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Abstract-The major focus of this study is to describe the 
construction procedure of an open-source C++/Mex solution for 
the detection and delineation of long-duration ambulatory holter 
electrocardiogram (ECG) individual events. To this end, detailed 
flow-chart of the proposed ECG detection-delineation algorithm 
as well as the corresponding lines in the C++/Mex code are 
explained. In addition, two methodologies for generating the 
detection-delineation decision statistic (DS) named as Area-
Curve Length Method (ACLM) and Geometrical Index Method 
(GIM) and their appropriate programming implementations are 
explained. The presented code has been evolved via application 
of it to several databases such as MIT-BIH Arrhythmia Database, 
QT Database, and T-Wave Alternans Database. As a result, the 
average values of sensitivity and positive predictability, Se = 
99.96% and P+ = 99.96% were obtained for the detection of QRS 
complexes, with the average maximum delineation error of 5.7 
msec, 3.8 msec and 6.1 msec for P-wave, QRS complex and T-
wave respectively. In addition, the code was applied to DAY 
general hospital high resolution holter data (more than 1,500,000 
beats including Bundle Branch Blocks-BBB, Premature 
Ventricular Complex-PVC and Premature Atrial Complex-PAC) 
and average values of Se=99.98% and P+=99.98% were obtained 
for QRS detection. Marginal performance improvement of ECG 
events detection-delineation process in a widespread range of 
signal to noise ratio (SNR), reliable robustness against strong 
noise, artifacts, probable severe arrhythmia(s) of high resolution 
holter data and the processing speed 185,000 samples/sec can be 
mentioned as important merits and capabilities of the presented 
C++/Mex solution.  

Keywords-ECG Detection-delineation; Discrete Wavelet 
Transform; C++/mex Programming; Detection-delineation 
Decision Statistic; Curve Length; Variance; First-order Derivative; 
Second-order Derivative. 

I. INTRODUCTION 

Heart is a special electro-mechanical organ, the 
constitutive cells (myocytes) of which possess two important 
characteristics - nervous excitability and mechanical tension 
with force feedback. The superposition of all myocytes 
electrical activity on the skin surface results in a detectable 
potential difference that its detection and registration is called 
electrocardiography [1]. If incidents happen, electro-
mechanical function of a region of myocytes encounters with 
failure, the corresponding abnormal effects would appear in 
the ECG signal and in the heart of hemodynamic performance. 
Statistical analyses of ECG parameters in long-term occasions 
can yield successful and prompt solutions for diagnosis of 
some certain phenomena such as T-Wave Alternans (TWA) 
[2,3], Atrial Fibrillation (AF) [4,5] and QT-prolongation [6]. 
Furthermore, proper delineation of ECG waveforms can help 
to achieve more accurate results in applications such as pattern 

recognition or arrhythmia clustering and classification [7,8]. 
Therefore, parameterization and detection of ECG signal 
events using a reliable algorithm are the first stage of the 
computer analysis of the ECG signal. Numerous approaches 
have yet been developed to  detect the ECG events including 
mathematical models [9] , Hilbert transform and the first 
derivative [10,12], statistical higher order moments [13], 
second order derivative [14], wavelet transform and the filter 
banks [15-17], soft computing (Neuro-fuzzy, genetic 
algorithm) [18] and Hidden Markov Models (HMM) 
application [19]. The performance of QRS detection 
algorithms can easily be verified by utilizing the standard 
databases such as MIT-BIH Arrhythmia Database [20]. 
However, validation of a proposed algorithm for the detection-
delineation of P and T-waves has turned to a difficult problem 
due to the lack of a gold standard as universal reference [15]. 
The algorithms which were already developed in this area 
such as [15-17] accomplish satisfactory results in the area of 
QRS detection, localization of J and fiducial points, the 
beginning of P-wave as well as the peak and end of T-wave. 
Applying some modifications to these methods, more 
innovative and more accurate approaches can be developed in 
the area of wave detection and delineation. As it will be 
shown in this study, by adding some innovations and 
modifications to previous methods, it would be possible to 
apply them to more challenging data including ambulatory 
holter ECG containing high-level noise and strong motion 
artifacts as well as severe arrhythmia with abnormal 
morphologies such as PVCs, PACs, a combination of ectopies 
and multifocal PVCs with complicated morphologies. The 
corrections which are considered to be added to the previous 
methods will make them more safe and robust in these cases 
[16]. 

The presented detection-delineation framework was 
validated by utilizing the clinical manual annotations of 
different databases such as MIT-BIH Arrhythmia Database 
(Fs=360Hz) [20], QT (Fs=250Hz) [21], and TWA Challenge 
2008 Database (Fs=500Hz) [23] as well as high resolution 
holter data (MEDSET®-1000Hz, 3-Channel, 32-bits) [16-17]. 
As a result, the average values of Se = 99.96%  and P+ = 
99.96% were obtained for the detection of QRS complexes 
with the average maximum delineation error of 5.7 msec, 3.8 
msec and 6.1 msec for P-wave, QRS complex and T-wave 
respectively. In addition, the proposed method was applied to 
DAY general hospital high resolution holter data (including 
BBB, PVC and PAC) and average values of Se=99.98% and 
P+=99.98% were obtained for sensitivity and positive 
predictability respectively. The organization of this article is 
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arranged as follows. In section B, DWT pre-processing via à 
trous method; furthermore, the ACLM and GIM structures and 
calculation of corresponding elements are described. In 
section C, technical information of the utilized databases, 
results obtained from application of detection-delineation 
algorithm, and verification procedure of the ACLM -based 
detection-delineation method are demonstrated. Finally, 
several conclusions obtained during the completion of this 
study are presented in section D. 
 

II.  MATERIALS AND METHODS 

In this research, the structure of the long-duration holter 
ECG waves detection-delineation code is described. 
According to the block-diagram shown in Fig. 1, first, the 
holter extracted signal is pre-processed via implementation of 
resampling, band-pass digital FIR filtering and à trous discrete 
wavelet transform algorithms. It should be noted that almost 
all parameters of the proposed detection delineation 
algorithms [11,13,16,17] are highly dependent to the sampling 
frequency of the holter systems. For instance, sampling 
frequencies 128 Hz, 250 Hz, 500 Hz, 750 Hz, 1 kHz, 2 kHz 
and 10 kHz can be seen among holter based databases [35]. 
Thus, to introduce a unified ECG individual events detection 
framework which is applicable for all sampling frequencies, 
after pre-processing of the original ECG, the resulted signal in 
the core sampling frequency is mapped to a new trend with 
target sampling frequency 1000 Hz.. By this operation, once 
the parameters of the algorithm are properly regulated for the 
target sampling frequency, the algorithm can be implemented 
to the holter data sampled at any rate.  

 

Figure 1. General block diagram of the HSEDF code designed for detection-
delineation of the long-duration holter ECG events. 

A. Discrete Wavelet Transform Using à trous Method 

The wavelet transform has three appropriate and useful 
properties. First, by employing this approach, the original 
signal can be described in different time scales. Therefore, 
different spatial resolutions would be achieved. For instance, 
in the scale 21, high energy waves (such as QRS complexes) 
can be easily distinguished from other waves while in the 
scale 24 or 25, weak or very weak waves (such as T-wave P-
wave or probable U-waves) can be detected [16]. Thus, by 
applying a multi-step algorithm it would be possible to detect 
strong, weak and very weak waves. This feature should be 

noted as one of the most significant characteristics of the 
wavelet transform which can be implemented to obtain more 
accurate results. Second, contaminating factors such as noise, 
artifacts, and baseline wandering can be distinguished from 
heart electrical activity based on their specific frequency 
contents which lead to better performance for the detection 
algorithm. Third, the wavelet transform can be easily 
implemented in practical cases due to the fact that it is a 
cascade of sequential short- length unit impulse response of 
digital FIR filters. 

Generally, it can be stated that the wavelet transform is a 
quasi-convolution of the hypothetical signal )(tx  and the 

wavelet function )(t  with the dilation parameter a  and 

translation parameter b . The parameter a  can be used to 
adjust the wideness of the basis function. Therefore, the 
transformation can be adjusted in temporal resolutions. [13, 
15].  

In Fig. 2, the DWT of an arbitrary holter ECG in different 
dyadic scales 2λ (λ=1,2,…,6) are illustrated. It should be noted 
that by utilizing this approach, the original signal can be 
described in different time scales and therefore different 
spatial resolutions would be achieved. For instance, in the 
scale 21, high energy waves (such as QRS complexes) can be 
easily distinguished from other waves while in the scale 24 or 
25, weak or very weak waves (such as T-wave P-wave or 
probable U-waves) can be detected [16]. Thus, by employing 
a multi-step algorithm, it would be possible to detect strong, 
weak and very weak waves. 
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(e) 

 
(f) 

Figure 2. Illustration of the different à trous DWT dyadic scales to choose the 
best transformation . (a) scale 21, (b) scale 22, (c) scale 23, (d) scale 24, (e) 

scale 25, (f) scale 26. According to the conducted explorations, scale 24 
possesses the best (max – min)/duration ratio. 

B.  Structure of the Geometrical Index (GI) Metric 

1) Summation of Absolute First-Order Derivative 

First and second order derivatives, curve length, area and 
second order statistical moment (variance) are the basic 
constitutive elements of the GI metric. Below, some 
justifications for the selection of each measure are presented. 

If signal )(tx is sampled from the continuous waveform 
with sampling frequency Fs, subsequently, the summation of 
absolute first order derivative of signal )(tx  in the analysis 
window is obtained as 

 





1

)()1()(
LWk

kt
sIfd txtxFkM           (1)  

This measure clearly detects the activity extent of the high-
frequency components of the original signal. In other words, 
in weak P or T-waves in which their amplitude and area are 
not large enough, this quantity shows more accurate 
sensitivity to occurrence of such phenomena.  

2) Summation of the Absolute Second-Order Derivative 

Summation of the absolute second-order derivative of 
signal )(tx  with the sampling frequency Fs , in the k-th slid of 
the analysis window can be obtained as  

 





2

2 )()1(2)2()(
LWk

kt
sIIfd txtxtxFkM   (2) 

This measure indicates the ascend/descend rate or kurtosis 
of the signal x(t) detecting the activity period of the signal 
generation source. The measure )(kM IIfd  shows remarkable 

fluctuations during activity of the heart individual events. A 
large value of MdfI and MdfII indicates a sharp transition from 
low to high or from high to low values in the excerpted 
segment. Consequently, these measures detect the probable 
edges of the signal in the analysis window thus making the GI 
metric sensitive to behavior of the signal in the edges.  

3) Curve Length 

Curve length of signal )(tx in the k-th slid of the analysis 
window can be obtained approximately as [16, 17] 

  





1

2)()1(1
1

)(
LWk

kt
s

s

CL Ftxtx
F

kM
   

(3) 

The curve length is a suitable quantity to measure the 
duration of the signal )(tx  events, either being strong or weak.  

4) Area under Curve 

The approximate area under curve )(tx  in the k-th slid of 
the analysis window is obtained from the following equation 







LWk

kts

AR tx
F

kM )(
1

)(         (4) 

A large MCL value of a signal points out a sharp ascending 
or descending trend. Consequently, this quantity makes the GI 
metric sensitive to the high-slope parts of the signal in the 
analysis window, either ascending or descending. Generally, 
the measure MCL indicates the extent of flatness (smoothness 
or impulsive peaks) of samples in the analysis window. This 
measure allows the detection of sharp ascending/descending 
regimes occurred in the excerpted segment, [31, 32]. 

5)  Centralized Mean Square Value  

An estimate of the centralized mean square value of the 
signal )(tx excerpted segment can be obtained as  

 





LWk

kt
k

L

MS tx
W

kM 2)(
1

)(            (5) 

Where k  is the sample mean of the )(tx  in the analysis 
window and can be obtained from the following summation 







LWk

ktL

k tx
W

)(
1                  (6) 

The physical meaning of the )(kMMS  is the average power 
of the events while this quantity graphically shows the 
dispersion of the samples around the mean value [13]. The 

)(kMMS  indicates the difference between absolute maximum 
and minimum values of an excerpted segment. This difference 
may not be seen via mean value because it is possible that the 
mean of a segment is a small value whilst the difference 
between its maximum and minimum values is large.  

C. Area-Curve Length Method (ACLM) 

If the discrete wavelet transform of the ECG signal is 
calculated according to the appropriate block-diagram [13]. 
Consequently some dyadic scales will be obtained for scale 
values of 5,4,3,2,1,2  . The proposed metric is developed 
based on simple mathematical calculations. Suppose a 
window with the length of L samples sliding sample to sample 
on the signal. Therefore, the signal in k-th window can be 
obtained as follows 

]:[
2

Lkkk  WY         (7) 

Where YK is a vector including the elements k to k+L of 
the scale 2 . To define a new measure, the area under the 
absolute value of the curve YK and the curve length of YK is 
obtained as 








fkt

kt k

fkt

kt k

dtykCurve

dttykArea

0
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Where t0k and yfk are the start and end points of the vector 
YK respectively and the variable YK(t) represents the samples 
existing in the vector YK. Accordingly, the new measure 
named Area-Curve Length (ACL) is defined as follows 

)()()( kCurvekAreakACL     (9)  

More details about the ACL metric specifications can be 
seen in [16]. The most significant reason for the definition of 
the ACL measure according to Eq. 9 is its capability in the 
detection of ECG wave edges (onset and offset locations). 
ACL reaches its minimum value when both the value of signal 

kY  and the corresponding derivative in the window reach their 

minimum values. Therefore, minimum value of ACL is an 
indicator of minimum amplitude and minimum slope events. 
This can be observed in wavelet transform scales (For more 
details see [16] ). 

III. DESCRIPTION OF THE HSEDF CODE STRUCTURE 

In Fig. 3, general flow-chart of the HSEDF code is 
illustrated. In this flow-chart, the overall structure of the QRS 
detection-delineation algorithm is described. In the first major 
operation of the HSEDF code, the pre-processed signal is 
utilized for detection of the QRS complexes as well as 
primary onset-offset identification for each detected complex. 
In the second main operation of the code, the precision of each 
detected QRS onset and offset locations is improved via 
implementation of rchecker and lchecker functions. In the 
third chief operation of the HSEDF code, the QRS peak 
enhancement and post-processing are performed. In other 
words, the proposed ECG detection-delineation algorithm 
includes three major operations and three minor stages. In the 
first minor stage(or pre-processing stage), original ECG signal 
is pre-processed by resampling algorithm as well as 
implementation of low-pass and high-pass FIR filters to 
remove baseline wander (low-frequency disturbance) and 
measurement distortions (high-frequency components). The 
pre-processing stage is prolonged by taking the DWT from the 
filtered signal to obtain several dyadic scales. The second 
minor stage of the detection-delineation code is the C++/Mex 
part compiled by the Microsoft Visual Studio 2008 in the 
MATLAB environment. The third minor stage of the code is 
the post-processing and visual presentation of the obtained 
results from C++/Mex subroutine. It should be noted that in 
order to detect and delineate individual events of the long-
duration holter ECG, an appropriate computational 
environment should be chosen in order to achieve acceptable 
processing speed as well as to access efficient graphical 
interface. To this end, in the presented study, C++/Mex 
environment of MATLAB with Microsoft Visual Studio 2008 
compiler are chosen in which the speed of low-level C++ 
programming environment is accessible while efficient 
utilities of MATLAB can be employed to post-process the 
output of the high-speed detection-delineation subroutine.  

A. Embedded Functions in the HSEDF Code Structure 

In this section, a summarized descriptions for the 
mathematical functions embedded in the HSEDF code are 
presented.  

mean(). This function calculates the sample mean of an 
excerpted segment of signal x(t) as follows (Appendix A 
Lines 9 to 15). 





fi

stj

jx
stfi

)(
1

1    (10)  

Where st and fi represent the start and finish sample 
numbers, respectively. 

stdi(). This function determines the sample standard 
deviation in the analysis window as follows (Appendix A 
Lines 18 to 26). 

 






fi

stj

jx
stfi

2)(
1           (11)  

integral(). This function calculates the finite numerical 
integration of an excerpted segment starting from st and 
ending to fi samples (Appendix A Lines 29 to 35).  

 
1

0.5 ( ) ( 1)
fi

x

j st

I x j x j




      (12)  

integralabs(). This function calculates the finite numerical 
integral of an excerpted segment absolute value as follows 
(Appendix A Lines 38 to 44). 

 





1

)1()(5.0
fi

stj
x

jxjxI             (13)  

maxfinder(). This function determines numerically the 
absolute maximum of an excerpted segment in the interval 
[st,fi] (Appendix A Lines 64 to 70). 

 )1()(&)1()(),,(  kxkxkxkxfistkkkx  (14)  

maxabsfinder(). This function determines numerically the 
absolute extremum of an excerpted segment in the absolute 
value of interval [st,fi] samples (Appendix A Lines 73 to 79). 

( , ), ( )

( 1) & ( ) ( 1)
x

k st fi x k l
k k

x k l x k l x k l

  


     

 
 
 

 (15)  

Where l  is the baseline value relative to it, the maximum 
value of the absolute difference should be determined. It 
should be mentioned that in this function the absolute 
extremum is the point that has the maximum difference 
(distance) with l (the baseline value). Base line value in each 
local search analysis window is the mean of onset and offset 
of that analysis window.  

regre(). The duty of this function is to introduce a standard 
to determine approximately the noise level of the excerpted 
segment of x(t) in the [st,fi] segment using the following 
equation (Appendix A Lines 82 to 100). 

yx

yx

fi

stj

jyjx
stfi

r







)()(
1

1

 (16)  

Where x(j) is the sample of the understudy signal,   is 
sample mean,   is sample standard deviation, 

)()( stjjy    is a linear line with the slope of the line 
connecting two positions on the DS starting from st and 
ending to fi, i.e., 

1

)()(





stfi

stxfix    (17)  

Comprehensive studies indicate that Eq. 17 with the 
defined value for )1())()((  stfistxfix , can 
reveal  the  similarity level of  the  excerpted  segment  and  a  
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Figure 3-a. General flow-chart of the HSEDF code describing the structure of 
the proposed detection-delineation algorithm. QRS detection subroutine of the 

code (First and second minor stages and first part of first major operati on). 

linear line in the [st,fi] interval, therefore, the level of noise 
can be  lowered.  

noisechecker(). This function gets the location of an input 
point and determines the noise level of the specific 
neighborhood (window) of that point with the given length 
using the regre() function as follows (Appendix A Lines 103 
to 110). 















UBkregre

UBkregreLB

LBkregre

krcheckenoise

)(2

)(1

)(0

)(  (18) 

Where numbers 0 ,1 and 2 show high, medium and low 
levels of noise respectively. In the section C.4.1. , the 
empirical procedure for determining the lower and upper 
bounds (LB and UB) is explained. 

 

Figure 3-d. General flow-chart of the HSEDF code describing the structure of 
the proposed detection-delineation algorithm. Removing of probable R-peak 
eccentricity by conducting a new local search on the interval starting from 
onset and ending to offset points by means of the maxabsfinder function 

(Third major operation then third minor stages). 

rchecker(). The Duty of this function is to improve the 
location of the identified offset point by updating the search 
process with respect to noise level. In this function, it is 
primarily checked that whether slop of the candidate for the 
new offset point is lower than the slope threshold (The slope 
threshold is equal to slope coefficient ( s ) multiplied with 

maximum slope in the detected right part of that QRS 
complex. (The slope is defined as the difference between two 
continuous samples) and then it is controlled  regardless that 
the elevation of the candidate for the new offset point is close 
enough to the baseline of the DS when compared  to the 
previous founded right edge or not. It should be closer to the 
baseline of the DS at least equal to difference parameter ( d ). 
If these two conditions are satisfied, the noise level of the 
specific neighborhood (window) of the candidate for the new 
offset point is estimated using the noisechecker function. If 
the noise level of the candidate for the new offset point is low, 
then  that  point  is  the new offset point. If it is concluded that  
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Figure 3-b. General flow-chart of the HSEDF code describing the structure of the proposed detection-delineation algorithm. Primer QRS delineation (Second part 
of the first major operation). 
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Figure 3-c. General flow-chart of the HSEDF code describing the structure of the proposed detection-delineation algorithm. Correction of primitive identified 
QRS onset-offset locations via checking the level of noise of the primer point via lchecker and rchecker functions (Second major operation). 
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the noise level of the candidate for the new offset point is 
medium, consequently the search for finding a better location 
for the new offset point continues. Otherwise, if the noise 
level is high, in order to prevent probable delineation errors 
due to rapid and strong fluctuations of noisy samples, further 
search for identification of better offset point is cancelled 
(Appendix A Lines 113 to 132).  

lchecker(). This function acts similar to the rchecker function. 
Nevertheless, the difference is that in rchecker function, the 
direction of search is backward, while in this function the 
backward search is conducted to improve the location of the 
onset point (Appendix A Lines 135 to 154).  

B. Detection of the QRS Complexes as Well as Primary 
Onset-Offset Identification for Each Detected Complex 
and Improving Them via Implementation of Rchecker and 
Lchecker Functions 

In order to identify primer locations of each QRS complex, 
the strongest absolute maximums in the decision statistic trend 
(for instance ACLM or GIM) are primarily detected in each 
analysis window by maxfinder() function. Analysis windows 
are parts of DS sample with lower threshold    , 

where   is the sample mean,   is an empirical parameter, 
and   is the sample standard deviation of the excerpted 
segment. If the sample number difference between 2 
continuous peaks is less than 600, the one with lower value is 
ignored from our peak points list. The input pre-processed 
signal frequency is 1000 Hz, and the period between two heart 
beats is more than 600 msec. Hence two continuous R-Peaks 
in an ECG wave must have a sample number difference more 
than 600. Afterward, the detected peak is chosen as the search 
origin and two forward and backward local searches from this 
origin are conducted. In order to detect the edges (onset-offset) 
of each detected QRS complex, three conditions should be 
checked. The third condition and at least one of the first or 
second conditions should be satisfied in order to accept the 
candidate sample as a primary edge point: 

 The value of the decision statistic sample should be 
lower than the value of its previous sample  and  its value 
should be lower than or equal to the next sample value.  

 The difference of the candidate location value and 
value of one sample before should be smaller than a threshold. 
(The slope of the candidate sample should be lower than the 
aforementioned slope threshold). 

 The value of the DS at the candidate sample should 
be negative.  

After making a detection of the strongest absolute 
extremums of the DS and primary edges (onset-offset), each 
detected peak is considered as the origin of two other forward 
and backward searches in a region which is from primary 
edges(onset-offset) with L*K samples length (in backward 
and forward). These searches are performed by means of 
rchecker() and lchecker() functions in order to find better 
onset and offset locations (points). 

The value of K can be obtained from the median value of 
the RR-tachogram, i.e., 

)

1
(

10
K median samples  RR        (19) 

Where RR is the vector containing 1 kkk RRrr  

components and kR  indicates the k-th peak of the DS (each 

absolute extremum of DS is equivalent to a strong peak in the 
QRS complex). 

Where K is defined as the length of sample numbers 
between R-Peak and found primary onset point for lchecker() 
function and between R-Peak and found primary offset point 
for rchecker() function. Sometimes primary edges are not far 
enough from the R-Peak. Hence, K and search region are 
smaller than what they should be for more satisfactory edges. 
Therefore, to prevent this error, the parameter K whose value 
is less than 100 is replaced with 100 as its new value (The 
“lower suitable K” is defined as 100).  

C.  Improvement of R-Peak Locations  

Computerized studies show that after detection and 
delineation of the QRS complexes applying appropriate 
decision statistic (in this study CLAM or GIM), absolute 
extremums of the DS might not exactly coincide with the R-
peaks of QRS complexes and some deferens may occur. To 
remove this eccentricity error, a new local search between 
detected onset and offset locations utilizing the maxabsfinder 
function is conducted. Further QRS peaks either upward or 
downward can be exactly identified accordingly.  

In Fig. 4, the effect of a new local search for R-peak 
position enhancement is shown. It should be noted that in 
arrhythmic cases in which the wideness of the ventricular 
beats is larger than the normal duration, the peak of the DS 
might not coincide with the strongest peak of the detected 
QRS. Therefore, to find the best location for R-peak, a direct 
local search on the original ECG by means of the 
maxabsfinder function is conducted.  

 
（a） 

 
（b） 

Figure 4. Application of a new local search between detected onset and offset 
locations by means of the maxabsfinder function to find the beast R-peak 

position. (a) Primary R-peak, (b) Corrected positions. 

D. Empirical Approach for the HSEDF Code Parameters 
Adjustment 

E. Regulation of the Embedded Functions Parameters 

Table 1, explain the parameters which are introduced and 
used in this research to modify the results. It should be noted 
that the empirical parameters, which are used at HSEDF Code, 
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are obtained empirically after examination of more than 
400,000 beats extracted from several subjects’ holter 
recordings. These parameters are:  

1.  , : Parameters used for “maxfinder() function 
analysis windows lower threshold”. In order to find an 
appropriate value for , various values starting from 0.25 and 

ending to 1.0 for many types of holter extracted beats have 
been tested. After this comprehensive examination, it is seen 
that 0.75 is an appropriate value. 

2. Slope coefficient ( s ): Parameter used at second 

condition of primary edges finding and for lchecker() and 
rchecker() functions. In order to determine an appropriate 
value for slope coefficient ( s ), various values from 0.01 to 

0.000001 for many types of holter extracted beats have been 
tested. After this comprehensive examination, it is seen that 
the values in the 10-4 order (for instance 0.0001) are 
appropriate values for the slope coefficient ( s ). 

In Fig. 5 the effect of examining different slope 
coefficients ( s ) for decrements from 0.01 to 0.000001 is 

shown. As illustrated, by decreasing coefficient s , the 

performance of the HSEDF code is improved by further 
reducing s value from 0.0001, while no improvement takes 

place in the QRS detection-delineation performance.  

3. L×K : Parameter used for “rchecker() and lchecker() 
functions search region” . In order to find an appropriate value 
for L and “lower suitable K” various values from 1 to 3 for L 
and various values from 1 to 300 for “lower suitable K” have 
been tested. After this comprehensive examination, it is seen 
that 2.5 is an appropriate value for L, and 100 is an 
appropriate value for “lower suitable K”.  

In Fig. 6, the effect of search region length of L×K 
(sample number) of rchecker and lchecker functions is studied. 
The assessment is started by choosing L=2.5 and K=250 
(samples) to investigate the effect of this windowing region. 
Various testing of the HSEDF code show that L=2.5 and 

K=100 (samples) yields the best result among other region 
sample numbers. 

4. Difference parameter ( d ) : Parameter utilized at 
second condition of lchecker() and rchecker() functions. In 
order to determine an appropriate value for difference 
parameter ( d ), various values starting from 0.00005 and 
ending to 1.0 for many types of holter extracted beats have 
been tested. After this comprehensive examination, it is 
evident that the values in the 10-3 order (for instance 0.005) 
are appropriate values for the difference parameter ( d ), 
validated by cardiologist. 

In Fig. 7 the effect of examining various difference 
parameter ( d ) for values from 0.5 to 0.00005 is shown. As 

illustrated, by decreasing parameter d , the performance of 
the HSEDF code is improved which by further reducing the 
parameter d value from 0.005 no improvement takes place in 
the QRS detection-delineation performance. 

5. Specific neighborhood window of noisechecker() 
function (WL) : In order to find an appropriate value for 
“specific neighborhood window of noisechecker() function 
(WL)”, various window length sample number between 1 to 
100 samples were applied to functions and obtained results 
were studied. After several examinations on several holter 
extracted beats, with different sample numbers for window 
length, it was concluded that if the window length is chosen to 
be between 18 to 35 samples, the acceptable performance 
would be achieved form implementation of noisechecker() 
function. 

In Fig.8, the effect of noisechecker specific neighborhood 
window (WL) length is tested. By choosing the length of the 
specific neighborhood window (WL) a small integer, the 
noisechecker function cannot help lchecker() and rchecker() 
functions to find a suitable location for the edges(onset and 
offset points). On the other hand, if this parameter is selected 
large enough (Fig.9-d), the noisechecker function can perform 
better position for onset location. Although values more than 
35 mislead noisechecker() function and cause other errors. 

TABLE 1. PARAMETERS INTRODUCED AND USED IN THIS RESEARCH TO MODIFY THE RESULTS 

Name Application fields  Valuation interval Accepted value Description 

maxfinder 0.25 to 1 0.75  

rchecker 
lchecker 10-6 to 10-2 

order 10-4 
( used value: 0.0001) 

By decreasing from  10-2 to 10-4performance 
increases, but there is no noticeable 

difference for less than  10-4  

L Specifying search intervals 
for  

 rchecker 
lchecker 

1 to  3 2.5 If there is more than 100 data between first 
edges and extremum point, K is set to this 
value, otherwise k is set to 100 by default  K 1  to  300 100 

rchecker 
lchecker 1 to  5 ൈ 10-5 

order 10-3 
( used value:  0.005 ) 

 

noisechecker 1  to  100 
18  to  35 

(used value: 20) 

௅ܹis referred to length of window used to 
analyze noise level. If it is less than 18, it 

doesn’t help function’s performance. And if 
it is more than 35, causes error to function’s 

performance 

LB 
noisechecker 

0.001 to 0.3 0.003 First UB is set to 0.5 and 0.003 for LB is 
found by this consumption. After that 

appropriate value between 0.2 and 0.7 was 
found for UB. 

UB 0.001 to 0.9 0.4 
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6. Lower and Upper Bounds (LB and UB) : Parameters 
utilized at noisechecker() function and classify outputs of 
regre() function for employing as inputs of noisechecker() 
function. In order to determine appropriate values for upper 
and lower bounds of regre() function, diverse examinations on 
both bounds using several holter signals were conducted. First, 
the upper bound was primarily set on 0.50 and the lower 
bound was changed from 0.001 to 0.30 with a suitable 
increment. Examinations on holter beats show that 0.003 can 
be chosen as an appropriate value for the lower bound of the 
regre function. Similarly, the lower bound of the test regre 
function was set fixed on 0.003 and the upper bound was 
increased from 0.01 to 0.90. Studies and cardiologist 
validations show that the appropriate value for the upper 
bound of the regre function can be chosen from [0.20,0.70] 
interval.  

In Figs. 9-10, the procedure for determining upper and 
lower bounds for the regre function is graphically described. 
To determine these limits, first the upper bound is set fixed 
and the best value for the lower bound is obtained by testing 
diverse values on several records. Similarly, the obtained 
lower bound value is set for regre() function and different 
values are tested to find an appropriate upper bounds. In this 
study, after examination of many types of the holter recorded 
ECG signals, the best value for the lower bound was estimated 
to be a point about 0.003 while an interval was estimated as a 
good range for the upper bound ([0.2,0.7]). Investigations 
reveal that lower bound equal to 0.003 is an appropriate value.  

 
（a） 

 
（b） 

 
（c） 

 
（d） 

 
（e） 

Figure 5. Finding appropriate value for the slope coefficient (ηs). (a) ηs =0.01, 
(b) ηs =0.001, (c) ηs =0.0001 (d) ηs =0.00001, (e) ηs =0.000001. Assessments 
show that by choosing theηs value lower than 0.0001, no further delineation 

improvement appear. (Ellipse: acceptable delineation region) 
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（b） 

 
（c） 

 
（d） 

 
（e） 

Figure 6. Assessing the effect of search region length L×K for edges (onset, 
offset) detection. It was concluded that L=2.5 and K=100 samples would 

yield the best primary edges identification; (a) L=2.5 and K=50(samples), (b) 
L=2.5 and K=100(samples), (c) L=2.5 and K=150(samples), (d) L=2.5 and 

K=200(samples), (e) L=2.5 and K=250 (samples). (Ellipse: acceptable 
delineation region) 
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（a） 

 

（b） 

 

（c） 

 

（d） 

 

（e） 

Figure 7. Finding appropriate value for the difference parameter (ηd). (a) ηd 
=0.5, (b) ηd =0.05, (c) ηd =0.005 (d) ηd =0.0005, (e) ηd =0.00005. Assessments 

show that by choosing theηd value lower than 0.005, no further delineation 
improvement appear. (Ellipse: acceptable delineation region) 
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Figure 8. Assessing the effects of Specific neighborhood window (WL) of 
noisechecker() function on the delineation error. (a) WL=5, (b) WL=10, (c) 

WL=15, (d) WL=20, (e) WL=25, (f) WL=30, (g) WL=35, (h) WL=40 and (i) 
WL=80 (samples). Assessments show that an efficient value for Specific 

neighborhood window (WL)  length of noisechecker function can be chosen 
from [18,35] (samples) interval. 
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Figure 9. Some selected critical beats of an arbitrary 1-hour 1000 Hz holter 
ECG for regulation of the lower and upper bounds of the regre() function. 
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 Figure 10-a. Determination of appropriate values for outputs of regre() 
function upper and lower bounds. Panel (A): Testing of several lower bounds 
for the upper bound set fixed on 0.50 : (a) [0.001,0. 50], (b) [0.003,0. 50], (c) 

[0.005,0. 50], (d) [0.01,0. 50], (e) [0.05,0. 50], (f) [0.10,0. 50], (g) [0.20,0. 50], 
(h) [0.30,0. 50], (i) [0.40,0.50]. ([Lower Bound, Upper Bound]) 
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Figure 10-b. Determination of appropriate values for outputs of regre() 
function upper and lower bounds. Panel (B): Testing of several upper bounds 
(in two different critical beats) given the set fixed on 0.003 lower bound . (a) 

[0.003,0.01], (b) [0.003,0.10], (c) [0.003,0.20], (d) [0.003,0.30], (e) 
[0.003,0.60], (f) [0.003,0.70], (g) [0.003,0.80], (h) [0.003,0.9]. Investigations 

show that an appropriate value for the upper bound to yield an efficient 
delineation can be chosen from [0.20,0.70] interval. ([Lower Bound, Upper 

Bound]) 

IV. POST-PROCESSING AND VALIDATION 

A. A Proposed Method for Detection and Delineation of P 
and T Waves (Normal, Biphasic, Inverted) 

In order to detect P and T waves, a local search for two 
local maxima is conducted between two successive extremum 
values in the DS signal. The local maximum close to the right 
R-wave is specified as P-wave index and the one close to the 
left R-wave are specified as T-wave index of the preceding 
beat. Subsequently, in order to determine the onset and offset 
of P and T-waves, a segment of the signal DS between two 
consequent QRS complexes is chosen and a local search is 
conducted to determine four local minima as follows: 

a) A search between the end of the preceding QRS 
complex and T-wave peak (beginning of the preceding T-
wave) 

b) A search between the T-wave peak and half of RR 
interval (end of the preceding T-wave) 

c) A search between the half of the RR interval and the 
P-wave peak (beginning of P-wave) 

d) A search between the P-wave peak and the beginning 
of the next QRS complex (the end of P-wave) 

Generally, detection and delineation of T-wave is more 
difficult than P-wave. Therefore, the most significant part of 
the error corresponds to wave’s detection which is related to 
T-wave. The block diagram of the algorithm for the detection 
and delineation of P-wave and T-wave is illustrated in Fig. 11.  

 

Figure 11. The block diagram of the P and T waves detection-delineation algorithm. 

Detection and delineation of P and T-waves are described 
in more details. The two successive QRS complexes are 

primarily detected and the corresponding edges are delineated 
utilizing the DS measure. Next, the distance between the DS 
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of the corresponding wavelet transform of the right edge of 
the first complex and the left edge of the second complex is 
determined. The RR interval is then divided into two sections. 
Due to the fact that the DS measure is strictly positive, one 
dominant maximum will be determined in each of these two 
intervals. Finally, a local search is conducted to the left and 
right of each of these maxima, and the position where DS 
slope is less than 1/15 to 1/20 of the maximum slope in the 
window is identified as wave edge. The following conditions 
are observed: 

 If a T-wave and a P-wave exists in the RR interval, 
they will be detected regardless of their sign, i. e., positive, 
negative or biphasic. (Waves sign is determined based on the 
sign of the corresponding wavelet transform) 

 If there is only a T-wave in the RR interval, the left 
edge and the maximum amplitude of this wave will be easily 
detected. However, there may be some problems in finding the 
right edge. In this case, a new algorithm is required for the 
determination of the P-wave power.  

 If there is no P or T wave in the RR interval, it will 
be accurately announced by the algorithm.  

As it is mentioned above, one of the merits of the 
presented algorithm is that the sign of P or T-wave and their 
morphology will not affect the performance of the algorithm. 

B. Validation of the Presented Algorithm  

Numerous databases with different sampling frequencies 
and signal to noise ratio are used in this study to validate the 
performance of the proposed detection algorithm. To validate 
the QRS detection and delineation algorithm, MITDB 
(Fs=360Hz), TWADB (Fs=500Hz), and QTDB (Fs=250Hz) 
which contain annotation files that are applied (CHECK#0). It 
should be noticed that in challenging cases, results were 
delivered to the cardiologist and the detection algorithm was 
re-validated (CHECK#1) accordingly. In cases of QRS with 
very abnormal morphologies, the results were further checked 
by some residents (CHECK#2). 

 
 

 
Figure 12. The detected RR-tachogram to estimate the number of FP and FN 
type errors; (a) this trend shows a FP error during the PAC-induced heart rate 

turbulence, (b) a trend with no FP and FN errors during the PVC-BBB 
induced heart rate turbulence. 

Many approaches have yet been developed in the area of 
wave detection which are all applied only to the Lead I. Thus, 
in order to validate the performance of the proposed detection 
algorithm, it was applied to Lead I. If so, it would be possible 
to compare the presented algorithm with other researches. 
MITDB, QTDB and TWADB include 48, 105 and 100 
subjects respectively. All these data were converted to MAT-
files using the WFDB Software [24].The presented detection 
algorithm was validated in a sequential order in the following 
steps: detection-delineation of QRS complexes, P and T-
waves [13,16]. 

 
TABLE 2. PERFORMANCE CHARACTERISTICS OF SOME PROPOSED DETECTION-DELINEATION ALGORITHMS TO BE COMPARED WITH EACH OTHER, (NA: NOT 

APPLICABLE). IN ALL CASES, A COMPUTER SYSTEM WITH FOLLOWING SPECIFICATIONS WAS USED: CPU SPEED: 2.4 GHZ, RAM: 2 GB AND CASH: 4 MB. 

Detection 
Algorithm 

Development 
Environment 

Speed 
Samples/sec 

Detection/Delineation 

Dependency of 
Parameters to 

Sampling 
Frequency 

Maximum 
Delineation 

Error 
msec (RMS) 

Se /P+ (%) 

Conventional 
Hilbert Transform 

[12] 
MATLAB 52,710 Yes/No Yes NA 99.61/99.42 

Modified Hilbert 
Transform [11] 

MATLAB 43,830 Yes/No Yes NA 99.70/99.75 

Conventional 
Discrete Wavelet 
Transform [15] 

MATLAB 47,934 Yes/Yes Yes 12.33 99.80/99.86 

DWT-based Area 
Curve Length 
Method [16] 

C++/MEX 
(MATLAB) 

101,701 Yes/Yes Yes 7.26 99.91/99.88 

DWT-based 
Multiple Higher 
Order Moments 

Method [13] 

C++/MEX 
(MATLAB) 

148,943 Yes/Yes Yes 6.14 99.94/99.91 

GIM 
(This Study) 

C++/MEX 
(MATLAB) 

185,401 Yes/Yes No 5.29 99.96/99.96 
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 As the final step of the accuracy performance checking, in 
each case the trend of RR-tachogram  is obtained  and  plotted. 
It should be noted that if RR-interval is remarkably less than 
the mean value, probable false positive (FP) error may exist. 
On the other hand, if RR-interval is significantly greater than 
the mean value, the false negative error may probably exist. In 
Fig. 12, two examples of RR-tachogram obtained from holter 
data of two patients of hospital including PVC and PAC beats 
are shown. 

In Table 2, some specifications of the ECG events 
detection-delineation are shown. According to this table, the 
presented detection-delineation algorithm possesses the best 
performance characteristics namely as speed of processing, 
accuracy and robustness against noise and motion artifacts. 

V. CONCLUSION 

In this study the design procedure of a C++/Mex solution 
for the detection and delineation of long-duration ambulatory 
holter ECG individual events are described. To achieve this 
objective, detailed flow-chart of the proposed ECG detection 
delineation algorithm as well as the corresponding lines in the 
C++/Mex code are explained. In addition, two methodologies 
for generating the detection-delineation DS named as ACLM 
and GIM and their appropriate programming implementations 
are explained. The presented code has evolved via its 
application to several databases such as MIT-BIH Arrhythmia 
Database, QT Database, and T-Wave Alternans Database and 
as a result, the average values of Se = 99.96% and P+ = 99.96% 
are obtained for the detection of QRS complexes, with the 
average maximum delineation error of 5.7 msec, 3.8 msec and 
6.1 msec for P-wave, QRS complex and T-wave respectively. 
In addition, the code is applied to DAY general hospital high 
resolution holter data (more than 1,500,000 beats including 
BBB, PVC and PAC) and average values of Se=99.98% and 
P+=99.98% are obtained for QRS detection. In summary, 
marginal performance improvement of ECG events detection-
delineation process in a widespread values of SNR, reliable 
robustness against strong noise, artifacts and probable severe 
arrhythmia(s) of high resolution holter data and the processing 
speed 185,000 samples/sec can be mentioned as important 
merits and capabilities of the presented C++/Mex solution.  
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APPENDIX A (C++/Mex code) 

1. #include "mex.h" 
2. #include "string.h" 
3. #include "math.h" 
4. #include "new.h" 
5.   
6. double *ddxx; 
7.   
8. //Function for calculating average value of array v 
9. double mean (double *v, int l){ 
10.     int j; 
11.     double k=0; 
12.     for(j=0;j<l;j++) 
13.         k=k+v[j]; 
14.     return (k/double(l)); 
15. } 
16.   
17. //Function for calculating standard deviation value of array v 
18. double stdi (double *v,int l, double me){ 
19.     double k=0; 
20.     int j; 
21.     for (j=0;j<l;j++) 
22.         k=k+(v[j]-me)*(v[j]-me); 
23.     k=k/(double(l)-1); 
24.     k=sqrt(k); 
25.     return k; 
26. } 
27.   
28. //Function for calculating finite integral of array v  
29. double integral (double *v, int st, int fi){ 
30.     int j; 
31.     double k=0; 
32.     for (j=st;j<fi;j++) 
33.         k=k+(0.5*(v[j]+ v[j+1])); 
34.     return k; 
35. } 
36.   
37. //Function for calculating finite integral of absolute value of array v  
38. double integralabs (double *v, int st, int fi){ 
39.     int j; 
40.     double k=0; 
41.     for (j=st;j<fi;j++) 
42.         k=k+(0.5*(fabs(v[j])+ fabs(v[j+1]))); 
43.     return k; 
44. } 
45.   
46. //Function for calculation of detection-delineation decision statistic 
47. //ACL Curve Length Method (ACLM) 
48. void ACL (double *v,int l, double *out,int wl, double * dif){ 
49.     double area,curve; 
50.     int j,st,fi; 
51.     for (j=0;j<l;j++){ 
52.     st = j - wl; 
53.     fi = j + wl; 
54.     if (st < 0) st = 0; 
55.     if (fi > l-1)fi = l-1; 
56.     area = integralabs(v,st,fi); 
57.     curve = integral(dif,st,fi-1); 
58.     out[j] = area*curve; 
59.     } 
60.     return; 
61. } 
62.   

63. //Function for finding maximum of array v  
64. int maxfinder (double *v,int st,int fi){ 
65.     int k=st; 
66.     int j; 
67.     for (j=st+1;j<=fi;j++) 
68.         if (v[j]>v[k]) k=j; 
69.     return k; 
70. } 
71.   
72. //Function for finding maximum of absolute value of of array v, lli is a 

reference for difference   
73. int maxabsfinder (double *v,int st,int fi,double lli){ 
74.     int k=st; 
75.     int j; 
76.     for (j=st+1;j<=fi;j++) 
77.         if (fabs(v[j]-lli)>fabs(v[k]-lli)) k=j; 
78.     return k; 
79. } 
80.   
81. //Function for calculating the noise level for the specefic neighberhood 

(window) defined in noisechecker() function 
82. double regre (double *xx,int st,int fi,int wxx){ 
83.     int i; 
84.     double *n,*xs,ym,xm,yst,xst,zig=0,k; 
85.     n= new double [2*wxx+1]; 
86.     xs= new double [2*wxx+1]; 
87.     for (i=st;i<=fi;i++){ 
88.         n[i-st]=xx[i]; 
89.         xs[i-st]=4*i; 
90.         zig=zig+(xx[i]*4*i); 
91.     } 
92.     ym=mean(n,2*wxx+1); 
93.     xm=mean(xs,2*wxx+1); 
94.     yst=stdi(n,2*wxx+1,ym); 
95.     xst=stdi(xs,2*wxx+1,xm); 
96.     k=((zig/(2*wxx+1))-(xm*ym))/(xst*yst); 
97.     delete [] n; 
98.     delete [] xs; 
99.     return k; 
100. } 
101.   
102. //Function for determining noise level by using regre() function 
103. int noisechecker (int edg){ 
104.     int wxx=20; 
105.     double reg; 
106. reg=fabs(regre(ddxx,edg-wxx,edg+wxx,wxx)); 
107.     if ((reg<0.003)) return 0; 
108.     else if ((reg>=0.003)&&(reg<0.5))return 1; 
109.     else return 2; 
110. } 
111.          
112. //Function for improving right edge location in array v 
113. double rchecker(double *v,double * ms,int st,int fi,double edg,double 

maxm){ 
114.     int i,noi; 
115.     bool cm; 
116.     double ch; 
117.     i=st; 
118.     while (i<=fi){ 
119.         if (ms[i]>maxm) { 
120.                 maxm=ms[i]; 
121.                 cm=0;} 
122.         else cm=(ms[i]<=0.0001*maxm);     
123.     ch=v[int(edg)]-0.005;    
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124.     if (cm&&(v[i]<ch)){  
125.         noi=noisechecker(i);    
126.         if (noi==2) edg=i;   
127.         else if (noi==0) i=fi;   
128.     } 
129.     i++; 
130.     } 
131.     return edg; 
132. } 
133.   
134. //Function for improving left edge location in array v  
135. double lchecker(double *v,double * ms,int st,int fi,double edg,double 

maxm){ 
136.     int i,noi; 
137.     bool cm; 
138.     double ch; 
139.     i=st; 
140.     while (i>=fi){ 
141.         if (ms[i]>maxm) { 
142.              maxm=ms[i]; 
143.              cm=0;} 
144.         else cm=(ms[i]<=0.0001*maxm);    
145.     ch=v[int(edg)]-0.005;    
146.     if (cm&&(v[i]<ch)){  
147.         noi=noisechecker(i);   
148.         if (noi==2) edg=i;   
149.         else if (noi==0) i=fi;   
150.     } 
151.     i--; 
152.     } 
153.     return edg; 
154. } 
155.   
156. //MATLAB C++/MEX function 
157. void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray 

*prhs[] ){ 
158.      
159.     //Definig variables 
160.     mxArray *m,*mxx; 
161.     mwSize  len; 
162.     double 

*dd,*d,*dif,*f,*fxx,mm,stdd,*rm,lim,maxm,*redge,*ledge,*edgenum,*l
d,*maxs,*maxxs; 

163.     int i,j,k,rmnum,*maxp,*maxx,maxplen,sc,maxt,lm,rmm,md; 
164.     bool c1,c2,c3,c4; 
165.      
166.     //DWT signal 
167.     len = mxGetNumberOfElements(prhs[0]); 
168.     m=mxDuplicateArray(prhs[0]); 
169.     dd=mxGetPr(m); 
170.   
171.     mxx=mxDuplicateArray(prhs[1]); 
172.     ddxx=mxGetPr(mxx); 
173.          
174.     plhs[0]=mxCreateDoubleMatrix(len,1,mxREAL); 
175.     d = mxGetPr(plhs[0]); 
176.      
177.     f=new double [len]; 
178.     fxx=new double [len]; 
179.     rm=new double [len]; 
180.     dif=new double[len]; 
181.      
182.     for(i=0;i<len-1;i++){ 
183.         dif[i]=dd[i+1]-dd[i]; 
184.         dif[i]=sqrt(1+(dif[i]*dif[i]));} 
185.      
186.     
187.     ACL(dd,len,d,20,dif); 
188.      
189.     mm=mean(d,len); 
190.     stdd=stdi(d,len,mm); 
191.      
192.     for(i=0;i<len;i++) 
193.         d[i]=(d[i]-mm)/stdd; 
194.      
195.     for(i=0;i<len-1;i++){ 
196.        f[i]=fabs(d[i+1]-d[i]); 

197.     } 
198.      
199.     rmnum=0; 
200.     for(i=0;i<len-2;i++) 
201.         if ((d[i]<d[i+1])&&(d[i+1]>d[i+2])){ 
202.             rm[rmnum]=d[i+1]; 
203.             rmnum++;} 
204.      
205.     mm=mean(rm,rmnum); 
206.     stdd=stdi(rm,rmnum,mm); 
207.     lim=mm+0.75*stdd; 
208.      
209.     maxp=new int [rmnum]; 
210.              
211.     i=0; 
212.     maxplen=1; maxp[0]=0; 
213.          
214.     while (i<len-1){ 
215.         if((d[i]>=lim)&&(d[i]<=d[i+1])){  
216.             j=1; 
217. while ((i+j<len)&&(d[i+j]>=lim)) 
218.                 j++; 
219.             maxt=maxfinder(d,i,i+j);      
220.             if((maxt-maxp[maxplen-1])>600) {  
221.                 maxp[maxplen]=maxt; 
222.                 maxplen++;} 
223.             else if (d[maxp[maxplen-1]]<d[maxt])  
224.                 maxp[maxplen-1]=maxt; 
225.             i=i+j+10;  
226.         } 
227.         else i++; 
228.     } 
229.          
230.     plhs[1]=mxCreateDoubleMatrix(maxplen,1,mxREAL); 
231.     ledge = mxGetPr(plhs[1]); 
232.     plhs[2]=mxCreateDoubleMatrix(maxplen,1,mxREAL); 
233.     redge = mxGetPr(plhs[2]); 
234.     plhs[3]=mxCreateDoubleMatrix(maxplen,1,mxREAL); 
235.     maxs = mxGetPr(plhs[3]); 
236.     plhs[4]=mxCreateDoubleMatrix(1,1,mxREAL); 
237.     edgenum=mxGetPr(plhs[4]); 
238.     edgenum[0]=maxplen; 
239.     plhs[5]=mxCreateDoubleMatrix(maxplen,1,mxREAL); 
240.     maxxs=mxGetPr(plhs[5]); 
241.     plhs[6]=mxCreateDoubleMatrix(1,1,mxREAL); 
242.     ld=mxGetPr(plhs[6]); 
243.      
244.     for(i=0;i<maxplen;i++) 
245.         maxs[i]=maxp[i]+1; 
246.      
247.     for (i=1;i<maxplen-1;i++){ 
248.         sc=maxp[i]; 
249.         j=0; 
250.         maxm=f[sc-1]; 
251.         do{ 
252.         j++; 
253.         c1=(d[sc-j]<d[sc-j-1])||(d[sc-j-1]>d[sc-j-2]);   
254.         if (f[sc-j-1]>maxm) { 
255.             maxm=f[sc-j-1]; 
256.             c2=1;} 
257.         else c2=(f[sc-j-1]>=0.0001*maxm);    
258.         c3=d[sc-j-1]>=0;     
259.         }while((c1&&c2)||c3);    
260.          
261.         if(j<100) k=100; else k=j; 
262.         ledge[i]=lchecker(d,f,sc-j,sc-int(2.5*k),sc-j-1,maxm)+1; 
263.                
264.         j=0; 
265.         maxm=f[sc]; 
266.         do{ 
267.         j++; 
268.          
269.         c1=(d[sc+j]<d[sc+j+1])||(d[sc+j+1]>d[sc+j+2]);   
270.         if (f[sc+j+1]>maxm) { 
271.             maxm=f[sc+j+1]; 
272.             c2=1;} 
273.         else c2=(f[sc+j+1]>=0.0001*maxm);    
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274.         c3=d[sc+j+1]>=0;     
275.         }while((c1&&c2)||c3);    
276.          
277.         if(j<100) k=100; else k=j; 
278.         redge[i]=rchecker(d,f,sc+j,sc+int(2.5*k),sc+j+1,maxm)+1; 
279.                  
280.     } 
281.      
282.     maxx=new int [maxplen]; 
283.      
284.     for (i=1;i<maxplen-1;i++) 
285.         maxx[i]=maxabsfinder(ddxx,ledge[i],redge[i],(ddxx[int(ledge[i])]+

ddxx[int(redge[i])])/2); 
286.      
287.     for(i=0;i<maxplen;i++) 
288.         maxxs[i]=maxx[i]+1; 
289.      
290.     lm=maxp[1]-ledge[1]; 
291.     rmm=redge[1]-maxp[1]; 
292.     for (i=2;i<maxplen-1;i++){ 
293.         if (lm<(maxp[i]-ledge[i])) lm=(maxp[i]-ledge[i]);    
294.         if (rmm<(redge[i]-maxp[i])) rmm=(redge[i]-maxp[i]);  
295.     } 
296.      
297.     if (lm>rmm) md=lm+10;    
298.     else md=rmm+10; 
299.     if (md>600) md=600; 
300.     ld[0]=md; 
301.      
302.     Delete [] dif; 
303.     Delete [] f; 
304.     Delete [] rm; 
305.     Delete [] maxp; 
306.     
307.     return; 
308. } 

APPENDIX B (MATLAB CODE FOR COMPILING THE C++ WAVE 

DELINEATION) 

1. % Clearing used memory and closing other open projects 
2. tic 
3. clc;clear all;close all, 
4.   
5. % Loading needed the signal source files 
6. load part1; 
7. load UIR; 
8. load UIR1; 
9.   
10. % Compiling the c++ code to generate ACLcalc 
11. mex ACLcalc.cpp; 
12.   
13. % Choosing data 
14. data = double(data); 
15. ECG = data(:,1); 
16. tt1=toc; 
17.   
18. % High-pass and low-pass filtering to remove noise and motion 

artifacts.  
19. hh = floor(length(h) / 2); 
20. hh1 = floor(length(h1) / 2); 
21.   
22. ECG = conv(h,ECG); 
23. ECG = ECG(hh : end - hh); 
24.   
25. ECG = conv(h1,ECG); 
26. ECG = ECG(hh1 : end - hh1); 
27.   
28. % Removing DC value of the signal 
29. lx = length(ECG); 
30. ECG = ECG - mean(ECG); 
31. tt2=toc; 
32.   
33. % a'trous discrete wavelet transform at DWT-scale 

34. an = analyze111(ECG,4); 
35. DWT = an(lx + 1 : 2*lx); 
36. tt3=toc; 
37.   
38. % ACLcalc generates required outputs  
39. [ACL,ledges,redges,maxps,num,maxxs,ld]=ACLcalc(DWT,ECG); 
40. tt4=toc; 
41.   
42. % Calculating each wave position matrix by adding and deducing 

maximum 
43. % Difference between edge and top point to top point position and 

putting 
44. % This intervals together 
45. QRS = zeros(2*ld+1,num-2); 
46. for i = 2 : num-1 
47.     QRS(:,i-1)=ECG((maxxs(i)-ld) : (maxxs(i)+ld))- ECG(ledges(i)); 
48. end 
49.   
50. tt5=toc; 
51.   
52. % Plot of obtained results  
53. figure(1); 
54. plot(ECG,'k-','LineWidth',4); 
55. hold on; 
56. plot(ledges(2:num-1),ECG(ledges(2:num-

1)),'o','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
57. hold on; 
58. plot(maxxs(2:num-1),ECG(maxxs(2:num-

1)),'^','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
59. hold on; 
60. plot(redges(2:num-1),ECG(redges(2:num-

1)),'s','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
61. xlabel('Sample Number') 
62. legend ('ECG','Onset','Peak','Offset',1) 
63.   
64. figure(2); 
65. plot(DWT,'k-','LineWidth',4); 
66. hold on; 
67. plot(ledges(2:num-1),DWT(ledges(2:num-

1)),'o','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
68. hold on; 
69. plot(redges(2:num-1),DWT(redges(2:num-

1)),'s','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
70. xlabel('Sample Number') 
71. legend ('DWT','Onset','Offset',1) 
72.   
73. figure(3); 
74. plot(ACL,'k-','LineWidth',4); 
75. hold on; 
76. plot(ledges(2:num-1),ACL(ledges(2:num-

1)),'o','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
77. hold on; 
78. plot(maxps,ACL(maxps),'^','MarkerEdgeColor','r','MarkerFaceColor'

,'y','MarkerSize',12); 
79. hold on; 
80. plot(redges(2:num-1),ACL(redges(2:num-

1)),'s','MarkerEdgeColor','r','MarkerFaceColor','y','MarkerSize',12); 
81. xlabel('Sample Number') 
82. legend ('ACL','Onset','ACL Peak','Offset',1) 
83.   
84. figure (4); 
85. plot (QRS,'k-','LineWidth',4) 
86.   
87. tt6=toc; 
88.   
89. % Calculating each part time 
90. load_time=tt1 
91. firstfilter_time=tt2-tt1 
92. secondfilter_time=tt3-tt2 
93. whole_Load_Fllter_time=tt3 
94. acl_time=tt4-tt3 
95. QRS_time=tt5-tt4 
96.   
97. whole_Runing_time=tt5 
98.   
99. plot_time=tt6-tt5 
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LIST O ACRONYMS 
HSEDF: high-speed ECG delineation framework 

DS: decision statistic 

DSF: decision statistic function 

BBB: bundle branch block 

TP: true positive 

P+: positive predictability (%) 

Se: sensitivity (%) 

UB: upper bond 

LB: lower bond 

SMF: smoothing function 

FIR: finite-duration impulse response 

LE: location error 

ACLM: area curve-length method 

GIM: geometrical index method 

ECG: electrocardiogram 

DWT: discrete wavelet transform 

SNR: signal to noise ratio 

QTDB: QT Database 

MITDB: MIT-BIH Arrhythmia Database 

TWADB: T-wave alternans Database 

FP: false positive 

FN: false negative 

PVC: premature ventricular contraction 

PAC: premature atrial contraction 

CHECK#0: procedure of evaluating obtained results using MIT-BIH 
annotation files 

CHECK#1: procedure of evaluating obtained results consulting with a 
control cardiologist 

CHECK#2: procedure of evaluating obtained results consulting with a 
control cardiologist and also at least with 3 residents 
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