
Algorithmic Aspects of
Reinforcement Learning II

Ankur Moitra (MIT)

February 24th, ITA+ALT Tutorial

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

FUNCTION APPROXIMATION

Suppose there are too many states to write down/visit

e.g.

FUNCTION APPROXIMATION

Suppose there are too many states to write down/visit

e.g.

Can we distill the relevant properties of the state into a
high-dimensional feature vector?

LINEAR MARKOV DECISION PROCESSES

Assumption: There is a known feature mapping

and rewards/transitions are linear in this representation, i.e.

LINEAR MARKOV DECISION PROCESSES

Assumption: There is a known feature mapping

and rewards/transitions are linear in this representation, i.e.

(1)

(2)

and

LINEAR MARKOV DECISION PROCESSES

Assumption: There is a known feature mapping

and rewards/transitions are linear in this representation, i.e.

(1)

(2)

and

Note: There can be an infinite number of states and parameters
defining the model

LINEAR MARKOV DECISION PROCESSES

Assumption: There is a known feature mapping

and rewards/transitions are linear in this representation, i.e.

(1)

(2)

and

Note: There can be an infinite number of states and parameters
defining the model

So how do we even represent a policy? Or its value function?

VALUE FUNCTIONS, AGAIN

Key: The closure properties, e.g. of dynamic programming

VALUE FUNCTIONS, AGAIN

Proposition: An MDP is linear with respect to the feature mapping
iff for any function we have that

for some vector 𝜃

VALUE FUNCTIONS, AGAIN

Proposition: An MDP is linear with respect to the feature mapping
iff for any function we have that

for some vector 𝜃

Now consider the Q-function and V-function for any policy:

VALUE FUNCTIONS, AGAIN

Proposition: An MDP is linear with respect to the feature mapping
iff for any function we have that

for some vector 𝜃

Now consider the Q-function and V-function for any policy:

Corollary: The Q-function of any policy is linear

FINDING AN OPTIMAL POLICY

Consider policies of the form

FINDING AN OPTIMAL POLICY

Now use linear regression to fit the Q-function to the observed
rewards

Consider policies of the form

immediate reward + estimated opt. future reward + expl. bonus

FINDING AN OPTIMAL POLICY

Need a bonus to maintain optimism

immediate reward + estimated opt. future reward + expl. bonus

Consider policies of the form

Now use linear regression to fit the Q-function to the observed
rewards

CHOOSING A BONUS

Natural bonus function depends on form of error bounds for
linear regression; called the elliptic potential

which accounts for errors in unexplored directions, where

THE LSVI ALGORITHM
Theorem [Jin, Yang, Wang, Jordan ‘19]: LSVI has

running time:

sample complexity:

and returns a near optimal policy in a linear MDP

No dependence
on the # of states

THE LSVI ALGORITHM

running time:

sample complexity:

and returns a near optimal policy in a linear MDP

Notes: Does not attempt to estimate model parameters

No dependence
on the # of states

model-free vs. model-based

Theorem [Jin, Yang, Wang, Jordan ‘19]: LSVI has

THE LSVI ALGORITHM

running time:

sample complexity:

and returns a near optimal policy in a linear MDP

Notes: Does not attempt to estimate model parameters

Later improvements get optimal sample complexity

No dependence
on the # of states

model-free vs. model-based

Theorem [Jin, Yang, Wang, Jordan ‘19]: LSVI has

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

FEATURE SELECTION?

How do we find a good feature mapping in the first place?

FEATURE SELECTION?

How do we find a good feature mapping in the first place?

Natural approach is to throw in the kitchen sink

+ +
domain expertise heuristics learned features

FEATURE SELECTION?

How do we find a good feature mapping in the first place?

Natural approach is to throw in the kitchen sink

+ +
domain expertise heuristics learned features

But we would pay a steep price in terms of sample complexity
for using more features than we truly need

FEATURE SELECTION?

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown of size k and
the rewards/transitions are linear functions of

which is a k-dimensional representation

FEATURE SELECTION?

Are there efficient algorithms for learning sparse linear MDPs?

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown of size k and
the rewards/transitions are linear functions of

which is a k-dimensional representation

FEATURE SELECTION?

Are there efficient algorithms for learning sparse linear MDPs?

i.e. sample complexity

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown of size k and
the rewards/transitions are linear functions of

which is a k-dimensional representation

Prior work relies on assumptions that obviate the need for
exploration

[Hao, Lattimore, Szepesvari, Wang ‘21]: assumes we’re
given an exploratory policy up front

(1)

Prior work relies on assumptions that obviate the need for
exploration

[Zhu, Wang, Lee ‘23]: assumes every policy induces a
well-conditioned feature distribution

(1)

(2)

[Hao, Lattimore, Szepesvari, Wang ‘21]: assumes we’re
given an exploratory policy up front

Prior work relies on assumptions that obviate the need for
exploration

But ignoring computational efficiency, we know such assumptions
are unnecessary

[Jiang, Krishnamurthy, Agarwal, Langford, Schapire ‘16]:
statistically efficient algorithm under low Bellman rank,
but oracle is known to be NP-hard to implement

(3)

[Zhu, Wang, Lee ‘23]: assumes every policy induces a
well-conditioned feature distribution

(1)

(2)

[Hao, Lattimore, Szepesvari, Wang ‘21]: assumes we’re
given an exploratory policy up front

COMPUTATIONALLY EFFICIENT LEARNING

First end-to-end algorithmic guarantees in general

Theorem [Golowich, Moitra, Rohatgi ‘24]: An algorithm with

running time:

sample complexity:

that returns a near optimal policy in a sparse linear MDP

COMPUTATIONALLY EFFICIENT LEARNING

First end-to-end algorithmic guarantees in general

running time:

sample complexity:

that returns a near optimal policy in a sparse linear MDP

Based on a new abstraction we call an emulator

“Even though a linear MDP is non-parametric,
can we find a parametric approximation to it?”

Theorem [Golowich, Moitra, Rohatgi ‘24]: An algorithm with

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

SPARSE LINEAR REGRESSION

Setup: We are given samples of the form

where

and,with

An aspirational example where sparsity helps:

SPARSE LINEAR REGRESSION

Setup: We are given samples of the form

where

and,with

Definition [Tibshirani]: The Lasso estimator is

An aspirational example where sparsity helps:

SPARSE LINEAR REGRESSION

Theorem: With probability , the Lasso satisfies

risk

An aspirational example where sparsity helps:

SPARSE LINEAR REGRESSION

Theorem: With probability , the Lasso satisfies

risk

This is the kind of improvement we are hoping for in SLMDPs

An aspirational example where sparsity helps:

SPARSE LINEAR REGRESSION

Theorem: With probability , the Lasso satisfies

risk

This is the kind of improvement we are hoping for in SLMDPs

But in RL, there is no one fixed distribution --- it depends on
the policy we play

An aspirational example where sparsity helps:

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

POLICY COVERS

How does sparsity help in reinforcement learning?

POLICY COVERS

Definition: A collection of policies is an -approximate policy
cover at step h if for all states x

How does sparsity help in reinforcement learning?

POLICY COVERS

Definition: A collection of policies is an -approximate policy
cover at step h if for all states x

Can we show size of our policy cover improves with sparsity?

How does sparsity help in reinforcement learning?

REACHABILITY

Assumption (normalization): For all s, a and h we have

and

REACHABILITY

Assumption (normalization): For all s, a and h we have

and

analytic notion of sparsity

REACHABILITY

Assumption (normalization): For all s, a and h we have

and

For now, we will assume all states are reachable:

Definition: A linear MDP is -reachable if for all s and h we have

REACHABILITY

Assumption (normalization): For all s, a and h we have

and

For now, we will assume all states are reachable:

Definition: A linear MDP is -reachable if for all s and h we have

Assumption can be removed, but highly technical to do so

IDEALIZED GREEDY COVER

We will build a policy cover greedily

(0) Initialize policy cover and uncovered states

IDEALIZED GREEDY COVER

We will build a policy cover greedily

(1) In each step, find a policy that maximizes the probability
of reaching uncovered states

(0) Initialize policy cover and uncovered states

IDEALIZED GREEDY COVER

We will build a policy cover greedily

(1) In each step, find a policy that maximizes the probability
of reaching uncovered states

(0) Initialize policy cover and uncovered states

Set , find

IDEALIZED GREEDY COVER

We will build a policy cover greedily

(1) In each step, find a policy that maximizes the probability
of reaching uncovered states

(0) Initialize policy cover and uncovered states

Set , find

(2) Break if total probability is small, i.e

IDEALIZED GREEDY COVER

We will build a policy cover greedily

(1) In each step, find a policy that maximizes the probability
of reaching uncovered states

(0) Initialize policy cover and uncovered states

Set , find

(2) Break if total probability is small, i.e

Otherwise, update and set

TERMINATION CONDITIONS

Claim 1 [informal]: No policy π reaches the set of uncovered
states with nonnegligible probability

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Proof: We choose π to maximize this probability, and we only
break when it is small.

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Claim 2 [informal]: For any covered state s, no policy π reaches
it with much larger probability than our cover does

Proof: We choose π to maximize this probability, and we only
break when it is small.

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Claim 2: For all there is some so that

Proof: We choose π to maximize this probability, and we only
break when it is small.

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Claim 2: For all there is some so that

Proof: First

Proof: We choose π to maximize this probability, and we only
break when it is small.

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Claim 2: For all there is some so that

Proof: First

(by normalization)

Proof: We choose π to maximize this probability, and we only
break when it is small.

TERMINATION CONDITIONS

Claim 1: For any policy π, we have

Claim 2: For all there is some so that

Proof: First

Claim now follows from rule for removing states from

(by normalization)

Proof: We choose π to maximize this probability, and we only
break when it is small.

BOUNDING THE SIZE

Claim 3: Finally

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

because we didn’t break

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

because we didn’t break

, want to upper bound

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

because we didn’t break

(1) by rule for constructing
(1)

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

because we didn’t break

(1)
(2) by sparsity bound

(2)

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

But since the sets are disjoint, we have

BOUNDING THE SIZE

Claim 3: Finally

Proof: Suppose π was added to the policy cover in iteration t

But since the sets are disjoint, we have

Now rearranging completes the proof.

In general is not a policy cover but…

In general is not a policy cover but…

Lemma [informal]: Under reachability, the collection

is a policy cover at step h+2

MAKING IT EFFICIENT?

There are two main issues with our approach:

(1) We can’t afford to iterate over all the states

MAKING IT EFFICIENT?

There are two main issues with our approach:

(1) We can’t afford to iterate over all the states

E.g. when we updated the set of uncovered states

MAKING IT EFFICIENT?

There are two main issues with our approach:

(1) We can’t afford to iterate over all the states

(2) We don’t know the features

E.g. when we updated the set of uncovered states

MAKING IT EFFICIENT?

There are two main issues with our approach:

(1) We can’t afford to iterate over all the states

E.g. when we updated the set of uncovered states

(2) We don’t know the features

Since the model is non-parametric, it’s not even possible
to estimate all these parameters

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

EMULATORS

Can we construct a tabular MDP that approximates a linear
MDP well enough to be used in Greedy Cover instead?

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of synthetic features that satisfy…

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of synthetic features that satisfy

(1) they are analytically sparse

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of vectors that satisfy

(1)

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of vectors that satisfy

(1)

(2) they have nonnegative inner-products with feature maps

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of vectors that satisfy

(1)

(2) for all π and j

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of vectors that satisfy

(1)

(2)

(3) they determine the same input-output behavior as
the true MDP, for any policy π

for all π and j

EMULATORS

Definition: An emulator at step h for a sparse linear MDP is a
collection of vectors that satisfy

(1)

(2)

(3)

for all π and j

There are states so that for all π

true input-output

synthetic input-output

PUTTING IT TOGETHER

Let’s run Greedy Cover on the μ’s instead!

PUTTING IT TOGETHER

uncovered states:

target vector:

Let’s run Greedy Cover on the μ’s instead!

PUTTING IT TOGETHER

uncovered states:

target vector:

Let’s run Greedy Cover on the μ’s instead!

Essentially, the emulator gives us a tabular approximation, now
Greedy Cover is efficient

PUTTING IT TOGETHER

In the analysis of Idealized Greedy Cover we needed to show

i.e. can’t reach any state s’ much more often than the cover does

PUTTING IT TOGETHER

In the analysis of Idealized Greedy Cover we needed to show

i.e. can’t reach any state s’ much more often than the cover does

The properties of an emulator allow us to replace the μ’s with μ’s
in the expressions above, and the analysis goes through

Why do small emulators exist? And how do we find them?

Why do small emulators exist? And how do we find them?

We use convex programming

Why do small emulators exist? And how do we find them?

We use convex programming

Main Idea: Instead of a constraint for each policy, i.e. for all π

true input-output synthetic input-output

Why do small emulators exist? And how do we find them?

We use convex programming

Main Idea: Instead of a constraint for each policy, i.e. for all π

true input-output synthetic input-output

We will draw samples from a policy cover at step h, and ask
for synthetic features that are good predictors for the output

A CONVEX PROGRAM

Input: Samples drawn from a policy cover at step h

A CONVEX PROGRAM

Input: Samples drawn from a policy cover at step h

Solve a linear regression problem for all (1)

A CONVEX PROGRAM

Input: Samples drawn from a policy cover at step h

Solve a linear regression problem for all (1)

(2) Find synthetic features that satisfy ℓ1 boundedness,
nonnegativity, and are also good predictors i.e.

A CONVEX PROGRAM

Input: Samples drawn from a policy cover at step h

Solve a linear regression problem for all (1)

(2) Find synthetic features that satisfy ℓ1 boundedness,
nonnegativity, and are also good predictors i.e.

A CONVEX PROGRAM

Can establish feasibility and correctness

A CONVEX PROGRAM

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are
feasible with high probability

A CONVEX PROGRAM

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are
feasible with high probability

Proof of correctness uses a net on policies, argues that checking
constrains on a representative set (i.e. cover) of policies suffices

A CONVEX PROGRAM

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are
feasible with high probability

Proof of correctness uses a net on policies, argues that checking
constrains on a representative set (i.e. cover) of policies suffices

Ultimately we use policy covers at steps ≤ h to (1) build an
emulator and (2) solve the optimization problem in Greedy Cover,
together which gives a small cover at step h+2

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

� Least Squares and the Elliptic Potential

� Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

� Sparse Linear Regression

� Greedy Covers

� Emulators and their Algorithmic Applications

Part VI: Block MDPs

� The View from Supervised Learning

OUTLINE

BLOCK MDPS

Settings with rich observations () but simpler latent state ()

e.g images
vs.

physical location

BLOCK MDPS

Settings with rich observations () but simpler latent state ()

Assumption: There is an unknown decoding function

in some known class of functions

e.g images
vs.

physical location

BLOCK MDPS

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford ‘19]:
There is a framework with

sample complexity:

that returns a near optimal policy in a sparse linear MDP

Key result:

BLOCK MDPS

sample complexity:

that returns a near optimal policy in a sparse linear MDP

But it relies on computationally hard oracles

Key result:

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford ‘19]:
There is a framework with

BLOCK MDPS

sample complexity:

that returns a near optimal policy in a sparse linear MDP

When can we get algorithmic guarantees?

But it relies on computationally hard oracles

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford ‘19]:
There is a framework with

Key result:

THE VIEW FROM SUPERVISED LEARNING

Not hard to show:

Observation: For some class of decoding functions, if the
associated noisy supervised learning problem is hard, then the
RL problem is hard too

THE VIEW FROM SUPERVISED LEARNING

Not hard to show:

Observation: For some class of decoding functions, if the
associated noisy supervised learning problem is hard, then the
RL problem is hard too

e.g. if the decoder is a parity function

THE VIEW FROM SUPERVISED LEARNING

Not hard to show:

Observation: For some class of decoding functions, if the
associated noisy supervised learning problem is hard, then the
RL problem is hard too

e.g. if the decoder is a parity function

What if we start with a class that can be PAC learned?

THE VIEW FROM SUPERVISED LEARNING

Not hard to show:

Observation: For some class of decoding functions, if the
associated noisy supervised learning problem is hard, then the
RL problem is hard too

e.g. if the decoder is a parity function

e.g. bounded-depth
decision trees

What if we start with a class that can be PAC learned?

simple,
interpretable

MORE ALGORITHMIC APPLICATIONS

By interpreting decision trees as sparse regressors:

Corollary: There is a quasi-polynomial time algorithm for
learning a near optimal policy in any block MDP with a
bounded depth decision tree decoder

MORE ALGORITHMIC APPLICATIONS

Corollary: There is a quasi-polynomial time algorithm for
learning a near optimal policy in any block MDP with a
bounded depth decision tree decoder

This gives an RL-style generalization of a classic result in
supervised learning

By interpreting decision trees as sparse regressors:

Summary:
� First computationally efficient algorithm for

learning in sparse linear MDPs
� Applications to Block MDPs, including an RL-style

generalization of learning decision trees
� Meaningful way to approximate nonparametric

models through emulators

Thanks! Any Questions?

Summary:
� First computationally efficient algorithm for

learning in sparse linear MDPs
� Applications to Block MDPs, including an RL-style

generalization of learning decision trees
� Meaningful way to approximate nonparametric

models through emulators

