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In this lecture, we will talk about more sophisticated ways of rounding SDPs which work when
the plain hyperplane rounding fails. In particular, we will prove Grothendieck’s inequality using
by rounding an SDP with a modified version of hyperplane rounding. We will also introduce the
Lovasz theta function, which serves as both an upper bound on the largest independent set of the
graph and a lower bound on the chromatic number of the complement of a graph, and can be
computed efficiently using SDPs.

1 Grothendieck’s Inequality

Consider the quadratic program maxxi,yj∈{±1}
∑

i,j Aijxiyj . We think of A as a m × n matrix.
MAXCUT is a special case of this problem, if we set Aii = 2|E| for all i to force xi = yi and
Aij = −1/4 if i, j ∈ E and 0 otherwise, as then what we are maximizing is

∑
i,j∈E 1/2 − xixj

2 .
We will look at a very powerful SDP relaxation to this problem, which will be different than the
randomized rounding algorithm for MAXCUT. To formulate the relaxation, we proceed like we
did with MAXCUT, by replacing xi, yj with vectors and approximating with SDPs. The SDP
relaxation we will consider is equation (*) below.

(*) max
∑

ij AijZij , where Z is the upper right block of an (m+n)× (m+n) block matrix B with
1’s on the diagonal.

We will proceed to show how this gives us vectors representing the xi and yj . B is (m+n)×(m+n),
and B = WW T as it is PSD. We can think of splitting W into the first m rows and the last n rows,
and we can think of the first m rows of W as unit vectors u1, ..., um and the last n rows as vectors
v1, ..., vn. We can rewrite the problem as max‖ui‖=1,‖vj‖=1

∑
i,j Aij〈ui, vj〉 as zij = 〈ui, vj〉. This is

a relaxation of the original problem because we can set ui = [xi, 0, ..., 0], vj = [yj , 0, ..., 0] where
xi, yj are the solution to maxxi,yj∈{±1}

∑
i,j Aijxiyj and this is a feasible solution to the SDP.

Let OPT be the solution to the original problem and let OPT’ be the solution of the SDP.

Theorem 1 (Grothendieck’s inequality [2, 3]). OPT ≤ OPT’ ≤ π
2 ln(1+

√
2)

OPT.

For a long time this was conjectured to be the right answer, until 3 years ago [1] showed that you
could subtract a constant on the order of 10−10. In fact, people have given algorithms that within
a finite amount of time would calculate Grothendieck’s constant to finite precision.

What makes this problem different from MAXCUT? Can we just use hyperplane rounding, and
set xi = sgn(aTui), yj = sgn(bT vj)? The way our analysis worked last time was that we looked at
the expected contribution to the SDP versus the expected contribution of the rounding. However,
this will not work in this case as it could be the case that the contribution to the positive terms
becomes much less than the contribution to the negative terms because of the nonlinear relationship.
Aij〈ui, vj〉 is the contribution to the SDP, and the contribution to the expected value of hyperplane

rounding is equal to Aij(
−θij
π + (1 − θij

π )) = Aij
2
π (π2 − θij) = Aij

2
π arcsin(〈ui, vj〉). What we’re
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worried about is the case when SDP gives us +7 -6 +7 -6 and the value of the rounding is +α7 -6
+α7 -6, which gives us a value very close to 0.

Fact: E[sgn(aTui)sgn(aT vj) = 2
π arcsin(〈ui, vj〉)

To fix this, we will create new vectors such that a linear relationship holds, allowing us to use
hyperplane rounding and get a reliable approximation.

Lemma 2. For any unit vectors u1, ..., um, v1, ..., vn, there is a new set of unit vectors u′1, ..., u
′
m, v

′
1, ..., v

′
n

with the property that E[sgn(aTu′i)sgn(aT v′j)] = 2
π ln(1 +

√
2)〈ui, vj〉.

Definition 3. u⊗2 = [(u1)
2, u1u2, u1u3, ...], and similarly for u⊗n.

Proof. Guess a constant c = sinh−1 1 = ln(1 +
√

2). Then by Taylor’s theorem sin(c〈u, v〉) =∑∞
k=0(−1)k c2k+1

(2k+1)!〈u, v〉
2k+1. From the Taylor series we can get the infinite-dimensional vectors by

inspection. Since 〈u, v〉2k+1 = 〈u⊗2k+1v⊗2k+1〉, we can set u′ = [
√
cu, (−1)

√
c3

3!u
⊗3, ...(−1)k

√
c2k+1

(2k+1)!u
⊗2k+1...]

and v′ = [
√
cv,

√
c3

3! v
⊗3, ...]. Then 〈u′, v′〉 = sin(c〈u, v〉) as expanding the inner product gives us

the Taylor series. Moreover, ‖u′‖2 = sinh(c‖u‖2) = sinh(sinh−1(1)) = 1, and ‖v′‖2 = 1 as well.
Finally E[sgn(aTu′)sqn(aT v′)] = 2

π arcsin(〈u′, v′〉) = 2
π arcsin(sin(c〈u, v〉)) = 2

π c〈u, v〉.

The catch is that the u′, v′ are infinite-dimensional, and so care must be taken to make sure working
with u′, v′ can be done efficiently. The lemma actually implies 1.

Proof. Using hyperplane rounding, find ui, vj with 〈ui, vj〉 = zij and then use the procedure in 2 to
get u′i, v

′
j . Then, round the u′i and v′j by choosing a uniformly at random and then set xi = aTu′i

and yj = aT v′j . To analyze this procedure, consider some term i, j which has Aij〈ui, vj〉 as its

contribution to the SDP and Aij
2
π ln(1 +

√
2)Aij〈ui, vj〉 as its contribution to the expected value.

This gives us Grothendieck’s inequality.

2 Lovasz Theta Function

Let α(G) be the size of the largest independent set. χ̄(G) is the chromatic number of Ḡ (the
complement of G). Then χ̄(G) ≥ α(G), as the size of the largest independent set in the graph is
the size of the largest clique in its complement.

Definition 4. θ(G) is defined as min k s.t. 〈vi, vj〉 = −1
k−1∀(i, j) /∈ E and 〈vi, vi〉 = 1.

Theorem 5. α(G) ≤ θ(G) ≤ χ̄(G).

Proof. θ(G) ≤ χ̄(G): I claim there exist k unit vectors u1, ..., uk where 〈ui, uj〉 = −1
k−1 and 〈ui, ui〉 =

1 using the vectors from the centroid of the simplex to each corner. Thus any k-coloring of Ḡ yields
a feasible solution when we assign one of the unit vectors to the vertices of each color.

α(G) ≤ θ(G): Take some optimal solution to the SDP and takes vectors v1, ..., vS of an independent
set. Then 0 ≤ (

∑S
i=1 vi)

T (
∑S

i=1 vi) = s +
∑

i 6=j〈vi, vj〉. By an averaging argument, there exists

i 6= j 〈vi, vj〉 ≥ −s
2(s2)

= −1
s−1 . Now, 〈vi, vj〉 = −1

θ(G)−1 ≤
−1
s−1 , or s ≤ θ(G).
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There are important graphs where α(G) = χ̄(G) (e.g. perfect graphs). Thus for perfect graphs we
can compute the size of the largest independent set efficiently.
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