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Rich model for defining high-dimensional distributions in terms of
their dependence structure

e.g. an Ising model is a distribution on               with

interaction matrix external field

where Z is the partition function

Generalizations: larger alphabet (Potts model), higher-order 
interactions (Markov Random Field), directed (Bayesian network)
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Often helpful to look at their graph structure:

with

Key Property: Two nodes are independent when conditioned on
a separator – i.e. 

provided that all paths from       to        pass through

Can we learn graphical models from random samples?
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Classes of graphical models that can be efficiently learned:

[Chow, Liu ‘68]: Polynomial time algorithm on trees 

[Karger, Srebro ‘01]: Polynomial time algorithm on graphs
of bounded treewidth 

[Bresler ‘15]: Polynomial time algorithm on graphs of bounded
degree (doubly-exponential dependence on max degree)

Improved to singly-exponential in [Vuffray et al. ‘16] and 
[Klivans, Meka ‘17] 

[Bresler et al. ‘08], [Ravikumar et al. ‘10]: Better algorithms
when there are no long range correlations
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What if there are unobserved/latent variables?

Main question:

Allows variables to influence each other through unobserved
mechanisms

Scientific theories that explain data in a more parsimonious
way can be learned/tested



Popular model following Hinton: Restricted Boltzmann Machines

observed variables: 

latent variables: 



Popular model following Hinton: Restricted Boltzmann Machines

observed variables: 

latent variables: 

with joint distribution on                                    given by 

external fields



Popular model following Hinton: Restricted Boltzmann Machines

observed variables: 

latent variables: 

with joint distribution on                                    given by 

external fields

Used in feature extraction, collaborative filtering and are the
building block of deep belief networks
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observed variables: 

latent variables: 

with joint distribution on                                    given by 

external fields

Used in feature extraction, collaborative filtering and are the
building block of deep belief networks

Are there efficient algorithms for learning RBMs?
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Main Challenge: When you marginalize out a node it creates a
higher-order dependence among its neighbors

So what type of distribution is it?

In particular, the joint distribution is usually not an Ising model!
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Folklore Fact: The marginal distribution on X in an RBM where 
latent nodes have degree at most r is an order r MRF

Can we learn RBMs by learning the joint distribution on observed
nodes as an MRF?

Are there efficient algorithms for learning MRFs?

binary
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LEARNING MARKOV RANDOM FIELDS

[Bresler et al. ‘14], [Klivans, Meka ‘17]: Under standard hardness
assumptions, learning an order r MRF on n variables takes nΩ(r) time

learning a t-sparse parity with noise on n variables takes time nΩ(t) 

[Klivans, Meka ‘17], [Hamilton et al. ‘17]: There are nO(r) time 
algorithms for learning order r MRFs on n variables with bounded 
degree 

Unfortunately:

Even worse, the reduction produces bounded degree MRFs
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Main question (revised): Let d be the maximum degree

Can we learn RBMs in faster than nd time?

These algorithms are close to trivial, because we can always
brute-force search for the two-hop neighbors of a node in nd time2
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Surprisingly, marginalizing out nodes can produce any higher-
order interaction among their neighbors:

Theorem: Every binary Markov random field of order t can be
realized as the distribution on observed nodes of an RBM where
the maximum degree of any hidden node is at most t 

This precisely characterizes the representational power of 
bounded degree RBMs

Earlier work of [Martens et al. ‘13] showed that dense RBMs can
represent parity (more generally, any predicate depending on # 1s)
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OUR RESULTS: HARDNESS

As a result, we obtain hardness for improper learning:

Corollary: Under the sparse parity assumption, it is hard to learn
any representation of the distribution on observed nodes within
total variation distance 1/3 in no(d) time

Our reduction produces an RBM with a constant number of latent
nodes

Earlier work of [Bogdanov et al. ‘08] required a large number of
latent variables, one for each gate in a given circuit 

Here we allow the algorithm to output any unnormalized function
that can be efficiently computed
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Are there any natural and well-motivated families of RBMs that
can be efficiently learned?

Yes, if they are ferromagnetic – i.e. 

Historical Note: Ferromagneticity plays a key role in many classic
results in statistical physics and TCS

(1)  [Lee, Yang ‘52] complex zeros of the partition function
of a ferromagnetic Ising model lie on the imaginary axis 

(2)   Seminal work of [Jerrum and Sinclair ‘90] gives an efficient
algorithm for sampling from ferromagnetic Ising models 

In our context, it prevents hidden nodes from cancelling out
each other’s lower-order interactions
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OUR RESULTS: ALGORITHMS

Our main result:

Theorem: There is a greedy algorithm with running time f(d) n2

and sample complexity f(d) log n for learning ferromagnetic RBMs,
with upper and lower bounds on the interaction strength

Using results [Liu et al. ‘17] and the Lee-Yang Property, can also 
perform inference on the learned model

In particular, we output a description of the joint distribution on
observed nodes as an MRF

i.e. a PTAS for estimating the likelihood of any particular output

Everything generalizes to ferromagnetic Ising models with latent
variables, under conditions on diameter of latent nodes
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Key Definition: The discrete influence function at node i is

i.e. it is a function from subsets                           to the reals that
measures the induced bias 

Now submodularity comes to the rescue:

Theorem: Fix a ferromagnetic Ising model. Then for every i, the
discrete influence function is monotone and submodular

It turns out that the concavity of magnetization is analogous
to properties of the multilinear extension
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A HINT AT THE CONNECTION

Definition: The average magnetization is

Suppose J ≥ 0 the external field is H everywhere, then some
intuitive/classic results are known

(1) (2) for all H ≥ 0 

(2) is called concavity of magnetization, and follows from the 
famous Griffiths-Hurst-Sherman inequality and captures 
diminishing returns
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KEY IDEAS

Idea #1: Restricting to only the observed nodes, the discrete
influence function is still monotone and submodular

Idea #2: The maximizer ought to be the two hop neighbors of 
node i (or any set containing them)

e.g.

i

latent nodes

observed nodes

Because the two-hop neighbors separate i from all the other 
observed nodes
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QUANTITATIVE BOUNDS

We say that an Ising model is             -nondegenerate if

(1)

(2) for all i

We need these conditions to ensure the graph structure is

identifiable 

Key Lemma: If S does not contain the two-hop neighbors of i,

then there is a node j such that
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KEY IDEAS, CONTINUED

Theorem [Nemhauser et al. ‘78]: The greedy algorithm achieves a

factor approximation for maximizing a monotone 

submodular function subject to a cardinality constraint

Their analysis shows how fast gap to optimum value decreases,

also gives a bicriteria approximation algorithm

i.e. as we allow the algorithm to output larger size sets, the

approximation factor converges to 1

Idea #3: Run the greedy algorithm to learn a small superset of

the two-hop neighbors

Now, how can we maximize the discrete influence function?
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KEY IDEAS, CONTINUED

Finally when we have a small superset of the two-hop neighbors,
we can learn the induced MRF

The key is, each node no longer participates in nd possible
order d interactions, but rather at most f(d)
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Definition: The smooth influence function at node i is

where the expectation is taken when we set the external field to h

In particular                                 where h’ comes from setting the 
coordinates in S to +∞ in h

In retrospect, it is the multilinear extension of 
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THE GHS INEQUALITY

The Griffith-Hurst-Sherman inequality states

Their paper introduced a classic technique called the random 
current method

Each of these terms arises as a partial derivative of the log
partition function, and so does the smooth influence function
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Also Griffith’s inequality, which states

Griffith’s inequality

in turn implies
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monotonicity

How do these properties imply the discrete influence function
is monotone and submodular?

Essentially, by integrating

Proof:
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Fix               , let

Then we can compute

because and

Finally the right hand side is

submodularity

Proof: ,
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OPEN QUESTIONS

Can ferromagnetic RBMs be properly learned?

From the MRF on the observed nodes, we can recover a bounded

degree RBM but not necessarily a ferromagnetic one

Are there layer-wise learning algorithms for ferromagnetic DBNs? 

Alternatively, are there other natural classes of RBMs that admit

efficient learning algorithms?
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� Lower bounds for learning RBMs with constant 

number of latent variables
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