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When the parameters are known, making 
predictions and inferences is easy!

? But how do you learn its parameters?

control

observation
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Given one long trajectory

Inputs/Controls:

Outputs:

How do you measure closeness of the parameters?

can we estimate ?and
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AN ASIDE

Definition: We say that two linear dynamical systems are 
equivalent if for any sequence of adaptively chosen inputs

they generate same distribution on outputs, up to a transformation
of the noise

Proposition: Two linear dynamical systems with Gaussian noise
are equivalent iff

, and

This defines a natural parameter distance

,
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MAIN PROBLEM (FORMAL)

Inputs/Controls:

Outputs:

, ,

and

Is there a polynomial time/sample algorithm for learning?

?

Given one long trajectory

can we find and such that
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PRIOR WORK

Widespread assumption on spectral radius, often unreasonable:

strict stability marginal stability

no long-range correlations

fails even in simple cases

Bounds depend on

get fresh samples

, degrade as

otherwise system
would explode

Do long-range correlations actually obstruct learning?
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OBSERVABILITY AND CONTROLLABILITY

Definition: The observability matrix of order s is

…

Proposition [informal]: If it doesn’t have full column rank, there
is some portion of the state space we miss even over s steps

Proof: If we move the state xt in some direction z then

no effect on yt+1 , etc
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OBSERVABILITY AND CONTROLLABILITY

Definition: The controllability matrix of order s is

…

Proposition [informal]: If it doesn’t have full row rank, there
is some portion of the state space that cannot be reached by
appropriate inputs

Similarly:

Necessity of these assumptions goes back to Kalman in 1960 

, , ,
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MAIN RESULTS

Theorem [Bakshi, Liu, Moitra, Yau]: There is a polynomial time
algorithm for learning any marginally stable linear dynamical system
from one long trajectory under quantitative observability and
controllability*

*i.e. condition number bounds

Moreover these conditions are essentially minimal

Theorem [Bakshi, Liu, Moitra, Yau]: If the observability and 
controllability matrices are ill-conditioned for all s then learning
is information-theoretically impossible
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COMMENTS

[Simchowitz, Boczar, Recht] also gave algorithms under marginal
stability, but unspecified dependence on system parameters*

*i.e. can be exponential

Also, renewed interest because of connections to recurrent 
neural networks (RNNs)

Before using LDS’s as a prototype for reasoning about RNNs, 
need to understand their fundamental limits --- e.g. what 
are minimal assumptions for learnability?
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METHOD OF MOMENTS

Introduced by Karl Pearson in 1894

� Estimate moments of the distribution from samples

� Setup system of equations in unknown parameters
� Solve to compute estimates

Many successes in unsupervised learning, e.g. HMMs, mixtures
of gaussians, topic modeling, robust estimation, etc

Is there a recipe for non-stationary data?



A BLUEPRINT

Definition: The Markov parameters up to order 2s+1 are

� Solve for the estimates using the Ho-Kalman algorithm

……, , , ,

� Estimate the Markov parameters from samples



A BLUEPRINT

Definition: The Markov parameters up to order 2s+1 are

Proposition: Can find good estimates from just the Markov
parameters

� Solve for the estimates using the Ho-Kalman algorithm

……, , , ,

� Estimate the Markov parameters from samples



Part I: Introduction

� Linear Dynamical Systems and Applications

� Main Problem

� Well-Posedness and Our Results

OUTLINE

Part II: A Method of Moments Approach

� The Ho-Kalman Algorithm

� Controlling the Variance?

� Convex Programming to the Rescue

Epilogue: Is This Just the Start?



Part I: Introduction

� Linear Dynamical Systems and Applications

� Main Problem

� Well-Posedness and Our Results

OUTLINE

Part II: A Method of Moments Approach

� The Ho-Kalman Algorithm

� Controlling the Variance?

� Convex Programming to the Rescue

Epilogue: Is This Just the Start?



THE HO-KALMAN ALGORITHM

Step #1: Form the Hankel matrix

…

…

…

…

…



THE HO-KALMAN ALGORITHM

Step #1: Form the Hankel matrix

…

…

…

…

…



THE HO-KALMAN ALGORITHM

Step #1: Form the Hankel matrix

…

…

…

…

…

Claim: 



THE HO-KALMAN ALGORITHM

Step #1: Form the Hankel matrix

…

…

…

…

…

Claim: 

This is the hidden factorization we are looking for
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Can we compute another factorization, and show equivalence?

Step #2: Compute the SVD

Lemma: If 

for some invertible transformation     

and

and

have full column and row rank resp. then
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Step #3: Using what we know already

(from Step #2)

So if we set we get
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� Solve for the estimates using the Ho-Kalman algorithm

Proposition: Can find good estimates from just the Markov
parameters

[Oymak, Ozay] gave stability analysis, if condition number is bdd
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A BLUEPRINT

Definition: The Markov parameters up to order 2s+1 are

…

Main Challenge: How do we estimate the Markov parameters?

…, , , ,

� Solve for the estimates using the Ho-Kalman algorithm

� Estimate the Markov parameters from samples
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A MAJOR COMPLICATION

So why aren’t we done?

We could try to estimate                     using

But there is dependence across timesteps and this estimator can
have unbounded variance

Aside: This is why strict stability trivializes the problem: Otherwise
just wait long enough to get almost independent samples
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For simplicity suppose and

Then we have

Eventually get cancellation!
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Then the Cayley-Hamilton Theorem tells us

Thus the variance is bounded independently of t

First Attempt: Take the ’s = coefficients of the characteristic poly

And can cancel all but the transient terms (proof by picture)
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And so direct computation shows the new time series satisfies

(2) Its variance is bounded, independently of t

Unfortunately

because we pick up extra terms

First Attempt: Take the ’s = coefficients of the characteristic poly

(1) Expectation is unchanged i.e. 
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Second Attempt: Same strategy, but using lag

Claim: If there is no

Hence we now have

But we still cancel out long-range dependencies, so the variance
stays bounded

(1) Expectation is unchanged i.e. 

, … , 
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Third Attempt: …

(I lied)

Problem: The coefficients of the characteristic poly can be 
exponentially large

Proposition [informal]: Can show good, bounded      ’s exist by 
appealing to condition number bds on / instead

If we already 
knew

Can find
good ’s

Isn’t this all circular?

/
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A CONVEX PROGRAM

Can write a convex program to search for the
know they exist

’s, now that we

Find

such that for all j

and for all t

Define a function         that captures the potential variance

If it’s large, whp a constraint is violated via anticoncentration

(1)

(2)
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LOOKING FORWARD

The method of moments saved the day (again)

Is there a dictionary mapping algorithmic tools in
unsupervised learning to their dynamical counterparts?

More ambitiously, we can ask:



FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

e.g. different variants of COVID



FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

Generalization of the classic change point detection problem

e.g. different variants of COVID



FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

Generalization of the classic change point detection problem

e.g. different variants of COVID

What about heterogeneity?



FURTHER DIRECTIONS

What if, at some time, we switch between different systems?

Generalization of the classic change point detection problem

e.g. different variants of COVID

What about heterogeneity?

Can learn mixture models even when the trajectories cannot be 
clustered, via tensor methods



FURTHER DIRECTIONS

What about heterogeneity?

Can learn mixture models even when the trajectories cannot be 
clustered, via tensor methods

What if, at some time, we switch between different systems?

Generalization of the classic change point detection problem

e.g. different variants of COVID

There is even more to say about reinforcement learning, but that
is another topic for another time…
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Summary:
� Linear dynamical systems have wide-ranging

applications, but how do we learn them?
� New algorithm via the method of moments with

essentially minimal assumptions
� Is there a dictionary for mapping tools from

unsupervised learning to their RL/dynamical
counterpart?

Thanks! Any Questions?


