
Massachusetts Institute of Technology
6.854J/18.415J: Advanced Algorithms Wednesday, February 10, 2016
Ankur Moitra

Problem Set 1

Due: Wednesday, February 17, 2016 – 7 pm
Outside Stata G5

Collaboration policy: collaboration is strongly encouraged. However, remember that

1. You must write up your own solutions, independently.

2. You must record the name of every collaborator.

3. You must actually participate in solving all the problems. This is difficult in very large
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given
week.

4. Write each problem in a separate sheet and write down your name on top of every sheet.

5. No bibles. This includes solutions posted to problems in previous years.

1 Hashing Bashing

Two-level hashing is nice because, for n items, it can achieve perfect hashing with just O(n)
buckets. However, it does have the drawback that the perfect hash function has a lengthy
description (since you have to describe the second-level hash function for each bucket).

(a) For a universe U of size |U |, how many bits are required to describe a perfect two-level
hash function that is implemented using 2-universal hash functions? We’re just looking
for big-O notation.

Consider the following alternative approach to producing a perfect hash function with a
small description. Define bi-bucket hashing, or bashing, as follows. Given n items, allocate
two arrays of size O(n1.5). When inserting an item, map it to one bucket in each array, and
place it in the emptier of the two buckets.

(b) Suppose a fully random function is used to map each item to buckets. Prove that the
expected number of collisions is O(1). Hint: What is the probability that the kth

inserted item collides with some previously inserted item?

(c) Show that bashing can be implemented efficiently, with the same expected outcome,
using random hash functions from 2-universal hashing. How large is the description of
the resulting function?

2 Problem Set 1

(d) Conclude an algorithm that requires just O(n) hash function evaluations in expectation
to identify a perfect bash function for a set of n items.

(e) (Optional) Generalize the above approach to use less space by exploiting tri-bucket
hashing (trashing), quad-bucket hashing (quashing), and so on.

2 Sampling with Few Bits

Consider the problem of using a source of unbiased random bits to generate a sample from
the set S = {1, . . . , n} such that element i is chosen with probability pi.

(a) Suppose n = 2 (so p2 = 1 − p1). Give a scheme that uses O(1) bits in expectation to
choose one of the two items. Hint: start with an easy scheme that uses a possibly infinite
number of random bits to choose the item. Then make it lazy, generating/examining
only enough bits to uniquely identify the item that would be selected by the infinite
sequence. What is the probability looking at a new bit lets you stop? Analyze the
expected number of bits you will actually examine.

(b) Generalize this scheme to sample from n elements using O(log n) random bits in expec-
tation per sample, regardless of the values of the pi.

(c) Prove that for certain pi and n (for example, a uniform sample from {1, 2, 3}), if you
only have unbiased random bits, it is impossible to generate an appropriately distributed
sample using a finite number of bits in the worst case.

3 Lower bound for Balls and Bins

In class we showed that n balls in n random bins see a maximum load of O(log n/ log log n).
Show this bound is tight.

(a) Show there is a k = Ω(log n/ log log n) such that bin 1 has k balls with probability at

least 1/
√
n. An inequality that might be helpful:

(
n
k

)k ≤ (
n
k

)
≤

(
en
k

)k
.

(b) Prove that conditioning on the first bin not having k balls only increases the probability
that the second bin does, and so on. Conclude that with high probability, some bin
has Ω(log n/ log log n) balls. When we say “high probability”, we mean with probability
> (1− 1/n), although your bound could be much higher.

4 Balls and Bins with replacement

Consider the following process for matching n jobs to n processors. In each round, every job
picks a processor at random. Each processor can only execute one job per round, so if there

Problem Set 1 3

is contention for a processor, one (arbitrary) job gets executed by the processor while the
others are refused. The unexecuted jobs back off and then try again in the next round. If
only a single job happens to match to a processor, that job gets executed. Jobs only take one
round of time to execute, so at the beginning of every round all the processors are available.

(a) For α ≤ 1, show that if αn jobs begin a round, then with probability > (1− 1/n2) only
α2n will not be processed, as long as α2n > c log n for some fixed constant c. Hint:
consider adding the jobs one at a time, and upper bound the probability that a job is
assigned to a previously occupied processor.

(b) Conclude that all the jobs finish executing with high probability after O(log log n) steps.
Again “high probability” means with probability > (1 − 1/n). Here you will need to
handle the case when the number of jobs remaining is very small and thus α2n is not
greater than c log n.

5 Consistent Hashing with Inconsistent Views

In distributed caching systems, it is hard to keep track of which machines are up or down.
Different clients may learn about different machines’ states at different times. And if different
clients have different opinions about which machines are up, they will have different opinions
about which machine to contact to retrieve a given item.

In particular, suppose that there are n clients and m servers currently online. The clients
are going to choose which machine to query for a data item based on the consistent hashing
scheme discussed in class. However, each client only has probability 1/2 of knowing about
any given server (and all mn of these events, of every client knowing about every server,
are independent). Prove that with high probability, O(log n) machines will be asked to deal
with any given data item, regardless of the number of clients interested in that item. As
in class, assume that the underlying hash function used to map items to the ring produces
independent random values for different keys.

	Hashing Bashing
	Sampling with Few Bits
	Lower bound for Balls and Bins
	Balls and Bins with replacement
	Consistent Hashing with Inconsistent Views

