
MIT 6.854/18.415: Advanced Algorithms Spring 2016

Lecture 3 – February 10, 2016

Prof. Ankur Moitra Scribe: Yinzhan Xu

In this lecture we explain the consistent hashing scheme of [1] and some of its applications. In
particular we discuss the application of random trees in consistent hashing and the setting in which
clients do not have a consistent view of the web.

1 Consistent Hashing

1.1 Setup

There are m items such that each of them needs to be stored in one of the n distributed web caches.
Here we aim to design an efficient hashing scheme that works well even if n changes. To start, recall
the 2-universal hash scheme discussed in Lecture 1:

H = {ha,b|a ∈ {1, 2, . . . , p− 1} and b ∈ {0, 1, . . . , p− 1}},

where

ha,b(x) = (ax + b mod p) mod n.

Using a 2-universal family of hash functions, we can create a perfect hashing. However, the perfect
hashing works well only if the number of available machines/web caches does not change during
the process. When the number of web caches increases, there are two possible strategies to modify
the hashing scheme:

1. Change the n in ha,b to n + 1 to get h′a,b.

By doing so, we need to move almost all of the items to their new location determined by
h′a,b (Exercise: why?). If we don’t move an item x to its new place, then we cannot find x
because h′a,b(x) no longer points to the machine/location in which x is stored.

2. Keep n unchanged and thus all the functions remain the same.

In this case, the new machine is not in use. As a consequence, the load will not be distributed
evenly among all available storage space in the system.

As you observed none of the above strategies satisfies our objectives. In fact we are looking for a
strategy that does not incur too many re-hashing and in the meantime keep the load of all machines
almost balanced. An elegant solution to handle this situation introduced in a work of Karger et al.
[1].

1

1.2 Basic Idea

• Each cache is mapped to a random real number in the interval [0, 1].

• Each item is mapped to a random real number in the interval [0, 1].

• Store each item in the first cache on its right. If there is no cache on its right, then store
the item in the cache with the smallest number. We can also imagine wrapping around the
interval [0, 1] and store each item in the first cache on its right on the circle.

See Figure 2 as an example of the consistent hashing scheme over the interval [0, 1].

0 1

Figure 1: Blue disks denote the machines and red boxes denote the items. Arrows also show the
machine to which each item is assigned.

1.3 Implementation

To dynamically maintain the machines and items, we need to maintain a Binary Search Tree (BST),
whose keys are the values assigned to the machines. Let hi and hm be respectively the functions
that we used to hash items and machines to the interval [0, 1].

• To insert an item x:

(a) Find the successor of hi(x) in the BST (if it has no successor in the BST then return the
machine with the smallest hm value)

(b) Store x in the returned machine.

• To delete an item x:

(a) Find the successor of hi(x) in the BST (if it has no successor in the BST then return the
machine with the smallest hm value)

(b) Delete x in the returned machine.

• To insert a new machine Y : There may be some existing items that should be stored
in the new machine Y , but these items now are all stored in the successor of hm(Y) (or the
machine with the smallest hm if hm(Y) is the largest value).

2

(a) Find the successor of hm(Y) in the BST (if it has no successor in the BST then return
the machine with the smallest hm value)

(b) Move all items whose hi value is less than hm(Y) to the newly inserted machine Y .

• To delete an existing machine Y :

(a) Find the successor of hm(Y) in the BST (if it has no successor in the BST then return
the machine with the smallest hm value)

(b) Move all items in Y to the returned machine. In Lemma 1 we show that the number of
items needed to move is not too much.

1.4 Bounds

Lemma 1. With high probability, no machine owns more than O(lognn).

Proof. Fix some interval I with length 2 logn
n , then probability that no machine lands in I is(

1− 2 log n

n

)n

=

((
1− 2 log n

n

) n
2 logn

)2 logn

≈ 1

n2
.

Equally split [0, 1] to n
2 logn such intervals. By union bound, the probability that every one of these

intervals contains at least a machine is at least 1− n
2 logn ·

1
n2 > 1− 1

n . Therefore, with probability

at least 1− 1
n , each machine owns an interval of length at most 4 logn

n .

However, note that the size of the smallest length can be about 1/n2. To see this, split the [0, 1]
interval into equally n2 parts, with each part is of length 1/n2. By Birthday Paradox, some machines
will fall into the same interval with high probability. Thus, with high probability, the size of the
smallest interval assigned to a machine is O(1

n2).

Lemma 2. When a machine is added, the expected number of items that move to the newly added
machine is m

n+1 .

Proof. The only items that move are those assigned to the new machine. Since the process is as if
we map all the machines to the interval from the beginning, by symmetry, in expected m

n+1 items

assign to the (n + 1)th machine.

Note that the bound cannot be improved because when n = 1, all the items should be assigned to
the new machine.

2 Random Trees

2.1 Setup

The actual motivation of random trees is to relieve the hotspot on web. Assume that there is a
single root server that stores all the pages. If all the requests go to the root server, it cannot handle

3

all of them and it could crash due to the traffic. Somehow it is necessary to share the load among
a set of machines. Therefore the solution is to use a set of proxy caches C so that the requests can
be distributed among them and handled by different machines.

(a) (b)

r r

v

0 1 h

Figure 2: (a) shows a random tree and mapping of its virtual nodes to the interval [0, 1]. The
blue circles in [0, 1] denote the proxy caches. In (b) a random leaf has been selected to response a
request. The leaf-to-root path is shown in blue.

2.2 Implementation

1. Choose a d-ary tree with n virtual nodes V . The root server is located in the root of this
d-ary tree. We also choose a consistent hash function h : V 7→ C which maps the virtual
nodes to the set of available (proxy) caches.

2. For each request of a page, the algorithm does the following:

(a) Choose a random leaf v in the random d-ary tree (note that the leaf also defines a path
to the root node in the tree.

(b) Ask the virtual nodes in the vr path one by one. For each node u in the path: if the
cache h(u) contains the requested page, then return the page; otherwise, propagate the
request to the parent of u on the path and increment the page’s counter on the local
cache (i.e. h(u)) that missed the request.

(c) For any local cache, if the counter for a page reaches a fixed threshold denoted by q,
then the cache stores the page (note that each node will get the page in its way from r
back to the leaf v).

At the beginning all pages are only on the root server. As it goes and by receiving the requests,
the popular pages will spread downward in the tree. This propagation of pages among the caches
in the tree guarantees that no local cache gets too many requests for any page.

2.3 Analysis

Lemma 3. Each cache that is not mapped to a leaf on the random tree is asked for the same page
at most O(dq logn

log logn) times with high probability.

4

Proof. Consider the children of a non-leaf virtual node v, if all of them have been asked for the
same page for at least q times, h(v) will not be asked for this page any more. Therefore, v will only
be asked for the same page for at most O(dq) times.

Note that (intuitively) the consistent hashing scheme is similar to the “balls and bins” process
and there we showed that if for each ball we draw a bin (uniformly) at random then with high
probability the maximum load of the bins is O(logn

log logn). In our application, balls translate to the
virtual node in the random tree and bins are the proxy caches in the system. Thus by similar
argument we can show that with high probability each cache is responsible for at most O(logn

log logn)
virtual nodes.

Hence, each cache that is not mapped to any leaf nodes with high probability will be asked for the
same page O(dq logn

log logn) times.

2.4 Inconsistent World

In reality, not everyone can know the whole set of the proxy caches. Here we modify the model
so that it captures what happens in the real world applications. Let C1, C2, . . . , C` be ` views such
that Ci ⊂ C and |Ci|

|C| ≥
1
t for each i, where t is a fixed constant. Now each view i uses its own

consistent hash function hi : V 7→ Ci. More precisely, the random tree for each view Ci is the same,
and the underlying hashing of virtual nodes to the interval [0, 1] is the same for all views. The only
difference is that hi(v) returns the first cache in Ci on the right of the virtual node v (which may
not be the same as the first cache in C which is on the right of v).

However, we can still bound the number of times that a non-leaf node receives a request for a
specific page.

Lemma 4. If there are at most n total requests, then with high probability, each cache is asked for
O(dqt2 log2(n`)) times.

Proof. Consider a fixed cache c. In part (a), we show that over all views the number of virtual
nodes mapped to c is O(t log n) with high probability. Each virtual node has at most d children
and in part (b) we show that over all views each of them is mapped to O(t log n) different caches
with high probability. Finally, since the number of times a cache propagate the request for a page
to its parent before storing the page is q, the total number of times that c is asked for any page is
bounded by O(t log n · d · t log n · q) = O(dqt2 log2 n).

Next we complete the proof by formally proving the bounds on the number of different virtual
nodes mapped to a single cache and the number of different caches a single virtual node is mapped
to (over all ` views).

Proof of part (a). Fix some cache c and let it be mapped to x in the interval [0, 1]. Consider the
interval I of length 10t logn`

n whose right end point is x. Fix some view Ci. The probability that no
cache in view Ci is mapped to a point in I is at most(

1− 10t log(n`)

n

)|Ci|
≤
(

1− 10t log(n`)

n

)n
t

≈ 1

(n`)10
.

By union bound over all views, the probability that each of the ` views maps at least a cache to a

5

point in interval I is at least

1− ` · 1

(n`)10
≥ 1− 1

n10
.

This implies that the cache c is not responsible for any virtual node outside interval I with probabil-
ity at least 1− 1

n10 . Then we can use Chernoff bound to conclude that each cache is responsible for
at most O(t log(n`)) virtual nodes, with high probability (More precisely, using Chernoff bound, we

show that the number of virtual nodes that are mapped to an interval of size 10t log(n`)
n is O(t log(n`))

with high probability).

Proof of part (b). Let j be a virtual node and suppose that it is mapped to x in the interval
[0, 1]. Consider the interval I of length 10t logn`

n whose left end point is x. Similarly to part (a), we
can show that with high probability, each view Ci maps at least one cache to the interval I, so any
cache outside interval I is never responsible for virtual node j. Then by Chernoff bound, we can
show that each virtual node can only be mapped to O(t log(n`)) caches.

References

[1] Karger, David, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. “Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web.” In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pp. 654-663. ACM, 1997.

6

	Consistent Hashing
	Setup
	Basic Idea
	Implementation
	Bounds

	Random Trees
	Setup
	Implementation
	Analysis
	Inconsistent World

