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Abstract

Recent machine learning methods for sequential behavior prediction estimate the
motives of behavior rather than the behavior itself. This higher-level abstraction
improves generalization in different prediction settings, but computing predic-
tions often becomes intractable in large decision spaces. We propose the Soft-
star algorithm, a softened heuristic-guided search technique for the maximum
entropy inverse optimal control model of sequential behavior. This approach sup-
ports probabilistic search with bounded approximation error at a significantly re-
duced computational cost when compared to sampling based methods. We present
the algorithm, analyze approximation guarantees, and compare performance with
simulation-based inference on two distinct complex decision tasks.

1 Introduction

Inverse optimal control (IOC) [15], also known as inverse reinforcement learning [20, 1] and inverse
planning [3], has become a powerful technique for learning to control or make decisions based on
expert demonstrations [1, 22]. IOC estimates the utilities of a decision process that rationalizes an
expert’s demonstrated control sequences. Those estimated utilities can then be used in an (optimal)
controller to solve new decision problems, producing behavior that is similar to demonstrations.

Predictive extensions to IOC [19, 26, 2, 18, 21, 6] recognize the inconsistencies, and inherent sub-
optimality, of repeated behavior by incorporating uncertainty. They provide probabilistic forecasts
of future decisions in which stochasticity is due to this uncertainty rather than the stochasticity of
the decision process’s dynamics. These models’ distributions over plans and policies can typically
be defined as softened versions of optimal sequential decision criteria.

A key challenge for predictive IOC is that many decision sequences are embedded within large
decision processes. Symmetries in the decision process can be exploited to improve efficiency [24],
but decision processes are not guaranteed to be (close to) symmetric. Approximation approaches to
probabilistic structured prediction include approximate maxent IOC [14], heuristic-guided sampling
[17], and graph-based IOC [7]. However, few guarantees are provided by these approaches; they are
not complete and the set of variable assignments uncovered may not be representative of the model’s
distribution.

Seeking to provide stronger guarantees and improve efficiency over previous methods, we present
Softstar, a heuristic-guided probabilistic search algorithm for inverse optimal control. Our approach
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generalizes the A* search algorithm [8] to calculate distributions over decision sequences in predic-
tive IOC settings allowing for efficient bounded approximations of the near-optimal path distribution
through a decision space. This distribution can then be used to update a set of trainable parameters,
θ, that motivate the behavior of the decision process via a cost/reward function [20, 1, 3, 26].

We establish theoretical guarantees of this approach and demonstrate its effectiveness in two set-
tings: learning stroke trajectories for Latin characters and modeling the ball-handling decision pro-
cess of professional soccer.

2 Background

2.1 State-space graphs and Heuristic-guided search

In this work, we restrict our consideration to deterministic planning tasks with discrete state spaces.
The space of plans and their costs can be succinctly represented using a state-space graph, G =
(S, E , cost). With vertices, s ∈ S , representing states of the planning task and directed edges,
eab ∈ E , representing available transitions between states sa and sb. The neighbor set of state s,
N (s), is the set of states to which s has a directed edge and a cost function, cost(s, s′), represents
the relative desirability of transitioning between states s and s′.

The optimal plan from state s1 to goal state sT is a variable-length sequence of states (s1, s2, . . . , sT )
forming a path through the graph minimizing a cumulative penalty. Letting h(s) represent the cost
of the optimal path from state s to state sT (i.e., the cost-to-go or value of s) and defining h(sT ) , 0,
the optimal path corresponds to a fixed-point solution of the next state selection criterion [5]:

h(s) = min
s′∈N (s)

h(s′) + cost(s, s′), st+1 = argmin
s′∈N (st)

h(s′) + cost(st, s
′). (1)

The optimal path distance to the start state, d(s), can be similarly defined (with d(s1) , 0) as

d(s) = min
s′:s∈N(s′)

d(s′) + cost(s′, s). (2)

Dynamic programming algorithms, such as Dijkstra’s [9], search the space of paths through the
state-space graph in order of increasing d(s) to find the optimal path. Doing so implicitly considers
all paths up to the length of the optimal path to the goal.

Additional knowledge can significantly reduce the portion of the state space needed to be explored
to obtain an optimal plan. For example, A* search [13] explores partial state sequences by expanding
states that minimize an estimate, f(s) = d(s) + ĥ(s), combining the minimal cost to reach state s,
d(s), with a heuristic estimate of the remaining cost-to-go, ĥ(s). A priority queue is used to keep
track of expanded states and their respective estimates. A* search then expands the state at the top of
the queue (lowest f(s)) and adds its neighboring states to the queue. When the heuristic estimate is
admissible (i.e. ĥ(s) ≤ h(s) ∀ s ∈ S), the algorithm terminates with a guaranteed optimal solution
once the best “unexpanded” state’s estimate, f(s), is worse than the best discovered path to the goal.

2.2 Predictive inverse optimal control

Maximum entropy IOC algorithms [26, 25] estimate a stochastic action policy that is most uncertain
while still guaranteeing the same expected cost as demonstrated behavior on an unknown cost func-
tion [1]. For planning settings with deterministic dynamics, this yields a probability distribution over
state sequences that are consistent with paths through the state-space graph, P̂ (s1:T ) ∝ e−costθ(s1:T ),

where costθ(s1:T ) =

T−1∑
t=1

θTf(st, st+1) is a linearly weighted vector of state-transition features

combined using the feature function, f(st, st+1), and a learned parameter vector, θ. Calculating the
marginal state probabilities of this distribution is important for estimating model parameters. The
forward-backward algorithm [4] can be employed, but for large state-spaces it may not be practical.
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3 Approach

Motivated by the efficiency of heuristic-guided search algorithms for optimal planning, we define
an analogous approximation task in the predictive inference setting and present an algorithm that
leverages heuristic functions to accomplish this task efficiently with bounded approximation error.

The problem being addressed is the inefficiency of existing inference methods for reward/cost-based
probabilistic models of behavior. We present a method using ideas from heuristic-guided search (i.e.,
A*) for estimating path distributions through large scale deterministic graphs with bounded approx-
imation guarantees. This is an improvement over previous methods as it results in more accurate
distribution estimations without the complexity/sub-optimality concerns of path sampling and is
suitable for any problem that can be represented as such a graph.

Additionally, since the proposed method does not sample paths, but instead searches the space as in
A*, it does not need to retrace its steps along a previously searched trajectory to find a new path to
the goal. It will instead create a new branch from an already explored state. Sampling would require
retracing an entire sequence until this branching state was reached. This allows for improvements in
efficiency in addition to the distribution estimation improvements.

3.1 Inference as softened planning

We begin our investigation by recasting the inference task from the perspective of softened planning
where the predictive IOC distribution over state sequences factors into a stochastic policy [26],

π(st+1|st) = ehsoft(st)−hsoft(st+1)−θTf(st,st+1), (3)

according to a softened cost-to-go , hsoft(s), recurrence that is a relaxation of the Bellman equation:

hsoft(st) = − log
∑

st:T∈Ξst,sT

e−costθ(st:T ) = softmin
st+1∈N (st)

{
hsoft(st+1) + θTf(st, st+1)

}
(4)

where Ξst,sT is the set of all paths from st to sT; the softmin, softmin
x

α(x) , − log
∑
x

e−α(x), is a

smoothed relaxation of the min function1, and the goal state value is initially 0 and∞ for others.

A similar softened minimum distance exists in the forward direction from the start state,

dsoft(st) = − log
∑

s1:t∈Ξs1,st

e−costθ(s1:t) = softmin
st−1∈N (st)

{
dsoft(st−1) + θTf(st−1, st)

}
.

By combining forward and backward soft distances, important marginal expectations are obtained
and used to predict state visitation probabilities and fit the maximum entropy IOC model’s param-
eters [26]. Efficient search and learning require accurate estimates of dsoft and hsoft values since the
expected number of occurrences of the transition from sa to sb under the soft path distribution is:

e−dsoft(sa)−hsoft(sb)−θTf(sa,sb)+dsoft(sT). (5)

These cost-to-go and distance functions can be computed in closed-form using a geometric series,

B = A(I− A)−1 = A + A2 + A3 + A4 + · · · , (6)

where Ai,j = e−cost(si,sj) for any states si and sj ∈ S.

The (i, j)th entry of B is related to the softmin of all the paths from si to sj . Specifically, the
softened cost-to-go can be written as hsoft(si) = − log bsi,sT . Unfortunately, the required matrix
inversion operation is computationally expensive, preventing its use in typical inverse optimal con-
trol applications. In fact, power iteration methods used for sparse matrix inversion closely resemble
the softened Bellman updates of Equation (4) that have instead been used for IOC [25].

1Equivalently, min
x
α(x)+softmin

x

{
α(x)−min

x
α(x)

}
is employed to avoid overflow/underflow in prac-

tice.
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3.2 Challenges and approximation desiderata

In contrast with optimal control and planning tasks, softened distance functions, dsoft(s), and cost-
to-go functions, hsoft(s), in predictive IOC are based on many paths rather than a single (best) one.
Thus, unlike in A* search, each sub-optimal path cannot simply be ignored; its influence must in-
stead be incorporated into the softened distance calculation (4). This key distinction poses a signifi-
cantly different objective for heuristic-guided probabilistic search: Find a subset of paths for which
the softmin distances closely approximate the softmin of the entire path set. While we would hope
that a small subset of paths exists that provides a close approximation, the cost function weights
and the structure of the state-space graph ultimately determine if this is the case. With this in mind,
we aim to construct a method with the following desiderata for an algorithm that seeks a small
approximation set and analyze its guarantees:

1. Known bounds on approximation guarantees;
2. Convergence to any desired approximation guarantee;
3. Efficienct finding small approximation sets of paths.

3.3 Regimes of Convergence

In A* search, theoretical results are based on the assumption that all infinite length paths have
infinite cost (i.e., any cycle has a positive cost) [13]. This avoids a negative cost cycle regime of
non-convergence. Leading to a stronger requirement for our predictive setting are three regimes of
convergence for the predictive IOC distribution, characterized by:

1. An infinite-length most likely plan;
2. A finite-length most likely plan with expected infinite-length plans; and
3. A finite expected plan length.

The first regime results from the same situation described for optimal planning: reachable cycles
of negative cost. The second regime arises when the number of paths grows faster than the pe-
nalization of the weights from the additional cost of longer paths (without negative cycles) and is
non-convergent. The final regime is convergent.

An additional assumption is needed in the predictive IOC setting to avoid the second regime of non-
convergence. We assume that a fixed bound on the entropy of the distribution of paths, H(S1:T ) ,
E[− logP (S1:T )] ≤ Hmax, is known.

Theorem 1 Expected costs under the predictive IOC distribution are related to entropy and softmin
path costs by E[costθ(S1:T )] = H(S1:T )− dsoft(sT).

Together, bounds on the entropy and softmin distance function constrain expected costs under the
predictive IOC distribution (Theorem 1).

3.4 Computing approximation error bounds

A* search with a non-monotonic heuristic function guarantees optimality when the priority queue’s
minimal element has an estimate dsoft(s) + ĥsoft(s) exceeding the best start-to-goal path cost,
dsoft(sT). Though optimality is no longer guaranteed in the softmin search setting, approximations
to the softmin distance are obtained by considering a subset of paths (Lemma 1).

Lemma 1 Let Ξ represent the entire set (potentially infinite in size) of paths from state s to sT. We
can partition the set Ξ into two sets Ξa and Ξb such that Ξa ∪ Ξb = Ξ and Ξa ∩ Ξb = ∅ and define
dΞ

soft as the softmin over all paths in set Ξ. Then, given a lower bound estimate for the distance,

d̂soft(s) ≤ dsoft(s), we have e−d
Ξ
soft(s) − e−d

Ξa
soft (s) ≤ e−d̂

Ξb
soft (s).

We establish a bound on the error introduced by considering the set of paths through a set of states
S≈ in the following Theorem.

Theorem 2 Given an approximation state subset S≈ ⊆ S with neighbors of the approximation set
defined as N (S≈) ,

⋃
s∈S≈

N (s) − S≈, the approximation loss of exact search for paths through
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this approximation set (i.e., paths with non-terminal vertices from S≈ and terminal vertices from
S≈ ∪ N (S≈)) is bounded by the softmin of the set’s neighbors estimates, e−dsoft(sT) − e−d

S≈
soft (sT) ≤

e− softmins∈N(S≈){dS≈soft (s)+ĥsoft(s)}, where dS≈soft (s) is the softmin of all paths with terminal state s and
all previous states within S≈.

Thus, for a dynamic construction of the approximation set S≈, a bound on approximation error can
be maintained by tracking the weights of all states in the neighborhood of that set.

In practice, even computing the exact softened distance function for paths through a small subset of
states may be computationally impractical. Theorem 3 establishes the approximate search bounds
when only a subset of paths in the approximation set are employed to compute the soft distance.

Theorem 3 If a subset of paths Ξ′S≈ ⊆ ΞS≈ (and Ξ̄′S≈ ⊆ ΞS≈ −Ξ′S≈ represents a set of paths that
are prefixes for all of the remaining paths within S≈) through the approximation set S≈ is employed
to compute the soft distance, the error of the resulting estimate is bounded by:

e−dsoft(sT) − e−d
Ξ′S≈
soft (sT) ≤ e

− softmin

(
softmins∈N(S≈)

{
d
Ξ′S≈
soft (s)+ĥsoft(s)

}
,softmins∈S≈

{
d
Ξ̄′S≈
soft (s)+ĥsoft(s)

})
.

3.5 Softstar: Greedy forward path exploration and backward cost-to-go estimation

Our algorithm greedily expands nodes by considering the state contributing the most to the approxi-
mation bound (Theorem 3). This is accomplished by extending A* search in the following algorithm.

Algorithm 1 Softstar: Greedy forward and approximate backward search with fixed ordering

Input: State-space graph G, initial state s1, goal sT, heuristic ĥsoft, and approximation bound ε
Output: Approximate soft distance to goal hS≈soft

Set hsoft(s) = dsoft(s) = fsoft(s) =∞ ∀ s ∈ S, hsoft(sT) = 0, dsoft(s1) = 0 and fsoft(s1) = ĥsoft(s1)
Insert 〈s1, fsoft(s1)〉 into priority queue P and initialize empty stack O
while softmin

s∈P
(fsoft(s)) + ε ≤ dsoft(sT) do

Set s→ min element popped from P
Push s onto O
for s′ ∈ N(s) do
fsoft(s

′) = softmin(fsoft(s
′), dsoft(s) +cost(s, s′)+ĥsoft(s

′))
dsoft(s

′) = softmin(dsoft(s
′), dsoft(s) +cost(s, s′))

(Re-)Insert 〈s′, fsoft(s
′)〉 into P

end
end
while O not empty do

Set s→ top element popped from O
for s′ ∈ N(s) do
hsoft(s) = softmin(hsoft(s), hsoft(s

′) + cost(s, s′))
end

end
return hsoft

For insertions to the priority queue, if s′ already exists in the queue, its estimate is updated to the
softmin of its previous estimate and the new insertion estimate. Additionally, the softmin of all of the
estimates of elements on the queue can be dynamically updated as elements are added and removed.

The queue contains some states that have never been explored and some that have. The former
correspond to the neighbors of the approximation state set and the latter correspond to the search
approximation error within the approximation state set (Theorem 3). The softmin over all elements
of the priority queue thus provides a bound on the approximation error of the returned distance mea-
sure. The exploration order, O, is a stack containing the order that each state is explored/expanded.

A loop through the reverse of the node exploration ordering (stack O) generated by the forward
search computes complementary backward cost-to-go values, hsoft. The expected number of occur-

5



rences of state transitions can then be calculated for the approximate distribution (5). The bound
on the difference between the expected path cost of this approximate distribution and the actual
distribution over the entire state set is established in Theorem 4.

Theorem 4 The cost expectation inaccuracy introduced by employing state set S≈ is bounded by

|E[costθ(S1:T )]− ES≈ [costθ(S1:T )]| ≤ e
d
S≈
soft (sT)−softmin

s∈P
(fsoft(s))∣∣EP [costθ(S1:T )]− ES≈ [costθ(S1:T )]

∣∣,
where: ES≈ is the expectation under the approximate state set produced by the algorithm;
softmin
s∈P

(fsoft(s)) is the softmin of fsoft for all the states remaining on the priority queue after the first

while loop of Algorithm 1; and EP is the expectation over all paths not considered in the second
while loop (i.e., remaining on the queue). EP is unknown, but can be bounded using Theorem 1.

3.6 Completeness guarantee

The notion of monotonicity extends to the probabilistic setting, guaranteeing that the expansion of a
state provides no looser bounds than the unexpanded state (Definition 1).

Definition 1 A heuristic function ĥsoft is monotonic if and only if ∀s ∈ S, ĥsoft(s) ≥
softmin
s′∈N (s)

{
ĥsoft(s

′) + cost(s, s′)
}

.

Assuming this, the completeness of the proposed algorithm can be established (Theorem 5).

Theorem 5 For monotonic heuristic functions and finite softmin distances, convergence to any level
of softmin approximation is guaranteed by Algorithm 1.

4 Experimental Validation

We demonstrate the effectiveness of our approach on datasets for Latin character construction using
sequences of pen strokes and ball-handling decisions of professional soccer players. In both cases we
learn the parameters of a state-action cost function that motivates the behavior in the demonstrated
data and using the softstar algorithm to estimate the state-action feature distributions needed to
update the parameters of the cost function [26]. We refer to the appendix for more information.

We focus our experimental results on estimating state-action feature distributions through large state
spaces for inverse optimal control as there is a lot of room for improvement over standard approaches
which typically use sampling based methods to estimate the distributions providing few (if any)
approximation guarantees. Softstar directly estimates this distribution with bounded approximation
error allowing for a more accurate estimation and more informed parameter updates.

4.1 Comparison approaches

We compare our approach to heuristic guided maximum entropy sampling [17], approximate maxi-
mum entropy sampling [14], reversible jump Markov chain Monte Carlo (MCMC) [12], and a search
that is not guided by heuristics (comparable to Dijkstra’s algorithm for planning). For consistency,
we use the softmin distance to generate the values of each state in MCMC. Results were collected
on an Intel i7-3720QM CPU at 2.60GHz.

4.2 Character drawing

We apply our approach to the task of predicting the sequential pen strokes used to draw characters
from the Latin alphabet. The task is to learn the behavior of how a person draws a character given
some nodal skeleton. Despite the apparent simplicity, applying standard IOC methods is challeng-
ing due to the large planning graph corresponding to a fine-grained representation of the task. We
demonstrate the effectiveness of our method against other commonly employed techniques.

Demonstrated data: The data consists of a randomly separated training set of 400 drawn char-
acters, each with a unique demonstrated trajectory, and a separate test set of 52 examples where
the handwritten characters are converted into skeletons of nodes within a unit character frame [16].
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Figure 1: Character
skeleton with two
pen strokes.

For example, the character in Figure 1 was drawn using two strokes, red and
green respectively. The numbering indicates the start of each stroke.

State and feature representation: The state consists of a two node history
(previous and current node) and a bitmap signifying which edges are cov-
ered/uncovered. The state space size is 2|E|(|V | + 1)2 with |E| edges and
|V | nodes. The number of nodes is increased by one to account for the ini-
tial state. For example, a character with 16 nodes and 15 edges with has a
corresponding state space of about 9.47 million states.

The initial state has no nodal history and a bitmap with all uncovered edges. The goal state will have
a two node history as defined above, and a fully set bitmap representing all edges as covered. Any
transition between nodes is allowed, with transitions between neighbors defined as edge draws and
all others as pen lifts. The appendix provides additional details on the feature representation.

Heuristic: We consider a heuristic function that combines the (soft) minimum costs of covering
each remaining uncovered edge in a character assuming all moves that do not cross an uncovered
edge have zero cost. Formally, it is expressed using the set of uncovered edges, Eu, and the set of
all possible costs of traversing edge i, cost(ei), as ĥsoft(s) =

∑
ei∈Eu

softmin
ei

cost(ei).

4.3 Professional Soccer

In addition, we apply our approach to the task of modeling the discrete spatial decision process of the
ball-handler for single possession open plays in professional soccer. As in the character drawing task,
we demonstrate the effectiveness of our approach against other commonly employed techniques.

Demonstrated data: Tracking information from 93 games consisting of player locations and time
steps of significant events/actions were pre-processed into sets of sequential actions in single pos-
sessions. Each possession may include multiple different team-mates handling the ball at different
times resulting in a team decision process on actions rather than single player actions/decisions.

Discretizing the soccer field into cells leads to a very large decision process when considering actions
to each cell at each step. We increase generalization by reformatting the field coordinates so that the
origin lies in the center of the team’s goal and all playing fields are normalized to 105m by 68m and
discretized into 5x4m cells. Formatting the field coordinates based on the distances from the goal of
the team in possession doubles the amount of training data for similar coordinates. The positive and
negative half planes of the y axis capture which side of the goal the ball is located on.

We train a spatial decision model on 92 of the games and evaluate the learned ball trajectories on a
single test game. The data contains 20,337 training possession sequences and 230 test sequences.

State and feature representation: The state consists of a two action history where an action is
designated as a type-cell tuple where the type is the action (pass, shot, clear, dribble, or cross) and
the cell is the destination cell with the most recent action containing the ball’s current location. There
are 1433 possible actions at each step in a trajectory resulting in about 2.05 million possible states.

There are 28 Euclidean features for each action type and 29 that apply to all action types resulting in
168 total features.We use the same features as the character drawing model and include a different
set of features for each action type to learn unique action based cost functions.

Heuristic: We use the softmin cost over all possible actions from the current state as a heuristic.
It is admissible if the next state is assumed to always be the goal: ĥsoft(s) = softmin

s′∈N (s)
{cost(s, s′)}.

4.4 Comparison of learning efficiency

We compare Softstar to other inference procedures for large scale IOC and measure the average test
set log-loss, equivalent to the difference between the cost of the demonstrated path, cost(s1:T ), and
the softmin distance to the goal, dsoft(goal), − logP (path) = cost(s1:T )− dsoft(goal).
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Log-Loss After Each Training Epoch
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Figure 2: Training efficiency on the Character (left) and Soccer domains (right).

Figure 2 shows the decrease of the test set log-loss after each training epoch. The proposed method
learns the models far more efficiently than both approximate max ent IOC [14] and heuristic guided
sampling [17]. This is likely due to the more accurate estimation of the feature expectations that
results from searching the graph rather than sampling trajectories.

The improved efficiency of the proposed method is also evident if we analyze the respective time
taken to train each model. Softstar took ~5 hours to train 10 epochs for the character model and ~12
hours to train 25 epochs for the soccer model. To compare, heuristic sampling took ~9 hours for the
character model and ~17 hours for the soccer model, and approximate max ent took ~10 hours for
the character model and ~20 hours for the soccer model.

4.5 Analysis of inference efficiency

In addition to evaluating learning efficiency, we compare the average time efficiency for generating
lower bounds on the estimated softmin distance to the goal for each model in Figure 3.

Softmin Distance Estimation as a Function of Time
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Figure 3: Inference efficiency evaluations for the Character (left) and Soccer domains (right).

The MCMC approach has trouble with local optima. While the unguided algorithm does not ex-
perience this problem, it instead explores a large number of improbable paths to the goal. The pro-
posed method avoids low probability paths and converges much faster than the comparison methods.
MCMC fails to converge on both examples even after 1,200 seconds, matching past experience with
the character data where MCMC proved incapable of efficient inference.

5 Conclusions

In this work, we extended heuristic-guided search techniques for optimal planning to the predictive
inverse optimal control setting. Probabilistic search in these settings is significantly more computa-
tionally demanding than A* search, both in theory and practice, primarily due to key differences be-
tween the min and softmin functions. However, despite this, we found significant performance im-
provements compared to other IOC inference methods by employing heuristic-guided search ideas.
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A Proofs

Proof 1 (of Theorem 1) By writing the definition of the entropy, we have:

H(S1:T ) = E [− logP (S1:T )] = E

[
− log

e−costθ(S1:T )∑
s1:T

e−costθ(s1:T )

]
= E [costθ(S1:T )]− dsoft(sgoal).

Proof 2 (of Lemma 1) By definition,∑
path∈Ξ

e−cost(path) =
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−cost(path)

≤
∑

path∈Ξa

e−cost(path) +
∑

path∈Ξb

e−
ˆcost(path)

for ˆcost(path) ≤ cost(path). Equivalently, for d̂soft(s) ≤ dsoft(s): e−d
Ξ
soft(s) − e−d

Ξa
soft (s) ≤ e−d̂

Ξb
soft (s).

Proof 3 (of Theorem 2) Theorem 2 follows directly from Lemma 1 by choosing the set of paths in
the approximation set for Ξa and the set of paths not contained within the approximation set for Ξb.
The costs of Ξb are lower bounds estimated by adding the cost within the approximation set to the
heuristic found at the path’s first state outside of the approximation set.

Proof 4 (of Theorem 3) Following directly from Lemma 1, the paths can be partitioned into the
subset Ξ′S≈ and the subset of all other paths. The set of all other paths either terminate at S≈’s
neighbour set or have prefixes represented by the set Ξ̄′S≈ .

Proof 5 (of Theorem 4) We will prove by contradiction. Assume that the algorithm does not termi-
nate with guaranteed approximation. There are three cases to consider:
1. The algorithm terminates by satisfying the stopping condition. This case violates the stopping
condition’s approximation guarantee.
2. The algorithm terminates by exhausting the set of reachable states. By definition, the algorithm
has considered all paths and the estimated softmin distance function is exact.
3. The algorithm does not terminate. This case could arise if the algorithm encounters a loop in
which no “progress” towards correct approximation is made. We can define this progress primarily
by the softmin of the priority queue estimates. For monotonic softmin heuristic functions, expansion
of nodes is guaranteed to not increase the priority queue softmin. Thus, an infinite number of states
must be expanded for which the monotonic inequality is tight. This violates either the finite softmin
assumption or the bounded entropy assumption.

Proof 6 (of Theorem 5) By definition:

E [costθ(S1:T )] =

∑
path∈S≈ e

−costθ(path)∑
path∈S e

−costθ(path) ES≈ [costθ(S1:T )]

+

∑
path∈P e

−costθ(path)∑
path∈S e

−costθ(path) EP [costθ(S1:T )] ;

= e
dsoft(sgoal)−d

S≈
soft (sgoal)ES≈ [costθ(S1:T )]

+ edsoft(sgoal)−softmin(P )EP [costθ(S1:T )] .

Then: E [costθ(S1:T )]− ES≈ [costθ(S1:T )] =

edsoft(sgoal)−softmin(P )(EP [costθ(S1:T )]− ES≈ [costθ(S1:T )]
)
.

Replacing edsoft(sgoal) with ed
S≈
soft (sgoal) increases the positive scalar multiplier preceding the expecta-

tion difference, yielding our result.

B Synthetic Evaluation

In our synthetic experiment, we generate a random full cost matrix with 20,000 states. We compute
exact soft distance values via Equation 1(6), requiring over 10 minutes for the inversion of the
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matrix and evaluate our approach using heuristic functions, ĥsoft(s) = αhsoft(s), with varying values
of α ∈ [0, 1].

Softmin Distance Estimation as a Function of Time
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Figure 4: Inference efficiency comparison using ratios of the softmin distance as heuristic values.

Figure 4 shows the efficiency of our approach with heuristic functions of varying tightness. Without a
heuristic (α = 0%), over 26 minutes of CPU time is required for the proposed algorithm to complete,
whereas for α ≥ 75% the softstar algorithm concludes in about 1 second. MCMC performs poorly,
getting caught in local optima and taking over 45 minutes of CPU time to converge.

C Evaluation Details

C.1 Feature expectations and gradient computation

In order to generate the desired path distribution we must first run the softstar algorithm in order
to generate the softened cost-to-go values, dsoft, on the ordered set, O. We then use Equation 5 to
compute the probability of each state transition in O as well as the expected feature distributions
needed to generate the gradient:

∇L(θ) = Eπ̂

T̂−1∑
t=0

f(st, st+1)

− Eπ̃

T̃−1∑
t=0

f(st, st+1)

 . (7)

We employ stochastic accelerated gradient descent with an adagrad learning rate and accelerated
momentum [10, 23] to estimate the cost parameters, θ, using the gradient computation in Equation 7.
We update θ by optimizing the loss function via Equation 7 and matching the estimated distribution
of the state-action features to the distribution in the demonstrated trajectories. This is the same
method used to update the cost function parameters in previous work [26, 18].

C.2 Character Drawing

Feature Representation The features are separated into three groups:

• Four initial transition features: Destination node distance from each side of the image
plane.

• Nine edge draw features: Angles of the edge being drawn, with respect to the previous
transition angle, to the horizontal, to the vertical, the inverse of these 4 features, and a
constant edge draw feature.

• 15 pen lift features: Each of the edge draw features and initial transition features as well
as the distance of the lift and the inverse of the distance of the lift.

An accurate model trained on these features should be informative as to the preferences of how the
handwritten characters are drawn in the training set.

Estimated parameters The learned weights indicate that the preferred starting position for a char-
acter is in the top left of the frame, drawing an edge is more desirable than a pen lift and that a
smoother transition angle is preferred when drawing an edge than executing a pen lift matching
previous empirical results on drawing preferences [11].
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C.3 Professional Soccer

Feature Representation There are 28 Euclidean features for each action type and 29 that apply
to all action types resulting in 168 total features that form the cost of a state transition between the
current cell, the previous cell, and the destination cell. We use the same features as the character
drawing model and include a different set of features for each action type in order to learn unique
action based cost functions that better represent the individual characteristics of each action type. We
also include a set of 29 features that apply to all types and are used to learn common characteristics
between actions and speed learning for a total of 174 features.

Estimated parameters The learned weights indicate that the players prefer close range shots in
front of the goal, crosses from the sides of the field, and players tend to take actions that move
the ball closer to the goal in short distances. A more detailed analysis of learned behavior will be
reserved for future work.
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