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In ferromagnets, neighboring spin spins prefer to point in the 
same direction

Statistical physics: Define a probabilistic model that captures
behavior at thermal equilibrium and study its structural properties
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Definition: an Ising model is a distribution on               with

inverse temperature Hamiltonian

where

partition function

Can generalize to higher degree polynomials etc
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CONDITIONAL INDEPENDENCE

Often helpful to look at their graph structure:

with

Markov Property: Two nodes are independent when conditioned
on a separator – i.e. 

provided that all paths from       to        pass through

Caution: The Markov property fails in quantum spin systems



PHASE TRANSITIONS

Dramatic changes in macroscopic properties as temperature varies

decreasing temperature

e.g. average magnetization
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QUANTUM STATES AND OPERATORS

Definition: The density matrix 𝜌 of an n-qubit system is a 2n x 2n

matrix that is positive semidefinite and trace one

Think of it as a generalization of classical distributions for which

𝜌 =
𝜌1
𝜌2

i.e. entries along the diagonal are probabilities of each of the
2n possible configurations
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We will also be interested in operators that act on at most k qubits 

e.g.

4 x 4 matrix

all other sites

More generally a 2k x 2k matrix and a list of qubits, called its
support, that it acts on

Think of it as a generalization of local interactions in a 
graphical model
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QUANTUM SPIN SYSTEMS

How do we describe quantum systems at thermal equilibrium?

Definition: The quantum Gibbs state is

where

tensors of k Paulis

By construction, 𝜌 is a density matrix

How does temperature affect properties of a quantum system?

and each
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ENTANGLEMENT

Challenging to measure entanglement, but easier to say when
a state is unentangled

Definition: A product state satisfies

where each 𝜌i is a 2 x 2 density matrix. A separable state is
a mixture of product states

Think of separable states as ones that have only classical
correlations
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BOUNDS ON ENTANGLEMENT

In the limit as (i.e. infinite temperature) we have

But this is a non-physical temperature, since it grows with the
system size

What happens at reasonable physical temperatures?

Hence the Gibbs state is separable
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OUR RESULTS

We show that heat kills all entanglement

Theorem [Bakshi, Liu, Moitra, Tang]: There is a constant c > 0 so
that for any the Gibbs state is separable

Here k is the locality and d is the graph degree

Moreover there is an efficient randomized algorithm that 
outputs the description of a product state that works under 
similar parameters
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SIGNIFICANCE

Major goal is to give quantum advantage for useful problems, e.g.

Show there are efficient quantum Gibbs samplers that
succeed where classical algorithms do not

Would be applications in quantum chemistry for understanding
material properties
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SIGNIFICANCE

But Gibbs sampling becomes hard after a point

Theorem [Sly] [Sly, Sun]: Even classical Gibbs sampling is NP-hard
for k = 2 and for some constant c’

And so the region you could hope for quantum advantage is
now quite narrow for constant locality

NP-hardunentangled
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Theorem [Rouze, Franca, Alhambra]: Polynomial mixing time
bounds for quantum Gibbs sampling at high enough temperature



INDEPENDENT WORK

Theorem [Rouze, Franca, Alhambra]: Polynomial mixing time
bounds for quantum Gibbs sampling at high enough temperature

Better dependence on locality (k vs k2), but worse dependence 
on degree (d vs dO(1))
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When are perturbations of the identity still separable?

Fact: Any density matrix on n qubits of the form 

with and is separable

This is too weak for our purposes, but there is a sharpening
that points the way forward

,
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MORE BOUNDS ON ENTANGLEMENT

When are perturbations of the identity still separable?

Can we approximate the Gibbs state by local perturbations
of the identity?

Fact’: Any density matrix on n qubits of the form 

with and is separable if E has support k,
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This is not so straight forward

this is local, by assumption

but what about this??

Need carefully designed expansions, let’s take a detour to explain
where they come from
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CLASSICAL SAMPLING

How do you sample from an Ising model?
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GLAUBER DYNAMICS

Natural Markov chain with local updates

update state w/ correct probability

Its unique steady state distribution is the Gibbs distribution

choose node at random,
forget its state
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PINNING TO A PRODUCT DISTRIBUTION

A classical thought experiment

xi

xj

First update xi then update xj

Claim: At high temperature, there is a good chance that their
updates can be made independently, in which case we can 
ignore their edge

both options almost
equally likely
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PINNING TO A PRODUCT DISTRIBUTION

Try to make xi independent of the rest, but keep only edges that
are needed as correction terms

And you end up with small connected components – this is 
where locality comes from
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THE PROOF STRATEGY

Want to show that the Gibbs state is 1-vs-all separable and
proceed by induction

Definition: We say that a state is 1-vs-all separable if it can be
written as a convex combination of

i.e. there is no entanglement between first and rest of qubits 

Key is to define an extraction operator and write its expansion
with exponentially decaying coefficients
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THE EXTRACTION OPERATOR

As before, want to remove interactions between one qubit and
all the others. Consider

Definition: The extraction operator is
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THE KEY LEMMA

Lemma: We can write

where

and each and is supported on a connected component

of size at most k+1 and contains site 1. Moreover

The point is, when                      the terms are exponentially 
decaying, and can get a handle on entanglement via Fact’ 
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PUTTING THINGS TOGETHER

Corollary: Hence we know that               is separable

The key identity is

Acts on 1 and [n]\1 separately, so preserves separability

Induction is involved because M1M1* is not literally the identity,
need a careful potential function argument
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EXPANDING THE EXTRACTION OPERATOR

We can compute

fk(H,H1)

Now let’s try to interpret these expressions
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A RECURRENCE

Easy to check that this expression

satisfies a natural recurrence

where is the commutator
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UNDERSTANDING COMMUTATORS

Key Fact: For any A and B, we have

0 if their supports are disjoint

supported on the union of their
supports otherwise

The commutator is linear, so we can write

Hence, for each new term, its support grows by one incident edge
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VISUALIZING THE RECURRENCE

If k = 2 and our base graph is

And the support of the terms in f2

Can also track how the coefficients grow
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OPEN QUESTIONS

Does entanglement exhibit a sharp phase transition?

And does that transition happen earlier than NP-hardness

Prove strong bounds on conditional mutual information?

Related to classical notions like spatial mixing
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  For what kind of quantum spin systems should 
       we expect quantum advantage in preparing the
       Gibbs state?



Summary:

  New physical law: At high temperature, quantum 
       spin systems have zero entanglement

  Proof via carefully designed expansions and the
        extraction operator

  For what kind of quantum spin systems should 
       we expect quantum advantage in preparing the
       Gibbs state?

Thanks! Any Questions?
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