
Massachusetts Institute of Technology
6.854J/18.415J: Advanced Algorithms Wednesday, February 24, 2016
Ankur Moitra

Problem Set 3

Due: Wednesday, March 2, 2016 – 7 pm
Dropbox Outside Stata G5

Collaboration policy: collaboration is strongly encouraged. However, remember that

1. You must write up your own solutions, independently.

2. You must record the name of every collaborator.

3. You must actually participate in solving all the problems. This is difficult in very large
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given
week.

4. Write each problem in a separate sheet and write down your name on top of every sheet.

5. No bibles. This includes solutions posted to problems in previous years.

1 Simple Approximate Nearest Neighbors

Here, we will consider a very simple, deterministically valid algorithm for approximate near-
est neighbors whose major caveat is query time with exponential dependence on the dimen-
sion.

More specifically, we will focus on the (R, (1 + ε)R) PLEB problem for the `∞ norm
(but this scheme will work for other norms as well). We will define a data structure given
a point set P , a radius R and an error parameter ε. Given any query point q, if there is
any p ∈ P such that ||p − q||∞ ≤ R, the algorithm must output some p′ ∈ P such that
||p′ − q||∞ ≤ (1 + ε)r. If there is no such p, the algorithm may output either such a p′ or
NO.

The scheme we will use is simple: we will overlay an n-dimensional cubic grid over the
points with each cell having some side length r, so that each p = (p1, p2, ..., pd) ∈ P is
assigned to a grid cell (bp1/rc, bp2/rc, ..., bpd/rc). We will store a table (for instance, a hash
table), indexed by the grid cells, storing the list of points contained in each cell. Note that
the space used by this data structure is linear in n and d, since each point is assigned to
only one cell and can be stored in d space.

Given a query point q, we will simply search all grid cells within distance R of q–that is,
all grid cells that contain a point within R of q. If any of these cells is nonempty, we will
take the first point we find and return it. Otherwise, output NO.

2 Problem Set 3

(a) By construction, if there is a p ∈ P within R of q, this algorithm will not output NO,
since p’s grid cell is nonempty.

However, to satisfy the definition of the PLEB problem, we additionally must ensure that
the output point is within (1 + ε)R of p. This guarantee only holds if r is sufficiently
small.

What is the largest value we can choose for r to make this a valid algorithm for the
approximate PLEB?

(b) What is the query time of this algorithm, as a function of the dimension d and error
parameter ε? You may assume that 1

ε
is an integer and that we can do the table lookup

for the d-dimensional grid squares in O(d) time.

(c) How can we modify this data structure and query algorithm, so that the query time
becomes linear in d with no dependence on ε or n, while the space inherits the bad
dependence on d and ε (while still being linear in n)? Again, you may assume that the
table lookup takes O(d) time.

2 Locality Sensitive Hashing for `2

In this problem, we will analyze a simple locality-sensitive hashing scheme for `2. For con-
venience we will assume the distance scale is 1: in the notation from class, we will be
constructing a (1, c, p1, pc) locality sensitive hash family.

To produce a hash function, we will choose d values g1...gd, each one an independently
sampled standard Gaussian (N(0, 1)), and a real number s chosen uniformly at random from
[0, 1].

The hash of a point x will then be

Hg,s(x) =

⌊
s+

d∑
i=1

gixi

⌋
.

In other words, we first project the point to the real line with a Gaussian random vector,
then quantize to a randomly shifted one-dimensional grid on that line. We’re asking for
closer points to be more likely to end up in the same cell.

(a) Prove that for any choice of two points x and y, the probability (over g and s) that
Hg,s(x) = Hg,s(y) depends only on ‖x− y‖2.
Hint: consider the quantity

∑d
i=1 gixi −

∑d
i=1 giyi, and remember than the sum of an

independent N(0, a) and N(0, b) is N(0, a+ b).

(b) Argue that there is some fixed constant p1 > 0 such that for any x, y satisfying ‖x−y‖2 ≤
1,

P[Hg,s(x) = Hg,s(y)] ≥ p1.

You don’t need to give an explicit value for p1.

Problem Set 3 3

(c) Prove that that for some universal constant B, for any x, y,

P[Hg,s(x) = Hg,s(y)] ≤ B

‖x− y‖2
.

Again, you don’t need to give any explicit value for B.

In particular, this means that pc, the largest possible collision probability when ‖x−y‖2 ≥
c, will be at most B

c
. That in turn means that as c→∞, log(1/p1)

log(1/pc)
will approach 0. Using

this with the results from class, the additional polynomial overhead in locality sensitive
hashing can be made arbitrarily small by allowing a weaker approximation factor.

(d) (Optional) Consider the rescaled version of this scheme: computing Hh,s(x/S) for some
S > 1 (but where we are still interested in points at distance scale about 1). This is
equivalent to quantizing the real line to spacing S rather than 1.

As S → ∞, the collision probabilities will all approach 1, but what will happen to
log(1/p1)
log(1/pc)

? Can you get an improved bound using larger S?

Note that the downside to choosing S too large is that the number of invocations of
the base hash function for each table lookup will increase as the probabilities go to 1.
Eventually this extra cost will outweigh the benefit.

3 Alternative `2 Approximation

Note: this problem is closely related to the Problem 3 from the last problem set.
In class, we showed Johnson-Lindenstrauss: that for any 0 < ε, δ ≤ 1/2, with a Gaussian

random matrix Π of height O
(

log(1/δ)
ε2

)
, ‖Πx‖22 is within ε multiplicative error of ‖x‖22 with

probability at least 1− δ.
However, such a matrix is dense and could be somewhat expensive to apply. “Sparse

Johnson-Lindenstrauss” results exist, with only O
(

log(1/δ)
ε

)
nonzero entries per column (i.e.

only about an ε fraction of entries). In this problem, we will show a similar way to approx-
imate `2 norms with an even sparser linear transform, so that the work has no dependence
on ε. The caveat is that the estimate will not just be ‖Ax‖22, but will be a somewhat more
complicated procedure.

Specifically, for embedding from Rn and with two parameters q and k, we will define k
linear maps from Rn to Rq; applying each of them to x will leave us with k q-dimensional
vectors v1...vk (we will refer to the rth coordinate of vj as vj[r]). Each of these maps will
be picked independently at random from the same distribution. These maps can each be
applied in linear time in n, so that the whole procedure takes O(kn) time.

For each j ∈ {1...k} (i.e. for each independent copy) and for each i ∈ {1...n} we choose
an independent random value rj,i, picked uniformly at random from {1...q}. We additionally
choose an independent random sign (±1) sj,i. We could view these as k random hash
functions from {1...n} to {1...q} and {−1, 1}, which can be useful in the streaming setting.

4 Problem Set 3

To compute vj, we initialize vj to 0. We then iterate through each i from 1 to n and
perform

vj[rj,i]⇐ vj[rj,i] + sj,ixi

In other words, xi was added to a random bucket with a random sign. This is essentially
the same as the sketching procedure from Problem 3 on the last problem set. To get an
intuition for why increasing q makes this more accurate, consider the case when q is so large
that there are no “collisions”: each xi is mapped to a unique entry of vj. In that case ‖vj‖22
will be exactly equal to ‖x‖22.

(a) Show that E[‖v1‖22] = ‖x‖22 (by symmetry, this holds for all other vj as well).

(b) Show that the variance E[(‖v1‖22 − ‖x‖22)2] ≤ 2
q
‖x‖42 (again, this holds for all vj).

Hint: Try writing an expression for ‖v1‖22−‖x‖22 (deterministically, as a function of the
specific random choices made) as a sum over monomials in xi, s1,i, and some indicator
variables based on the r1,i. You may want to introduce indicator variables c1,i,i′ repre-
senting a “collision” between i and i′ (r1,i = r1,i′). Once you have this, you can get such
an expression for the square by the general transformation (

∑
a ta)

2 =
∑

a,a′ tat
′
a. At this

point you can apply linearity of expectation. Think carefully about which terms must
have expectation 0!

(c) Conclude that if q = 5
ε2

,

(1− ε)‖x‖22 ≤ ‖v1‖22 ≤ (1 + ε)‖x‖22

with probability at least 3
5
.

(d) Show that for this setting of q, we may set k to O(log(1/δ)), and if we then define M to
be the median of ‖v1‖22...‖vk‖22,

(1− ε)‖x‖22 ≤M ≤ (1 + ε)‖x‖22

with probability at least 1− δ.

4 The Fast Johnson-Lindenstrauss Transform

In this problem, we’ll go through an analysis of a “fast Johnson-Lindenstrauss transform.”
This will be a random m by n matrix M satisfying a randomized Johnson-Lindenstrauss
property: that is, for any vector x ∈ Rn,

(1− ε)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + ε)‖x‖22

with probability at least 1− δ.
However, unlike the standard Johnson-Lindenstrass matrices (like dense Gaussian random

matrices), the matrix M will be very computationally efficient to apply: near-linear time in

Problem Set 3 5

n to embed an n-dimensional vector, independent of ε or δ. We will show this works with

embedding dimension m = O
(

log(n/δ) log(1/δ)
ε2

)
.

To construct it, we will use a fixed n by n matrix H, traditionally taken to be a
“Hadamard matrix” (Hadamard matrices exist only for n powers of two; however, any n
can just be rounded up to the nearest power of two, avoiding this problem). We will only
care about three properties of H:

1. H is an orthogonal matrix: i.e. ‖Hy‖22 = ‖y‖22 for all y.

2. Every entry of H has absolute value 1√
n
.

3. Hy can be computed in O(n log n) time.

We will not even use that last property, but it is the reason why this result is useful in
the first place!

To determine the random matrix M , we will simply choose a random sample HS (sampled
with replacement) of m rows of H–that is, each row of HS is just a random row selected
from H. We additionally choose a random diagonal sign matrix D (each diagonal entry a
random ±1). We then write

M =

√
n

m
HSD.

Note that for any y, HSy can be immediately computed from Hy, by taking the coordi-
nates corresponding to the selected rows of H. Similarly, the random HSy can be thought
of as being obtained by sampling the coordinates of Hy.

For this problem, assume that 0 < ε, δ ≤ 1/2.

(a) Show that for any x and any fixed diagonal sign matrix D,

E
HS

[n
m
‖HSDx‖22

]
= ‖HDx‖22 = ‖x‖22.

That is, even with D fixed, the fast Johnson-Lindenstrauss transform gives an unbiased
estimator.

(b) (Optional) Show that there exists some universal constant C such that with probability
at least 1− δ/2, for a random choice of D,

‖HDx‖∞ ≤
C
√

log(n/δ)√
n

‖x‖2.

This shows that with the random choice of D, no one coordinate will account for much
more than its “share” of ‖HDx‖22, giving us a good setup for sampling the coordinates
in the next step. This is the purpose of the D in the construction.

6 Problem Set 3

The following tail bound on “Rademacher sums” should be helpful: For any x, if σi are
independent random signs (±1),

P

[∣∣∣∣∣
n∑
i=1

σixi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2‖x‖22

)
.

(c) Show that for any fixed choice of D for which the bound from part (b) holds, as long as

m is at least some O
(

log(n/δ) log(1/δ)
ε2

)
value, then with probability at least 1 − δ/2 over

a random choice of HS,

(1− ε)‖x‖22 ≤
n

m
‖HSDx‖22 ≤ (1 + ε)‖x‖22.

Hint: Chernoff!

(d) Putting this all together, show that for a random M =
√

n
m
HSD,

(1− ε)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + ε)‖x‖22

with probability at least 1− δ.
Of course, you may assume part (b) even if you did not prove it.

(e) (Optional and Tricky) Can you prove a better bound on this method? A natural but
tricky variation of the proof here can reduce the extra log(n/δ) factor to a log(1/(εδ)).
There have also been research papers applying far more sophisticated techniques to this.

	Simple Approximate Nearest Neighbors
	Locality Sensitive Hashing for 2
	Alternative 2 Approximation
	The Fast Johnson-Lindenstrauss Transform

