grants the U.S.
Government royalty-free permission to reproduce all or portions of the above article/paper, and
to authorize others to do so, for U.S. Government purposes.

9. In the event the above article/paper is not accepted and published by AAAI, or is with-
drawn by the author(s) before acceptance by AAAI, this agreement becomes null and void.

Neural Information Proccessing Systems (NIPS)

All NIPS authors retain copyright of their work. You will need to sign a nonexclusive license
giving the NIPS foundation permission to publish the work. Ultimately, however, you can do
whatever you like with the content, including having the paper as a chapter of your thesis.

International Joint Conference on Artificial Intelligence (IJCAI)

You can publish any version of the paper published at IJCAI, IF a reference and a link to the
copyright holder (IJCAI Organization) are clearly visible.

	to1 Introduction
	Overview

	to2 Background and Related Work
	Markov Decision Processes
	State-space graphs
	Heuristic-guided search
	Inverse Reinforcement Learning
	Maximum Entropy Inverse Optimal Control
	Approximate Maximum Entropy Inverse Optimal Control
	Maximum Margin Planning
	Continuous Maximum Entropy Inverse Optimal Control
	Locally Optimal Continuous Inverse Optimal Control
	Maximum Entropy Modeling via Symmetric Partition Functions

	I Approximating Path Distributions in Weighted Graphs
	to3 Heuristic-Guided Softened Value Iteration
	Heuristic-guided policy approximation
	Greedy selection of the approximation set
	Heuristic-Guided Softened Value Iteration

	to4 SoftStar: Bounded Approximate Path Distributions via Heuristic-Guided Search
	Inference as softened planning
	Challenges and approximation desiderata
	Regimes of Convergence
	Computing approximation error bounds
	SoftStar: Greedy forward path exploration and backward cost-to-go estimation
	Increasing Efficiency in Single Goal Graphs via Bidirectional Search

	Completeness guarantee
	Inference Comparisons on Synthetic Data
	Feature expectations and gradient computation

	to5 Experimental Validation and Discussion
	Comparison approaches
	Character drawing
	Demonstrated data
	State and feature representation
	Heuristic
	Estimated parameters

	Professional Soccer
	Demonstrated data
	State and feature representation
	Heuristic
	Estimated parameters

	Results
	Learning efficiency
	Inference efficiency

	Discussion

	II Inverse Linear Quadratic Regulation
	to6 Intent Prediction via Inverse Linear Quadratic Regulation
	Related Work
	Approach
	State Representation and Quadratic Cost Matrices
	Inverse Linear-Quadratic Regulation for Prediction
	Update Rule Derivation

	Bayesian Intention and Target Prediction
	Complexity Analysis

	Experimental Setup
	Cornell Activity Dataset
	Modifications
	Test set

	Model Fitting
	Estimating the Quadratic Parameters

	Target and Intention Sampling
	Intention Sampling
	Target Sampling
	Segmentation and Duration Sampling

	Prior Distributions
	Target Distance Prior
	Markov Intention Prior
	Combining for a Full Prior

	Prediction
	Current Target
	Next Target
	Notes on Segmentation Prediction

	Evaluation
	Comparison Metrics
	Execution Time
	Predictive Results

	Discussion

	to7 Waypoint Guided Inverse Linear Quadratic Regulation
	Waypoint-based MaxEnt Inverse Linear-Quadratic Regulation
	Approach
	Empirical Results
	Discrete Path Generation
	Continuous state-action representation
	Evaluation measures
	Empirical Results
	Test Scenes
	Random Scenes

	Discussion

	to8 Conclusion
	Future Work

	to CITED LITERATURE
	to APPENDIX
	Association for the Advancement of Artificial Intelligence (AAAI)
	Neural Information Proccessing Systems (NIPS)
	International Joint Conference on Artificial Intelligence (IJCAI)

