next up previous contents
Next: About this document Up: Learning with Mixtures of Previous: Conclusion

References

1
U. C. Irvine Machine Learning Repository. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.

2
Ann Becker and Dan Geiger. A sufficiently fast algorithm for finding close to optimal junction trees. In UAI 96 Proceedings, 1996.

3
C. Berrou and A. Glavieux. Near-optimum error correcting coding and decoding Turbo codes. IEEE Transactions on Communications, 44:1261--1271, 1996.

4
P. Brucker. On the complexity of clustering algorithms. In R. Henn, B. Corte, and W. Oletti, editors, Optimierung und Operations Research, Lecture Notes in Economics and Mathematical Systems, pages 44--55. Springer Verlag, 1978.

5
Peter Cheeseman and John Stutz. Bayesian classification (AutoClass): Theory and results, pages 153--180. AAAI Press, 1995.

6
Jie Cheng, David A. Bell, and Weiru Liu. Learning belief networks from data: an information theory based approach. In Proceedings of the Sixth ACM International Conference on Information and Knowledge Management, 1997.

7
C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14(3):462--467, May 1968.

8
Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393--405, 1990.

9
Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309--347, 1992.

10
Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest. Introduction to Algorithms. MIT Press, 1990.

11
Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

12
Robert Cowell. Sampling without replacement in junction trees. Statistical Research Paper 15, City University, London, 1997.

13
Sanjoy Dasgupta. Learning polytrees. 1998.

14
A. P. Dawid. Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25--36, 1992.

15
Peter Dayan and Richard S. Zemel. Competition and multiple cause models. Neural Computation, 7(3), 1995.

16
Luis M. de Campos and Juan F. Huete. Algorithms for learning decomposable models and chordal graphs. In Dan Geiger and Prakash Pundalik Shenoi, editors, Proceedings of the 13th Conference on Uncertainty in AI, pages 46--53. Morgan Kaufmann, 1997.

17
Carl G. de Marcken. Discovering dependencies by repeated sampling. 1998.

18
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39:1--38, 1977.

19
Denise L. Draper and Steve Hanks. Localized partial evaluation of belief networks. In Proceedings of the 10th Conference on Uncertainty in AI. Morgan Kaufmann Publishers, 1994.

20
Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Jounal of the Association for Computing Machinery, 34(3):596--615, July 1987.

21
Brendan J. Frey, Geoffrey E. Hinton, and Peter Dayan. Does the wake-sleep algorithm produce good density estimators? In D. Touretsky, M. Mozer, and M. Hasselmo, editors, Neural Information Processing Systems, number 8, pages 661--667. MIT Press, 1996.

22
Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine Learning, 29:131--163, 1997.

23
Nir Friedman, Moises Goldszmidt, and Tom Lee. Bayesian network classification with continous attributes: Getting the best of both discretization and parametric fitting. In Proceedings of the International Conference on Machine Learning (ICML).

24
Nir Friedman and Moses Goldszmidt. Building classifiers using Bayesian networks. In Proceedings of the National Conference on Artificial Intelligence (AAAI 96), pages 1277--1284, Menlo Park, CA, 1996. AAAI Press.

25
H. N. Gabow, Z. Galil, T. Spencer, and Robert Endre Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica, 6(2):109--122, 1986.

26
Robert G. Gallager. Low-density parity-check codes. MIT Press, 1963.

27
Dan Geiger. An entropy-based learning algorithm of bayesian conditional trees. In Proceedings of the 8th Conference on Uncertainty in AI, pages 92--97. Morgan Kaufmann Publishers, 1992.

28
Dan Geiger. Knowledge representation and inference in similarity networks and bayesian multinets. "Artificial Intelligence", 82:45--74, 1996.

29
Dan Geiger and Christopher Meek. Graphical models and exponential families. In Proceedings of the 14th Conference on Uncertainty in AI, pages 156--165. Morgan Kaufmann Publishers, 1998.

30
Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721--741, 1984.

31
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov chain Monte Carlo in practice. Chapman & Hall, London, 1996.

32
David Heckerman. A tutorial on learning Bayesian networks. Technical Report MSR--TR--95--06, Microsoft Research, 1995.

33
David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197--243, 1995.

34
Reimar Hofmann and Volker Tresp. Nonlinear Markov networks for continuous variables. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Neural Information Processing Systems, number 10, pages 521--529. MIT Press, 1998.

35
Tommi S. Jaakkola. Variational methods for inference and estimation in graphical models. PhD thesis, Massachusetts Institute of Technology, 1997.

36
Finn V. Jensen. An introduction to Bayesian networks. Springer, 1996.

37
Finn V. Jensen and Frank Jensen. Optimal junction trees. In Proceedings of the 10th Conference on Uncertainty in AI. Morgan Kaufmann Publishers, 1994.

38
Finn V. Jensen, Steffen L. Lauritzen, and K. G. Olesen. Bayesian updating in causal probabilistic networks by local computations. Computational Statistics Quarterly, 4:269--282, 1990.

39
Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. Learning and inference in graphical models, chapter "An introduction to variational methods for graphical models", pages 75--104. 1998.

40
Uffe Kjærulff. Approximation of Bayesian networks through edge removals. Technical Report Report, Aarlborg University, Department of Mathematics and Computer Science, 94--2007, 1993.

41
Petri Kontkanen, Petri Myllymaki, and Henry Tirri. Constructing bayesian finite mixture models by the EM algorithm. Technical Report C-1996-9, Univeristy of Helsinky, Department of Computer Science, 1996.

42
S. Kotz and N. L. Johnson (Eds.). Encyclopedia of Statistical Sciences. Wiley, 1982--1989.

43
S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79--86, March 1951.

44
David J. C. MacKay and Radford M. Neal. Near Shannon limit performance of low density parity check codes. Electronics Letters, 33:457--458, 1997.

45
David Madigan and Adrian Rafferty. Model selection and accounting for model uncertainty in graphical models using occam's window. Journal of the American Statistical Association, 89, 1994.

46
Marina Meila and Michael I. Jordan. Estimating dependency structure as a hidden variable. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Neural Information Processing Systems, number 10, pages 584--590. MIT Press, 1998.

47
Marina Meila, Michael I. Jordan, and Quaid D. Morris. Estimating dependency structure as a hidden variable. Technical Report AIM--1648,CBCL--165, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1998. (revised version of AIM--1611).

48
D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classification. Ellis Horwood Publishers, 1994.

49
Stefano Monti and Gregory F. Cooper. A Bayesian network classfier that combines a finite mixture model and a naive Bayes model. Technical Report ISSP-98-01, University of Pittsburgh, March 1998.

50
Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71--113, 1992.

51
Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences in stochastic language modelling. Computer Speech and Language, 8:1--38, 1994.

52
Michiel O. Noordewier, Geoffrey G. Towell, and Jude W. Shawlik. Training Knowledge-Based Neural Networks to recognize genes in DNA sequences. In Richard P. Lippmann, John E. Moody, and David S. Touretztky, editors, Advances in Neural Information Processing Systems, volume 3, pages 530--538. Morgan Kaufmann Publishers, 1991.

53
Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman Publishers, San Mateo, CA, 1988.

54
Carl E. Rasmussen, Radford M. Neal, Geoffrey E. Hinton, Drew van Camp, Michael Revow, Zoubin Ghahramani, R. Kustra, and Robert Tibshrani. The DELVE Manual. http://www.cs.utoronto.ca/ delve, 1996.

55
Jorma Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific Publishing Company, New Jersey, 1989.

56
Jeff Schlimmer. Mushroom database. U.C. Irvine Machine Learning Repository.

57
Raffaella Settimi and Jim Q. Smith. On the geometry of Bayesian graphical models with hidden variables. In Proceedings of the 14th Conference on Uncertainty in AI, pages 472--479. Morgan Kaufmann Publishers, 1998.

58
R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16, 1973.

59
D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. BUGS: Bayesian inference Using Gibbs Sampling, Version 3.0. Medical Research Council Biostatistics Unit, Cambridge, 1994.

60
Peter Spirtes and Thomas Richardson. A polynomial time algorithm for determining DAG equivalence in the presence of latent variables and selection bias. In Proceedings of the AISTATS-97 workshop, pages 489--500, 1997.

61
Elena Stanghellini and Barbara Vantaggi. On identification of graphical log-linear models with one unobserved variable. Technical Report 99/1, Universitá di Perugia, 1999.

62
Evan W. Steeg. Automated motif discovery in protein structure prediction. PhD thesis, University of Toronto, 1997.

63
Robert Endre Tarjan. Data structures and network algorithms. Society for Industrial and Applied Mathematics, 1983.

64
Bo Thiesson, Christopher Meek, D. Maxwell Chickering, and David Heckerman. Learning mixtures of Bayes networks. Technical Report MSR--POR--97--30, Microsoft Research, 1997.

65
Geoffrey Towell and Jude W. Shawlik. Interpretation of artificial neural networks: Mapping Knowledge Based Neural Networks into rules. In John E. Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 9--17. Morgan Kaufmann Publishers, 1992.

66
Thomas Verma and Judea Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation. In Didier Dubois, Michael P. Wellman, Bruce D'Ambrosio, and Philippe Smets, editors, Proceedings of the 8th Conference on Uncertainty in AI, pages 323--330. Morgan Kaufmann, 1992.

67
James D. Watson, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, and Alan M. Weiner. Molecular Biology of the Gene, volume I. The Benjamin/Cummings Publishing Company, 4 edition, 1987.

68
Yair Weiss. Belief propagation and revision in networks with loops. Technical Report AIM--1616,CBCL--155, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1997.

69
Douglas B. West. Introduction to Graph Theory. Prentice Hall, 1996.

70
Joe Whittaker. Graphical models in applied multivariate statistics. John Wiley & Sons, 1990.



Marina Meila
Fri Feb 12 22:53:00 EST 1999