
MIT 6.854/18.415: Advanced Algorithms Spring 2016

Lecture : LP Relaxations for Combinatorial Relaxation

Lecturers: Chris Musco and Ali Vakilian (for Ankur Moitra)

Scribes: Tom Kolokotrones, Mayuri Sridhar, and Vincent Tjeng

In this lecture, we consider methods for developing approximation algorithms for NP-hard combi-
natorial optimization problems using linear programs (LPs). We will consider two approaches: LP
Rounding and the Primal-Dual approach.

1 Last Time (Submodular Functions)

Last week, we talked about submodular functions and showed a way to relax them to convex
functions via the Lovasz Theorem. The idea was that, if we could optimize the Lovasz Extension,
which is a continuous convex optimization problem, then we could optimize submodular functions.
Today, we’re going to be doing something very similar to that with one exception: the problems
we’ll try to approximate aren’t easy to solve. In general, we’ll focus on NP-hard combinatorial
optimization problems, which we’ll approximate using similar relaxations.

2 Integer Optimization Problems and Vertex Cover

We’ll start with a specific example, which many of you have probably seen and is one of Karp’s
original 21 NP-Hard problems: Vertex-Cover.

Vertex-Cover: Given an undirected graph G = (V,E), find a subset C ⊆ V of minimum size,
|C|, such that if (u, v) ∈ E, at least one of u or v is in C.

We can write this in the form of an optimization problem by associating each C ⊆ V with a vector
x of length |V |, so that x has an entry for each vertex of the graph and

xv =

{
1 if v ∈ C
0 otherwise

To ensure that we cover each edge of the graph, for each (u, v) ∈ E we include the constraint
xu + xv ≥ 1, which ensures that xu or xv = 1, so that u ∈ C or v ∈ C. Since |C| =

∑
v∈V xv and

our goal is to minimize |C|, Vertex-Cover can be formulated as:

Integer Program:

min
x

∑
v∈V

xv

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

1

Unfortunately, this is not easy to solve. While it looks like a Linear Program, the constraint that
x is either 0 or 1 is a discrete constraint, specifically an integer constraint. Problems of this form
are called Integer Linear Programs (ILP), since they look like standard Linear Programs, but with
additional integer constraints, which generally make them NP-Hard. In fact, NP-Hard optimization
problems can typically be written as ILPs, which is nice because we can then relax the problem
into something we can actually solve.

In this case, instead of requiring xv ∈ {0, 1}, we can instead simply require 0 ≤ xv ≤ 1, which
converts the ILP into a standard LP.

Relaxed Linear Program:

min
x

∑
v∈V

xv

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

This is good, and clearly any solution to the ILP will also be a solution to the relaxed LP since
xv = 0 or 1 satisfies 0 ≤ xv ≤ 1 (so the optimal value of the relaxed LP will be no worse than
the optimal value of the original ILP), but a solution to the LP will not necessarily be a solution
to the ILP because the LP can have fractional solutions. A simple example is the fully connected
graph on 3 vertices, G = K3 (the triangle). The optimal solution to the LP is given by setting each
xv = 1

2 , which gives a cost of 3
2 , while any solution to the ILP must set at least two xv = 1 in order

to satisfy the covering requirement, so that the minimum cost is 2. So clearly we can’t, in general,
blindly use the LP to solve the integer program, but often we can use the LP solution to help find
a discrete solution, using LP Rounding, which is the first basic technique we’ll talk about today.

3 LP Rounding

LP Rounding is a general technique that has three main steps:

1. Solve the relaxed LP to obtain the optimal x∗, which may not be integral, and, therefore,
may not be a solution to the original ILP.

2. Round the entries of x∗ to form x̃, which will be integral and so a feasible solution of the ILP.

3. Bound the gap between the cost of x̃ and the cost of the optimal solution to the ILP.

3.1 Deterministic Rounding

In the case of Vertex-Cover, there is an extremely simple deterministic rounding algorithm that
performs well in finding an approximate solution: rounding to the nearest integer. Starting with
x∗, the optimal solution to the relaxed LP, we define x̃ by:

x̃v =

{
1 if x∗v ≥ 1/2

0 otherwise

2

We first check that x̃ satisfies Vertex-Cover. By construction, x̃ is integral. Since x∗ satisfies
the constraints of the relaxed LP, if (u, v) ∈ E, x∗u + x∗v ≥ 1, so x∗u or x∗v ≥ 1

2 , so x̃u or x̃v = 1, and,
therefore, x̃u + x̃v ≥ 1, so x̃ satisifies Vertex-Cover.

The approximation factor, α, must satisfy:
∑

v x̃v ≤ α · OPTintegral, where OPTintegral is the cost
of the optimal solution to the ILP and OPTfractional is the cost of the optimal solution to the LP.
Recalling that OPTfractional ≤ OPTintegral, since any solution to the original ILP is also a solution
to the relaxed LP, and noting that x̃v ≤ 2x∗v from the definition of x̃, we have

OPTintegral ≤
∑
v

x̃v ≤ 2
∑
v

x∗v = 2 ·OPTfractional ≤ 2 ·OPTintegral

so α ≤ 2 and our procedure gives a 2-approximation to Vertex-Cover.

Could we find a smaller α such that OPTintegral ≤ α
∑

v x
∗
v = α · OPTfractional using this general

approach? The answer is no. Consider, G = K3, the fully conected graph on 3 vertices. Recall
that, for this example, OPTfractional = 3/2 and OPTintegral = 2, so α ≥ 4/3 and we cannot make
the approximation tighter than 4/3. We can find worse examples than this though: consider the
complete graph on n vertices, G = Kn. Then the optimal fractional solution still assigns xv = 1/2
to each vertex for a total cost of n

2 . However, any integer solution must assign 1 to all but one of
the vertices, which gives a minimum cost of n − 1, so α ≥ n−1

n/2 = 2
(
1− 1

n

)
. Therefore, by taking

n arbitrarily large, we can make the lower bound on α arbitrarily close to 2, so that, since α ≤ 2,
α = 2. In general, we can bound the cost of OPTintegral/OPTfractional by taking the supremum over
all possible inputs, which is called the integrality gap.

IG = sup
OPTintegral
OPTfractional

This is an important concept in these types of combinatorial optimization problems because, while it
doesn’t rule out the possibility that you can get a better approximation by using a different method
(or even working with different LP-relaxation of the problem), it says that using this approach
(relax and bound), or even other approaches based on the discussed LP, we can’t produce an
approximation better than the integrality gap; it is a measure of how tight your LP approximation
is in the first place.1 Here we gave a rounding scheme that matches the integrality gap, so we can’t
do better.

3.2 Set Cover

Though deterministic rounding performed very well in providing an approximation to the Vertex-
Cover problem, this is not always the case. In particular, it does not perform well on a general-
ization of Vertex-Cover, known as Set-Cover.

Set-Cover: Given a set, S, which we will take to be S = {1, 2, . . . , n}, andm subsets S1, S2, . . . , Sm ⊆
S, such that S =

⋃m
i=1 Si, find a minimal collection C = {Si1 , Si2 , . . . , Sik}, such that ∀j∈S∃l≤k(j ∈

Sil), or, equivalently, S =
⋃k
l=1 Sil .

1Note that we could also try to directly bound α ·OPTintegral, instead of using α ·OPTfractional as an intermediate,
which could possibly result in a smaller bound on the overall approximation factor, but this is often extremely difficult
and is not typically done in practice, so rounding schemes are almost always analyzed like ours.

3

Proceeding as we did for Vertex-Cover, we can associate each C with a vector x of length m, so
x has one entry for each Si and

xi =

{
1 if Si ∈ C
0 otherwise

The constraint that each j ∈ S must be contained in at least one Sil ∈ C can be written as∑
i:j∈Si

xi ≥ 1 and |C| =
∑m

i=1 xi so

Set-Cover can be formulated as:

Integer Problem:

min
x

m∑
i=1

xi

s.t.
∑
i:j∈Si

xi ≥ 1 ∀j ∈ {1, 2, . . . , n}

xi ∈ {0, 1} ∀i ∈ {1, 2, . . . ,m}

To obtain the LP relaxation of above formulation, as before, we relax the constraint xi ∈ {0, 1} to
0 ≤ x ≤ 1, giving:

Relaxation:

min
x

m∑
i=1

xi

s.t.
∑
i:j∈Si

xi ≥ 1 ∀j ∈ {1, 2, . . . , n}

0 ≤ xi ≤ 1 ∀i ∈ {1, 2, . . . ,m}

Unfortunately, for this problem, deterministic rounding doesn’t work very well. There is a simple
example that shows this. Let S = {1, 2, 3, 4}, S1 = {2, 3, 4}, S2 = {1, 3, 4}, S3 = {1, 2, 4}, S4 =
{1, 2, 3}. Then the optimal solution to the relaxed LP gives xi = 1

3 for each i. If we just round
to the nearest integer, as before, x̃i = 0 for every i, so we would pick no sets, and, therefore,
would not satisfy Set-Cover. However, even if we change the rounding threshold from 1

2 to some
other value, since all the xis have the same value, we either have to include all the sets or none
of the sets using deterministic rounding. If we pick none of the sets, we don’t satisfy Set-Cover;
if we pick all of them we have a bad approximation, since we only need any 2 of the Sis. If we
generalize this example to n elements: S = {1, 2, . . . , n}, Si = S \ {i}, i ∈ {1, 2, . . . n}, either we
pick 0 sets, and don’t satisfy Set-Cover, or we pick n sets when we only needed 2, which gives
an approximation error of n

2 , so deterministic rounding does not work well for Set-Cover. Since
deterministic rounding doesn’t work well, we can instead try randomized rounding.

3.3 Randomized Rounding

Attempt 1: Set x̃i = 1 with probability x∗i .

The first thing we need to verify before we can even talk about the approximation factor is that x̃
satisfies the constraints of the linear program, specifically

∑
j∈Si

xi ≥ 1. Define Yj =
∑

j∈Si
x̃i. We

4

can’t bound this directly, but by considering the expectation and using the linearity of expectation
we get, E[Yj] =

∑
j∈Si

E[x̃i] =
∑

j∈Si
x∗i . Since x∗i is our fractional solution, then it will satisfy the

linear program, which is great, so our constraints are satisfied in expectation. However, what we
actually want is that they are satisfied with high probability (meaning with probability ≥ 1−n−1).
To get this, we need to modify things in a very simple way.

Attempt 2: Set x̃i = 1 with probability αx∗i .
2

We will set α later. The reason for multiplying by α is that by using a higher probability, we
can ensure that our constraints are satisfied not just in expectation, but with high probability. In
order to show this, we’ll use Chernoff’s Inequality. Yj is the sum of independent Bernoulli random
variables, so the probability that the constraint is not satisfied (Yj < 1) is

P (Yj < 1) = P
(
Yj <

1

E[Yj]
E[Yj]

)
= P

(
Yj <

(
1−

(
1− 1

E[Yj]

))
E[Yj]

)

≤ e
−
(
1− 1

E[Yj]

)2
E[Yj]

2
= e

1
2

(
2−E[Yj]− 1

E[Yj]

)
≤ e1−

1
2
E[Yj]

which will be ≤ n−2 as long as E[Yj] ≥ 4 log n + 2. Then, taking the union bound over the n
constraints shows that they hold simultaneously with probability ≥ 1 − n−1, so we can choose an
α ∈ O(log n) so that randomized rounding gives a feasible solution with high probability.

The last step is to determine the approximation factor. In expectation,

OPTintegral ≤ E[Yj] =

m∑
i=1

E[x̃i] =

m∑
i=1

αx∗i = α

m∑
i=1

x∗i = α ·OPTfractional ≤ α ·OPTintegral

so, since α ∈ O(log n), randomized rounding gives an O(log n) approximation, in expectation, for
Set-Cover. It’s not hard to show that this also holds with high probability by using a Chernoff
bound argument, similar to the one above. Next we’ll talk about another approach to approximating
combinatorial optimization problems that does not use any sort of rounding.

4 Primal-Dual Approach

The Primal-Dual approach is a powerful, general method for generating approximation algorithms
for combinatorial problems, by taking advantage of the relationship between an LP and its dual.
It was originally proposed by Dantzig, Ford, and Fulkerson in 1956 [1] as a means of solving linear
programming problems, but it only works in limited cases and cannot be used, in general, for
solving LPs. However, it was later discovered that it could be used for approximation algorithms
for many combinatorial optimization problems. We’ll use it to (approximately) solve the Facility
Location problem.

4.1 The (Metric Uncapacitated) Facility Location Problem

In the Facility Location problem we wish to assign a collection of clients: D, to a set of facilities:
F . We have two cost functions: d : (D ∪ F)× (D ∪ F)→ R+ and f : F → R+, where d is a metric

2Technically we need to use min(αx∗i , 1) to ensure we don’t have probabilities above 1, but we will ignore this
technical detail in our analysis.

5

distance function on (D ∪ F). The cost of assigning client j to facility i is given by dij = d(i, j),
which is the distance between the two. The cost of opening facility i is fi = f(i). By default, each
facility is closed until the required fee, fi, is paid to open it. Each facility can serve an unlimited
number of clients. The goal is to open some subset of the facilities, and to assign the clients to
them, while minimizing the total cost.

We can express the objective function formally as:

min
S⊆F

∑
i∈S

fi +
∑
j∈D

min
i∈S

dij

Define xij by xij = 1 if client j is connected to facility i, 0 otherwise, and yi by yi = 1 if facility i
is open, 0 otherwise. Then, we can rewrite the cost as:

min
x,y

∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij

We want to ensure that each client is connected to at least one facility, which we can encode using
the constraint:

∑
i∈F xij ≥ 1 ∀j ∈ D. We also only want to assign clients to open facilities, which

gives the constraint: xij ≤ yi ∀i ∈ F, j ∈ D. We can then formulate the problem as:

min
x,y

∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀i ∈ F, j ∈ D
xij , yi ∈ {0, 1} ∀i ∈ F, j ∈ D

After the standard LP-relaxation, in which we relax the integer constraints to xij , yi ≥ 0, we get:

Primal (P)

min
x,y

∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀i ∈ F, j ∈ D
xij , yi ≥ 0 ∀i ∈ F, j ∈ D

Dual (D)

max
α,β

∑
j∈D

αj

s.t.
∑
j∈D

βij ≤ fi ∀i ∈ F

αj − βij ≤ dij ∀i ∈ F, j ∈ D
αj , βij ≥ 0 ∀i ∈ F, j ∈ D

The dual variables have a nice interpretation: αj is the amount that client j is willing to pay to be
connected to some facility and βij is the amount that client j is willing to contribute to opening
facility i. If the total contribution of all clients to facility i,

∑
j∈D βij ≥ fi, then we open facility i,

but the constraint
∑

j∈D βij ≤ fi means that the clients won’t overpay.

4.2 Primal-Dual Approximation for the Metric Uncapacitated Facility Location
Problem (Jain and Vazirani 2001) [2]

The key insight about the Primal-Dual approach is that, if you find a feasible solution for the dual
program, then, by weak duality, it is a lower bound for the optimal solution of the primal. The

6

method will yield three outputs:

• A feasible, integer primal solution.

• A feasible dual solution.

• A proof that cost(integer primal solution) ≤ λ · cost(dual solution).

Together, this tells us that the integer solution that we construct is a λ-approximate solution to
the problem. The general approach is as follows:

• Begin with a feasible dual solution. This will typically be all zeros for the dual variables
(which is easy to verify as feasible), but doesn’t have to be.

• Start increasing the dual variables in a controlled manner, while ensuring that the dual
solution remains feasible. We can’t do this forever since eventually a dual constraint will
become tight.

• Once this happens, set the corresponding primal value to some integer. This is how we
actually construct the primal integer solution. When a dual constraint becomes tight, we
modify the primal solution and then return to increasing dual variables until some other
variable binds, and repeat the process.

• When we can no longer increase any dual variable, we stop and examine our constructed
primal solution. The algorithm will show that it is not too different in cost from the dual
solution we’ve constructed.

For the Metric Uncapacitated Facility Location problem, we proceed as follows:
Phase 1:

• Start with a feasible dual solution; in particular, set α = β = 0. When αj = 0, client j is not
connected to any facility, and when

∑
j∈D βij < fi, facility i is not open, so we begin with all

clients unassigned and all facilities closed.

• Each client increases its αj at the same rate; in particular, each client will increase its αj by
1 at each step, but this cannot continue indefinitely without violating dual feasibility.

• At some point, a constraint will become tight, so that αj = dij for some i, j. At this point,
client j has paid enough to reach facility i and the edge (i, j) becomes tight.

• In order to maintain dual feasibility in the rest of the algorithm, whenever αj increases, for
any tight edges (i, j), we must also increase βij by the same amount in order to maintain
αj − βij ≤ dij , but this is done only for tight edges.

• After repeating these steps enough, eventually a constraint of the second type,
∑

j∈D βij ≤ fi
will become tight for some i. If this happens, then facility i has received enough contributions
to open, and we declare it to be temporarily open. Then, all unconnected clients that have
a tight edge in common with facility i (e.g. (i, j)) get connected to facility i. For any such
clients, βij must stop increasing in order to maintain dual feasibility, which means that αj
must also stop increasing for any clients that are connected to i. In general, the dual variables
associated with connected clients do not increase after connection.

7

• When we are no longer able to increase any of the dual variables, all the clients will be
connected, but the solution may have an excessively high cost due to too many facilities
being open, which will necessitate some clean-up steps (hence why facilities are only referred
to as temporarily open).

The dual cost,
∑

j∈D αj , is a combination of the connection costs and the facility opening costs
in the primal. Even though a client will only connect to one facility, he may have contributed to
multiple facilities. This is wasteful, so a clean-up phase will be needed to obtain a good result.
In particular, if we were to open every temporarily opened facility, the cost of the primal would
typically be much higher than that of the dual.

Phase 2: We say that i and i′ are conflicting if ∃j(βij · βi′j > 0). Define Ft to be the set of all
temporarily opened facilities, T to be the graph whose vertex set is F in which there is an edge
between i and i′, (i, i′), iff i and i′ are conflicting, and H to be the induced subgraph of T over the
nodes Ft. Then we continue as follows:

• First, determine the set of open facilities. Select a maximal independent subset, I ⊆ H by
beginning with I = ∅ and adding facilities in the order in which they were opened, while
ensuring that I remains independent. I is the set of open facilities.

• Second, assign each client to an open facility. If client j was connected to facility i during
Phase 1 and i ∈ I, then assign j to facility i. We refer to this as “directly connected”.
Otherwise, assign j to one of i’s neighbors i′ in H such that i′ ∈ I. We refer to this as
“indirectly connected”. Note that, by construction, i and i′ will be conflicting. Also, note
that some such i′ must exist since if i /∈ I, then it must have at least one neighbor i′ in H such
that i′ ∈ I, since otherwise {i} ∪ I would be an independent set, contrary to the requirement
that I is maximal.

• Finally, construct a solution to the primal integer problem by setting xij = 1 if client j is
assigned to facility i, 0 otherwise, and yi = 1 if facility i ∈ I, 0 otherwise.

We now show that this construction provides a feasible solution to the integral primal problem. By
the above construction, each xij and yi are either 0 or 1, so the integer constraint is satisfied.

Claim 1. No client j contributes to two different open facilities.

Proof. This follows from the construction of I as a maximal independent set of H, since otherwise,
if some client j contributed to both facilities i and i′ then, βij , βi′j > 0, and, therefore, βij ·βi′j > 0,
so i and i′ would be conflicting and there would be an edge between them in H, but then I would
not be independent in H, contrary to construction.

Claim 2. If fi is open, let Si be the set of clients directly connected to i. Then

fi +
∑
j∈Si

dij =
∑
j∈Si

αj

Proof. Any client j with βij > 0 is directly connected to i, so fi =
∑

j∈D βij =
∑

j∈Si
βij . (Note

that there may also be directly connected clients with βij = 0 if they connected to the facility

8

later.) Additionally, for any client j that is connected to i, the dual constraint αj − βij ≤ dij is
tight, so fi =

∑
j∈Si

βij =
∑

j∈Si
(αj − dij), so fi +

∑
j∈Si

dij =
∑

j∈Si
αj , as claimed.

Claim 3. Let client j be indirectly connected to facility i, then dij ≤ 3αj.

Proof. If j is indirectly connected to i, then, by definition, in Phase 1 it must have been connected
to some i′ /∈ I and there must be an edge (i, i′) in H. For i′ to be connected to j, (i′, j) must
be tight and, therefore, αj − βi′j = di′j so di′j ≤ αj . Since an edge (i, i′) is in H iff there exists
some j′ ∈ D such that βij′ · βi′j′ > 0, both βij′ and βi′j′ > 0, so both dij′ and di′j′ ≤ αj′ , because,
following the protocol in Phase 1, we can only have βij > 0 if the constraint αj − βij ≤ dij is tight.
Let ti, ti′ be the times at which facilities i and i′ become temporarily open in Phase 1. Since facility
i became temporarily open before i′, αj′ = ti′ ≤ ti = αj . Therefore, since d(i, j) is a metric, the
triangle inequality holds so that dij ≤ dij′ + di′j′ + di′j ≤ αj′ + αj′ + αj ≤ 3αj , so dij ≤ 3αj , as
claimed.

Lemma 4. The (integral) primal and dual solutions constructed by the algorithm satisfy:

3
∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij ≤ 3

∑
j∈D

αj

Proof. Let D(d) be the set of directly connected clients and D(i) be the set of indirectly connected

clients, so that D = D(d) ∪ D(i) and let S
(d)
i and S

(i)
i be the set of all j directly and indirectly

connected to i, respectively. Since, by construction, each client is connected to only a single facility,

the S
(d)
i s and S

(i)
i s are disjoint and, if j is connected to i ∈ I, then yi = 1, xij = 1 and xi′j = 0

for i′ 6= i. Then, from Claim 2, if j is directly connected to i, we have fiyi +
∑

j∈S(d)
i

dijxij =

fi +
∑

j∈S(d)
i

dij =
∑

j∈S(d)
i

αj . Therefore,

∑
i∈I

fiyi +
∑
i∈I

∑
j∈D(d)

dijxij =
∑
i∈I

fiyi +
∑
j∈S(d)

i

dijxij

 =
∑
i∈I

∑
j∈S(d)

i

αj =
∑
j∈D(d)

αj

so

3
∑
i∈I

fiyi +
∑
i∈I

∑
j∈D(d)

dijxij ≤ 3
∑
i∈I

fiyi + 3
∑
i∈I

∑
j∈D(d)

dijxij = 3
∑
j∈D(d)

αj

If j is indirectly connected to i, then, from Claim 3,∑
i∈I

∑
j∈D(i)

dijxij =
∑
i∈I

∑
j∈S(i)

i

dijxij =
∑
i∈I

∑
j∈S(i)

i

dij ≤
∑
i∈I

∑
j∈S(i)

i

3αj = 3
∑
j∈D(i)

αj

Therefore,

3
∑
i∈I

fiyi +
∑

i∈I,j∈D
dijxij = 3

∑
i∈I

fiyi +
∑
i∈I

∑
j∈D(d)

dijxij +
∑
i∈I

∑
j∈D(i)

dijxij

≤ 3
∑
j∈D(d)

αj + 3
∑
j∈D(i)

αj ≤ 3
∑
j∈D

αj

9

Since xij , yi = 0 for i /∈ I,

3
∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij = 3

∑
i∈I

fiyi +
∑

i∈I,j∈D
dijxij ≤ 3

∑
j∈D

αj

as claimed.

Together, these results give:

Theorem 5. The (integral) primal and dual solutions constructed by the algorithm satisfy:

OPT (IP) ≤ cost(x, y) ≤ 3
∑
j∈D

αj ≤ 3 ·OPT (D) ≤ 3 ·OPT (P) ≤ 3 ·OPT (IP)

Proof.

OPT (IP) ≤ cost(x, y) =
∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij ≤ 3

∑
i∈F

fiyi +
∑

i∈F,j∈D
dijxij ≤ 3

∑
j∈D

αj

≤ 3 ·OPT (D) ≤ 3 ·OPT (P) ≤ 3 ·OPT (IP)

Corollary 6. The Primal-Dual algorithm provides a 3-approximation for the Metric Uncapacitated
Facility Location Problem.

10

References

[1] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primal-dual algorithm for linear programs. In
H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, pages 171181.
Princeton University Press, Princeton, NJ, 1956.

[2] Kamal Jain and Vijay V. Vazirani. Approximation Algorithms for Metric Facility Location and
k-Median Problems Using the Primal-Dual Schema and Lagrangian Relaxation. Journal of the
ACM, Vol. 48, No. 2, March 2001, pp. 274-296.

11

