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In this talk, we will explore models for corruption that blend
worst-case and average-case analysis, in hopes of designing
more robust algorithms for classic problems in learning
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In 1984, Valiant introduced the PAC Learning Model:

(1) Given samples (X, Y) where the distribution on X is arbitrary
and Y is a label that is +1 or -1

(2) Assume Y = h(X) for some unknown hypothesis h that is in a
known class H

Goal: Estimate h approximately

e.g. the class of halfspaces

Probably Approximately Correct

+ +
+ -

- -
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MODELS FOR NOISE

Agnostic Noise: No assumption about the structure of the noise,
still want to find approximately best agreement in the class 

What if there is no simple hypothesis that fits the data exactly?

Standard frameworks:

Unfortunately, agnostic learning is generally hard without further
assumptions!

[Kalai et al.], [Awasthi, Balcan, Long], [Daniely]
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Are there challenging noise models where we can learn without 
making distributional assumptions on X?

Massart Noise: The label of each point x is flipped independently
with some probability

In this talk, we’ll be interested in:

Interpretation #1: Each label is flipped independently with prob.
but an adversary can choose to unflip it 

Interpretation #2 (sort of): An adversary can arbitrarily control a
random fraction of the data 

Are there distribution-independent algorithms for learning with
Massart noise?
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PRIOR WORK
Theorem [Diakonikolas, Goulekakis, Tzamos ‘19]: There is a 
polynomial time algorithm for improperly learning halfspaces
under Massart noise with error

The algorithm outputs a partition of space into a polynomial
number of regions, with a different halfspace on each

Is there a proper learning algorithm?
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OUR RESULTS
Theorem: There is a polynomial time algorithm for properly
learning halfspaces under Massart noise with error

We give a general framework based on zero-sum games

Theorem: There is a polynomial time algorithm for learning 
generalized linear models under Massart noise

i.e

link function: monotone, Lipschitz

In particular, this includes noisy logistic regression as a special case
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REVIEW: CONVEX SURROGATES

Proposition: The expected Leaky ReLU loss is convex and if you 
set λ appropriately, any minimum gets optimal error under RCN

Leaky ReLU (λ)
0/1 Loss

How can we tolerate varying noise rates?

For RCN, a natural approach is to use the Leaky ReLU…
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A GENERAL FRAMEWORK

Claim: The optimal solution for the min-player is w*

Unfortunately, optimizing over the max-players strategies is both 
statistically and computationally hard

Intuition: The true hypothesis does well on any region of space,
and the max-player looks for a region where the min-player is
doing the worst

Consider the following two-player game

Leaky ReLU

min max
c

where c ranges over all reweightings
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Instead we work with a relaxation where the max-player can only
restrict the distribution to slabs along the current w

min max
r > 0

We show that any approximate equilibrium in this game necessarily
corresponds to a hypothesis with low error
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How do we find an approximate equilibrium?

� Initialize w to a vector in the unit ball
� Repeat 

� Max-Player finds the slab                  that maximizes
the loss                . If the loss is       then return w  

� Min-Player takes a step in the direction        where

and projects back into the unit ball

Main Theorem: Converges in a polynomial number of iterations 
and provably solves the Massart learning problem
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EXPERIMENTS

When is this noise model useful?

UCI Adults Dataset: 48.8k individuals, 14 attributes, goal is to 
predict whether income is above or below $50k

We added noise outside a target group, and ran off-the-shelf
algorithms whose goal is to maximize overall accuracy

We measure overall accuracy and accuracy on the part of the 
target group that is above $50k

Motivation: Numerous empirical studies about how the level of
noise various across demographic groups e.g. in surveys
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EXPERIMENTS
Target group: Female

Many natural algorithms (e.g. logistic) amplify bias in the data

Is ours more fair because it can tolerate heterogenous noise?
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ONLINE LINEAR REGRESSION
Goal: Solve a sequence of linear prediction problems

In each time step, we

(1) Observe a covariate

Classic Solution: Online Gradient Descent, see e.g. [Hazan, ‘19]

additive noisetrue regressor

(2)   Predict the response

and incur loss based on the squared error
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MODELS FOR NOISE

Definition: In the Huber Contamination Model, a random 
fraction of the responses are arbitrarily corrupted

What if some of the responses are corrupted?
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ROBUSTNESS GUARANTEES
Proposition [folklore]: Online gradient descent achieves

clean average mean squared error

error on uncorrupted responses

This can be quite far from optimal

Lower Bound: CAMSE must be at least 

variance of stochastic noise

of                 , where                        and 
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CORRUPTIONS AND THE DYNAMIC RANGE
Easy Case: The range2 and variance are on the same order

The cone of lines achieving nearly optimal CAMSE is wide,
and corruptions cannot mess things up too much!

w*

w
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CORRUPTIONS AND THE DYNAMIC RANGE
Hard Case: The range2 is much larger than the variance 

w*

w

The cone of lines achieving nearly optimal CAMSE is narrow,
and corruptions can mess things up badly
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OUR RESULTS
Theorem: There is a simple and practical algorithm that achieves
CAMSE                  for online linear regression with Huber 
contamination

Our algorithm is a simple twist on least trimmed squares
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NOTES
Classic heuristics, like Huber regression provably fail

locally quadratic,
eventually linear

Many works in stronger contamination models, but work in
offline setting and make distributional assumptions

[Klivans, Kothari, Meka], [Prasad et al.], [Diakonikolas et al.],
[Bakshi, Prasad], [Zhu et al.], [Cherapnamjeri et al.], …
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LEAST TRIMMED SQUARES, REVISITED

In 1984, Rousseeuw introduced a powerful methodology

� Initialize S to be the set of all points

� Repeat
� Set      to be the output of running ordinary least 
squares on S

� Set S to be points with smallest residuals under

Our twist: Set

where     is the set of all subsets whose covariance is approx.
the same as covariance of all points



ONLINE SETTING
Finally, we can build an online algorithm from the offline one
using cutting planes methods
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SYNTHETIC EXPERIMENTS

Set N = 10000, d = 500, R = 1, σ = 0.1 and true regressor

And to model rare, but predictive features set

approximately 0, with probability 0.8

, with probability 0.1

, else

Adversary: Zero out a random fraction of the responses



SYNTHETIC EXPERIMENTS
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LINEAR CONTEXTUAL BANDITS

Goal: Use available information to make better decisions

In each round, we

(1) Observe a context , which is a collection of 

high-dimensional vectors

(2)  Play an action and incur loss

Note: Can extend to infinite dimensional spaces, using kernels

What about sequential decision making?
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E-commerce: Selecting ads to display, based on user history
e.g. [Abe, Nakamura]

Collaborative Filtering: Personalizing news recommendations
e.g. [Li, Chu, Langford, Schapire]

Mobile Health: Just-in-time interventions to modify behavior,
adapted to the user e.g. [Nahum-Shani et al.]

Many applications:

rewardaction

(581 steps)
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Can we learn good policies in spite of corrupted responses?

Thus we get new algorithms for linear contextual bandits that are 
provably resistant to adversarial corruptions

e.g. bots clicking on ads, to manipulate prices

e.g. connectivity issues in mobile health

e.g. using proxy variables instead of the actual losses

Yes! Standard approach uses linear regression as a subroutine 

make accurate predictions
about the loss of an action

choose a 
good action

[Foster, Rakhlin]
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CONCLUDING REMARKS

It’s not just about handling more powerful adversaries, but also
finding the right compromises that avoid computational hardness

Robustness is a spectrum

Are there real-world applications where provably robust 
estimators can replace their non-robust counterparts?



Any Questions?

Thanks! 


