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I. ABSTRACT

Learning object interaction is an essential problem in
artificial intelligence that involves perception, motion planning
and control. In this paper we present our results on the problem
of grasp prediction from a single-view RGBD as well as the
camera view matrix. We show that learning geometry is at the
heart of this type of interaction and propose a geometry-aware
grasping procedure with which first we predict a 3D volumetric
representation of an object from an image, and then use this
together with the image and a grasp pose proposal to predict
the grasp success/failure (see Figure[I). We compare our results
with a vanilla approach where outcome is a high-order mapping
from image and action [3, 4, 2 ]| (see Figure 2h and b).
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Learning grasping interactions from demonstrations.

II. APPROACH
A. Proposed Architecture

Compared to existing deep learning frameworks for grasping
[3, 2], we propose a two-stage procedure for learning grasping
interaction from demonstrations: (1) the agent learns to
understand object geometry from 2D visual input, and (2) the
agent learns to predict grasping interaction from demonstrations
(see Figure k). More specifically, we design an encoder-
decoder deep neural network for learning such procedure. Our
geometry-aware encoder-decoder network has two components:
shape prediction network and grasping outcome prediction
network. The shape prediction network has an image encoder,
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a 3D shape decoder, and a learning-free visual projection
layer. The image encoder transforms the 2D visual data into
the high-level geometry representation. The shape decoder
network takes in the geometry representation and outputs the
3D volume of object. To enable supervision with 2D visual data
only, we propose a learning-free visual projection layer similar
to [3]. The grasping outcome prediction network has a state
encoder and an outcome predictor. The state encoder network
transforms the current visual state (e.g., object and gripper) to
high-level state representation. The outcome predictor network
takes in action, state, and geometry representation and outputs
the outcome (e.g., success or failure). The shape and outcome
prediction networks are bridged by the global and local shape
representation.
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Fig. 2. llustration of deep geometry-aware grasping network.

B. Dataset

We collected a database consists of 101 everyday objects
on seven categories of objects (see Figure 3). In total more
than 150K grasps were collected in Virtual Reality (VR) from
both human and augmented perturbed demonstrations. For each
object, we collect 10-20 successful grasping attempts with a
1-DoF virtual gripper from five right-handed users. For each
attempt, we log the pre-grasp status which includes the location,
orientation of object and gripper as well as the grasping
outcome (e.g., success or failure). Additionally, we augment
the data by perturbing the gripper location and orientation
around every each human demonstrated grasps. We use Bullet
(https://github.com//bulletphysics) to evaluate these augmented
grasps in simulator and label them as success/failure based on
their outcome.
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Fig. 3. VR-Grasping-101 dataset.

C. Training

Learning robust 3D shape representation from single-view
2D sensory input is essentially a challenging task in computer
vision due to the shape ambiguity. To reduce sub ambiguity
for shape prediction, we assume multiple observations of the
scene are available during model training. From the interaction
perspective, multi-view observations provide additional input
to the system which can be useful as well. Given a series of n
observations Z1,Z,, - - - ,Z,, of the scene, the 3D reconstruction
can be formulated as fV : {Z;}"; — V, where V corresponds
to the volumetric representation of the object. Similarly, the
projective operation from i-th viewpoint is f© : VxP; — D;,
where D; and P; are the depth and camera transformation
matrix from corresponding viewpoint, respectively. The overall
loss function is given in Eq. |1, where Ap and Ay, are the
coefficients of the depth and mask prediction, respectively.
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Inspired by previous work [4] 2| [1]], where outcome is a
high-order mapping from observation and action, a straight-
forward approach is to fit a functional mapping f’(l)anilla :
T x a — [ (see Figure 2h). Building upon the vanilla prediction
model, we propose a novel geometry-aware prediction model
where the agent learns to predict the grasping interaction by
taking the geometry-aware repsentation as additional input.
Finally, given current obseravtion Z, proposed action a, and
learned 3D shape representation V, we fit a functional mapping

éeometryfawam :Z xaxV — [, where [ is the binary label
of whether it is a valid grasp.

We pre-trained the shape prediction model (shape encoder
and shape decoder) using ADAM optimizer with learning rate
le~® for 400K iterations with a mini-batch of size 4. In each
batch, we sample 4 random viewpoints as our multi-view
training. We observed this setting led to a more stable shape
prediction performance compared to single-view training. In
addition, we used £, loss for foreground depth prediction and
Lo loss for silhouette prediction with coefficients Ap = 0.5 and
Am = 10.0. In the next step, we fine-tuned the state encoder
and outcome predictor using ADAM optimizer with learning
rate 3e~% for 200K iterations with a mini-batch of size 4. We
used cross-entropy as our objective function since the grasping
prediction is formulated as a binary classification task.

Method / Category bottle bowl cup plate sugarbowl teapot all

baseline (15) 72.81 73.36 73.26 66.92 70.45 66.13 71.42

78.83 76.09 73.69 76.55

baseline (45) 71.02 74.16 73.50 63.31 74.23 72.70 64.19 71.32
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TABLE 1
OUTCOME PREDICTION ACCURACY FROM SEEN ELEVATION ANGLES.

Method / Category bottle bowl cup plate sugarbow] teapot all

baseline (30) 71.15 72.98 71.65 61.90 70.06 61.88 69.50

geo-aware (30) 75.27
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baseline (60) 68.45 73.05 72.50 61.27 71.30 63.25 70.18
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geo-aware (60) 77.40 78.52 7624 | 68.13 76.15 70.34 75.76

TABLE I
OUTCOME PREDICTION ACCURACY FROM NOVEL ELEVATION ANGLES.

III. RESULTS
A. Visualization: 3D shape prediction

We evaluate the performance of our network by running
inference using the shape encoder and decoder network. In our
evalutions, we used single-view RGBD as well as camera view
matrix as input. As shown in Figure ] our model demonstrates
reasonable generalization ability when applied the same model
to novel objects that do not exist in the training set.
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Fig. 4. Visualization: 3D shape prediction from single-view RGBD on testing
(unseen) objects.

We adopt the classification accuracy as the evaluation metric
and run dense evaluations for both models on the novel objects
(from testing set). For each demonstration, we simulate 100
grasps (50% of them are success grasps) and run inference
using both our geometry-aware model and baseline model.
To investigate the model robustness to viewpoint change, we
repeat the evaluations using 4 elevation angles (e.g, 15, 30,
45, and 60 degrees). We summarize the results in Table [I]
and Table [l Overall, the geometry-aware model performs
consistently better than vanilla model in outcome classification.
Interestingly, we found that “teapot” and “plate” categories are
comparatively more challenging than the other categories. This
can be understood since “teapot” has irregular components
(e.g., tip and handle) while “plate” has a fairly flat shape.
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