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APPLICATIONS IN ENGINEERING

Cryo-electron microscopy
Determine 3D structure from random noisy 2D projections

Many inverse problems where groups play a key role

Revolutionary technique that was awarded the 2017 Nobel
Prize in Chemisitry
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General framework for capturing inverse problems under a
group action

Definition: An orbit retrieval problem is specified by a group G
and a linear homomorphism

We get noisy observations under the group action

where g is chosen from the Haar measure on G and     is Gaussian
noise 

Goal: Recover some      that is close to the orbit



BACK TO THE APPLICATIONS
How do popular inverse problems fit into this framework?

Group NotesProblem



BACK TO THE APPLICATIONS
How do popular inverse problems fit into this framework?

Group Notes

Discrete MRA

Problem



BACK TO THE APPLICATIONS
How do popular inverse problems fit into this framework?

Group Notes

Discrete MRA

Continuous MRA

Problem

Assume x is band-limited



BACK TO THE APPLICATIONS
How do popular inverse problems fit into this framework?

Group Notes

Discrete MRA

Continuous MRA

Image Registration

Problem

Assume x is band-limited



BACK TO THE APPLICATIONS

How do popular inverse problems fit into this framework?

Group Notes

Discrete MRA

Continuous MRA

Image Registration

Cryo-EM

Problem

Assume x is band-limited

More general, apply a

projection after rotation
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got stuck in some local minimum?
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group action
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ALGORITHMS?

In practice, often use iterative algorithms like EM or BP

Main Idea: Attempt to align pairs of samples

and

to estimate the relative group action

Serious Limitations:

They don’t extend to other settings

For example, can we allow heterogeneity? This is natural when a
molecule has multiple isomers
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TENSOR DECOMPOSITIONS
There are some algorithms, with provable guarantees, based on 
tensor decompositions

Moments of the
distribution

Hope: The factors in the low-rank
decomposition be used to find x?

But, as we will see they only work for finite groups and ignore the
group structure
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RESEARCH GOALS

Can we develop a more general tensor spectral toolkit for solving
orbit recovery that

(1)   works with low signal-to-noise ratio,

(2) actually uses the group structure, e.g. for infinite
and non-abelian groups and

(3)   allows for heterogeneity?

As usual, we want algorithms with provable guarantees!

We will need to solve some challenging problems at the interface
between combinatorics and representation theory along the way
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WARM-UP: DISCRETE MRA

Recall, we get

random cyclic shift

Natural Idea: Work with a polynomial that is invariant under
the group action, e.g.

Lemma [Perry, Weed, Bandeira, Rigollet, Singer]: T can be
estimated from samples through the relation

where the expectation is over y and a random g

, where
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provided that the factors             ,            and             are all linearly
independent 

We will be able to use this algorithm to solve discrete MRA

Theorem [Jennrich]: There is a polynomial time algorithm to 
decompose a tensor of the form
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Recall, we estimate the following tensor from samples

To apply Jennrich’s algorithm, we need to check that the factors

are linearly independent, which they are for generic x

The running time and sample complexity depend polynomially
on inverse accuracy, and on the condition number of the factors

Theorem [Perry, Weed, Bandeira, Rigollet, Singer]: There is an 
algorithm with polynomial running time and sample complexity to 
solve discrete MRA for smoothed x
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GROUP STRUCTURE?
Upon closer inspection, the algorithm does not actually depend
on the group structure!

In fact, we can think of samples from discrete MRA

, where

as samples from a structured mixture of gaussians where the 
centers are all cyclic shifts of x

and we’re using tensor decomposition to learn the model, following
[Hsu, Kakade], but ignoring the relationship between the centers
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BEYOND FINITE GROUPS

E.g. for continuous MRA, it is natural to work with the tensor

What if we have a continuous group?

Now the tensor is no longer low-rank!

We call this problem orbit tensor decomposition, and it seems 
to be the key to solving more general orbit recovery problems
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MAIN RESULTS
We give the first polynomial time algorithm to solve orbit tensor
decomposition over an infinite group

As a result we get:

Theorem [Moitra, Wein]: There is a polynomial time algorithm for 
list recovery for continuous MRA that works with additive noise and 
in a heterogenous setting where there are a polynomial number of
random components

The algorithm is inspired by recent algorithms for rounding the
sum-of-squares hierarchy, and an abstraction called tensor 
networks
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TENSOR NETWORKS
Tensor networks are a graphical representation for tensors and 
operations on them, e.g.

T
i

j k

third order tensors have three legs

tensors can be attached by summing over connected indices

T U
a

c

i b

d
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REVISITING PRIOR WORK
Prior work implicitly uses this framework

T

a

b d

T

T

T

c

T

T

T

T T
a c b d

See [Richard, Montanari], [Barak, Moitra], [Hopkins, Shi, Steurer], 
[Hopkins et al.], [Hopkins, Shi, Steurer] for applications to tensor
principal component analysis, tensor completion,  decomposing 
random overcomplete third order tensors, etc
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Given input tensor T

� Step #1: Build a new tensor B by connecting copies of T
according to the tensor network

� Step #2: Flatten B to form a symmetric matrix M 

� Step #3: Compute the leading eigenvector of M

We use the trace method to show the top eigenvector is close to 
the orbit of x 

For tensor networks, this turns into a labelled counting problem
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THE BLUEPRINT
We give a spectral method based on the following tensor network

T T
T

T

T
TT

T

T
u

a

c

bd

Smaller tensor networks fail for this problem
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THE TRACE METHOD

Main step in the analysis is to bound the largest eigenvalue of some
matrix build from a tensor network (after projecting out signal)

We do this through the trace method:

Applying Markov’s inequality we get the bound

With tensor networks, the trace method turns into a counting
problem,  let’s see some examples…
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Suppose M is an n x n symmetric matrix with iid Rademacher entries 
and zeros along the diagonal

Lemma: is the number of ways of labeling the edges of

M
M

M

M

M
M

with labels from [n] so that any pair of labels (i,j) is adjacent to an
even number of M’s 
Proof: First, is a sum over length six walks. Then observe
that a term has expectation zero unless each edge is traversed an 
even number of times.
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Suppose M is an n x n symmetric matrix with iid Rademacher entries 
and zeros along the diagonal

More generally:

Lemma: is the number of ways of labeling the edges of
of a length 2k cycle so that any pair (i,j) is adjacent to an even
number of M’s

The natural way to double cover edges with a walk is to take the
depth first search of a tree

It turns out this is the dominant contribution:

Theorem [Furedi, Komlos]:  

This gives sharp bounds on            via the trace method 
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More challenging example: Suppose T is a symmetric tensor with 
iid Rademacher entries and we plug it into the tensor network

Now let M be the ({a, b}, {c, d})-flattenening

Natural Goal: Understand            via the trace method

For example, if we want to compute                        we can plug the
tensor network into the six cycle, and we get…

Note that the pair of indices {a,b} that index rows of M come from
from different copies of T, and this is important

T T
a

c
i b

d
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T T

T T
T

T

T

T

T

T

T

…we get:

And                        is the number of ways to label the edges of the 
diagram so that each triple {i, j, k} appears incident to an even 
number of T’s. 
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SIDE REMARK

The tensor network formalism gives a visual way to understand
some subtleties

What if we flattened the tensor network differently?

For example, if M is the ({a,b}, {c,d})-flattening of

then plugging it into the six cycle we would get something different

T T
a

b
i c

d
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SIDE REMARK
…we get:

T T T TT T ……
Informal Claim: There are now many more labellings where each
triple is incident to an even number of T’s, because the graph is
only 1-connected

This trick first appears in [Coja-Oghlan, Goerdt, Lanka] to refute
random 3-SAT with n3/2 clauses

Tensor networks are a convenient way to think about this trick,
and others that appear in the sum-of-squares literature
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THE TRACE METHOD, WITH GROUPS
The particular labeling problem depends on the group structure

Key Observation: The tensor

is sparse in the fourier domain, because integrating over the
group action projects onto the span of degree three invariant
polynomials

In the fourier domain, T is supported on indices (i, j, k) where 

and this becomes a constraint in our labeling problem
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THE TRACE METHOD, WITH GROUPS

More generally, for any orbit recovery problem, its group
determines the combinatorics of the labeling problem

For more complex groups, can we find good tensor networks?

We understand how invariant theory governs the statistical
complexity of orbit recovery, but not how to get good algorithms!
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THE RING OF INVARIANT POLYNOMIALS

Definition: The ring of invariant polynomials consists of all
polynomials q that satisfy

Claim: For discrete MRA, the ring of invariant polynomials is 
generated by

and     is the fourier transform of x

, where

When s = 3, this is called the bispectrum and was introduced by
Tukey in a statistical context
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Invariant polynomials are the key to orbit recovery:

Theorem: If G is compact and acts continuously then for every x, 

the invariant ring determines x up to its orbit

The method of moments asks how many moments are needed

to uniquely determine the parameters (e.g. mixtures of gaussians)

It often leads to algorithms with optimal sample complexity

For orbit recovery, does invariant theory lead to optimal 

sample complexity?

There is a subtlety already for discrete MRA…
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GENERATING THE RING
Fact: In discrete MRA in d dimensions, the invariant polynomials
of degree at most d generate the invariant ring. Moreover lower
degree does not!

The problem is with worst-case signals x, and we should be asking
the same question for generic x

Theorem [Kakarala]: Provided that

for all

the bispectrum uniquely determines x up to cyclic shift

More generally, for what degree d* do the polynomials of 
degree at most d* generate the invariant ring for generic x?
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can be run for small enough dimension d

But they do not get algorithms (because they would need to solve
systems of polynomial equations to find a signal that is consistent
with the system of invariant polynomials)
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INVARIANT THEORY
Theorem [Blum-Smith, Bandeira, Kileel, Perry, Wein, Weed]:
In orbit recovery on a compact group G  

, where

the number of samples needed for list recovery generically is

Moreover, they gave computational methods to determine d* that
can be run for small enough dimension d

Our tensor network approach can be thought of as a first step
towards making this algorithmic! (We get optimal sample 
complexity for continuous MRA)
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