
MIT 6.854/18.415: Advanced Algorithms Spring 2016

Lecture 6 – February 22, 2016

Prof. Ankur Moitra Scribe: Rio LaVigne, Matthew Staib, Dimitris Tsipras

1 Last Time - JL Lemma

In the previous lecture, we described the Johnson-Lindenstrauss Lemma, a way of embedding a set
of points into a subspace of significantly smaller dimension, while approximately preserving their
pairwise distances. At a high level, we constructed an unbiased estimator for the `2-norm of vectors
via Gaussians, and then boosted the success probability by averaging independent repetitions. We
therefore saw that `2-distance is a property that is preserved when embedding into low dimensional
subspaces. We finished with an overview of variants/extensions of the JL Lemma that included
faster and sparser transformations.

2 Nearest Neighbor Search

Today, we are going to discuss the Nearest Neighbor (NN) search problem, and a powerful tool
for it, Locality Sensitive Hashing (LSH). While in previous lectures we viewed hashing collisions
as an unpleasant obstacle that we tried to avoid, we will now assume a different view and exploit
collisions to come up with faster algorithms.

2.1 Setup for NN

First, let us formally introduce the NN search problem.

Problem (NN): Given a set P of points in Rd, construct a data structure for the set P , that can
answer NN queries on P , that is given any point q in Rd, return the closest point to q in P , i.e.
return p s.t. p ∈ arg minp∈P ‖p− q‖.

We will evaluate our algorithms on two aspects, space and query time. Usually we try to get our
query time to be as low as possible, without requiring huge amounts of space. Note that we didn’t
specify the norm we are considering, since problem is equally interesting in most norms.

2.2 A Motivating Example

Before we proceed, let us briefly discuss a motivating example. Consider the task of spam clas-
sification – given a set of emails labeled as spam or not spam, determine whether a new email is
spam. A common approach is that of the k-Nearest Neighbors: find the k labeled emails “closest”
to the unknown email and return some notion of “majority label”. The usual notion of distance
is through the Bag-of-Words model, where each email is associated with a vector of occurrence
counts. A distinguishing characteristic of this approach is that while the vectors are very sparse,

1



they lie in some huge space, the dimension of which equals the number of words in the dictionary.
We will soon see that dimension is a huge barrier when designing fast algorithms for the problem.

2.3 Approach #1

A naive algorithm for the problem, requiring absolutely no preparation of the data, is simply storing
the points in a list and searching linearly among them to answer every query. While very simple,
the guarantees of this algorithm are poor:

space: O(nd) query time: O(nd)

The main question here is: can we improve the query time? At what cost?

2.4 Approach #2

Let’s first consider the case d = 1. In that case, our points lie on a line, so the problem can be
solved easily by constructing a binary search tree:

space: O(n) query time: O(log n).

Intuitively, the points partition the space into n regions (Figure 1), depending on which point in P
is the closest point.

Figure 1: Line partitioning according to NN

Generalizing this notion for the case d = 2, we get a Voronoi diagram (Figure 2), a partition of the
plane based on which query points map to a given point in P . It turns out that as the dimension
grows, the description of such a partitioning becomes exponentially difficult. The multidimensional
equivalent of binary search tree is the k-d tree (k-dimensional tree) described in [1].

All these approaches share a well-known problem in computational geometry, the infamous “curse
of dimensionality” (a term coined by Bellman). Every known approach for NN is exponential in
the dimension in terms of space, time or both.

3 Approximate Nearest Neighbor Search

In order to come up with practical algorithms for NN search in high dimensional spaces, we will
have to relax our algorithm guarantees. Roughly speaking, we will allow for the query to return

2



Figure 2: Voronoi diagram

points that are “close enough” instead of the closest. This problem is known as Approximate
Nearest Neighbors (ANN).

Problem (c-ANN): Given a set P of points in Rd, construct a data structure, that given any
point q in Rd, returns a point p ∈ P such that d(p, q) ≤ cminp′∈P d(p′, q).

3.1 The PLEB primitive

In order to make steps towards solving c-ANN, we will start by solving an easier problem –which
we will later use as a primitive– namely Point Location in Equal Balls (PLEB).

Problem ((r1, r2)-PLEB): Given a set P of points in Rd, and radii r1, r2, construct a data
structure, that given some point q:

1. if there is a p ∈ P such that d(p, q) ≤ r1, returns YES and any point p′ ∈ P with d(p′, q) ≤ r2.

2. if there is no point p ∈ P such that d(p, q) ≤ r2, returns NO.

Note that we do not care what happens in the case where there is a point within radius r2 but not
within radius r1. This “gap” is where the approximate nature of our algorithms comes from.

Lemma 1. If for all radius r, there exists a data structure with space S and query time T that solves

(r, (1+ε)r)-PLEB, then there exists an algorithm for (1+ε)2-ANN with space O
(
S log1+ε

Dmax
Dmin

)
and

query time O
(
T log log1+ε

Dmax
Dmin

)
, where Dmin, Dmax denote the minimum and maximum distance

between points respectively.

Proof. We will use our data structure for (r, (1 + ε)r)− PLEB to search over the following radii:

Dmin

2
, (1 + ε)

Dmin

2
, (1 + ε)2

Dmin

2
, · · · ,≈ Dmax.

We use a binary search to find the minimum radius r so that our algorithm returns YES for a
single query point q. Let r∗ be that minimum radius and let p be the returned point. The following
are true:

3



1. d(p, q) ≤ (1 + ε)r∗ from the definition of r∗.

2. For all p′ ∈ P , d(p′, q) ≥ r∗

1+ε because for the previous smallest radius, (r∗/(1 + ε), r∗), our
algorithm returned NO.

To conclude, let p∗ be the nearest neighbor to q. We know that d(p∗, q) ≥ r∗

1+ε . So, d(p, q) ≤
(1 + ε)2d(p∗, q). Therefore, p satisfies the requirements for being a (1 + ε)2-approximate nearest-
neighbor to q.

It is possible to remove the extra (1 + ε) factor with more efficient reductions. Indyk-Motwani [3]
and [2] both show how to reduce (1 + ε)-ANN to (r, (1 + ε)r)-PLEB.

4 Locality Sensitive Hashing

So far, we have been using hash functions to perform tasks like load balancing, where it is better
to avoid collisions – we do not want to assign two jobs to the same machine. However, collisions
are not always bad! We will show how to exploit collisions to solve PLEB.

Definition 2. A locality sensitive hash (LSH) [3] is a hash family where similar items are more
likely to collide. Formally, a hash family H = {h : U → S} is called (r1, r2, p1, p2)-locally sensitive
if for all points p, p′ ∈ U ,

1. if d(p, p′) ≤ r1, then P[h(p) = h(p′)] ≥ p1.

2. if d(p, p′) > r2, then P[h(p) = h(p′)] ≤ p2.

Note that this definition only makes sense if r1 < r2 and p1 > p2.

4.1 Example of a Locality Sensitive Hash

Let Hd = {0, 1}d be the d-dimensional binary cube, where our distance metric is hamming distance:
d(p, p′) =

∑d
i=1 pi ⊕ p′i. Then, H = {hi : hi(b1, b2, · · · , bd) = bi for i ∈ [d]} is (r, cr, 1 − r

d , 1 −
cr
d )-

locality sensitive.

This is because if d(p, p′) ≤ r, they have d− r bits in common. So, the chance that a hash function
hi is pointing to a bit they have in common is d−r

d = 1 − r
d . Similarly, if d(p, p′) ≥ cr, they have

d− cr bits in common, so the chance that hi maps them to the same bucket is 1− cr
d .

5 Solving PLEB

We will now show how to apply LSH, in order to solve PLEB.

Theorem 3 (Locality-Sensitive Hashing for PLEB [3]). Suppose there is some (r1, r2, p1, p2)-LSH
H = {h : U → S}. Then, there is an algorithm for (r1, r2)-PLEB which uses

4



• O(dn+ n1+ρ) space, and

• O(nρ) query time, measured in hash evaluations,

where ρ = ln 1/p1
ln 1/p2

. This algorithm succeeds with constant probability.

Over the rest of the section, we present an algorithm and then prove that it has these properties.

5.1 The algorithm

Let k and ` be parameters (which we will set later). Define a new hash family G = {g : U → Sk}.
Each hash function g ∈ G takes the form g(p) = (h1(p), h2(p), . . . , hk(p)), where each hash function
hi is in H.

To completely specify our algorithm, we need to specify both the preprocessing phase and how we
respond to a query point q. First, preprocessing:

1. Choose hash functions g1, . . . , g` from G.

2. For each p in the given set of points P , store p in each of the buckets specified by g1(p), . . . , g`(p).

3. Discard all empty buckets.

Now, when queried with the point q, we search through the buckets g1(q), . . . , g`(q), and stop after
the first 2` points. If any of these points p has d(p, q) ≤ r2, return p with YES; otherwise, return
NO.

5.2 Analysis of the algorithm

For the algorithm to work, we need the following to hold (with constant probability):

1. If there is a p ∈ P with d(p, q) ≤ r1, then there should exist j with gj(p) = gj(q).

2. There are at most 2`− 1 “bad” points p ∈ P with have d(p, q) > r2 but still do collide with
q, with gj(p) = gj(q) for some j.

In order to ensure (2) holds, we set k = log1/p2 n. Then, the expected number of points satisfying
(2) is at most

(n points in P ) · (pk2 probability all k hashes collide) = np
log1/p2 n

2 = 1. (1)

Then, by Markov’s inequality, the probability that (2) does not hold is at most

P[# bad points ≥ 2`] ≤ 1

2`
≤ 1

2
. (2)

5



Now we must ensure (1) holds. Assume there is a p ∈ P with d(p, q) ≤ r1. Fix an index j. The
probability that gj(p) = gj(q) is the probability that all k hashes hi agree, which is bounded below
by

pk1 = p
log1/p2 n

1 =

((
1

p2

)log1/p2 p1
)log1/p2 n

= n
− log 1/p1

log 1/p2 = n−ρ. (3)

By considering all ` hashes gj , and setting the number of hashes ` = nρ, we see that (1) holds with
probability at least

1− (1− n−ρ)` = 1− (1− n−ρ)nρ ≥ 1− 1

e
≥ 1

2
. (4)

Hence, with probability at least 1
4 , (1) and (2) both hold, meaning this algorithm works with

constant probability.

Observation 4. Theorem 3 means that in order to solve PLEB (and consequently approximate
nearest neighbors) on some set U , all we need to do is find a good locality-sensitive hash for U .
Moreover, finding better and better locality-sensitive hashes automatically yields better and better
algorithms for PLEB.

5.3 Applications of the link between LSH and PLEB

Recall the example from Section 4.1, where Hd = {0, 1}d is the d-dimensional hypercube, and we
refere to any point x ∈ Hd by its bits (b1, b2, . . . , bd). The hash family

H = {hi : hi(b1, b2, . . . , bd) = bi for i = 1, 2, . . . , d} (5)

is (r, cr, 1− r
d , 1−

cr
d ) for the Hamming distance.

Corollary 5. There is an algorithm for (r, cr)-PLEB in Hd that uses space O(dn+n1+
1
c ), and for

each query needs O(n
1
c ) evaluations of the hash function, each of which takes O(d) time. In the

language of Theorem 3, for the Hamming distance, the constant ρ satisfies ρ ≤ 1
c .

Theorem 6 ([4]). For Euclidean distance, we can find an even smaller ρ. Namely, ρ ≤ 1
c2

.

Theorem 7 ([5]). The above bounds for ρ in both the Hamming and Euclidean distance are tight.

References

[1] Bentley, Jon Louis. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18.9 (1975): 509-517

[2] S. Har-Peled. 2001. A replacement for Voronoi diagrams of near linear size. In: Proceedings of
42nd Annual symposium on Foundations of Computer Science, 2001. p.94.

[3] Indyk, P. and Motwani, R., 1998, May. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing (pp. 604-613). ACM.

6



[4] Andoni, A. and Indyk, P., 2006, October. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on (pp. 459-468). IEEE.

[5] O’Donnell, R., Wu, Y. and Zhou, Y., 2014. Optimal lower bounds for locality-sensitive hashing
(except when q is tiny). ACM Transactions on Computation Theory (TOCT), 6(1), p.5.

7


	Last Time - JL Lemma
	Nearest Neighbor Search
	Setup for NN
	A Motivating Example
	Approach #1
	Approach #2

	Approximate Nearest Neighbor Search
	The PLEB primitive

	Locality Sensitive Hashing
	Example of a Locality Sensitive Hash

	Solving PLEB
	The algorithm
	Analysis of the algorithm
	Applications of the link between LSH and PLEB


