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TRADE SECRETS

Inner-workings of proprietary language models are often kept 
highly confidential

e.g. architecture, computing resources, dataset construction,
        training methodology, etc 

Are models with API access actually secure?

Is it possible to learn about their parameters, training data or
duplicate aspects of their functionality?
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TRADE SECRETS

Easy to learn facts stored within them

Does being given API access to someone else’s model provably
make it easier for you to learn your own?
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IN THE NEWS

The DeepSeek R1 model sent shockwaves through the tech world

Can be trained at a fraction of the cost…

…though likely by violating OpenAI’s terms of service
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MAIN QUESTION (INFORMAL)

Not much known about model stealing from a theory perspective

Are there algorithms with provable guarantees for 
stealing interesting families of language models?

Difficult to prove bounds for modern language models, with all
their bells and whistles

Can studying simplified models lead to new algorithmic 
approaches?
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DISCLAIMER

Model stealing is also useful for distillation

Is there a more compact model that’s nearly as good? 

If so, would be easier to store, cheaper to perform inference with
and sometimes more interpretable
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HIDDEN MARKOV MODELS

Definition (informal): A Hidden Markov Model (HMM) is

(1) A Markov chain defined on a hidden state space

(2) A sequence of observations that only depends on 
the current hidden state

In some sense, the original language model dating back to Claude
Shannon’s work in 1951 



HIDDEN MARKOV MODELS

Graphically:

initial distribution

x1

Ri,j

Oi

transition matrices

observation 
matrices

…
x2 x3

y1 y2 y3
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HIDDEN MARKOV MODELS

What’s known about learning HMMs?

Theorem [Mossel, Roch]: If the transition and observation
matrices have full rank, there is a polynomial time algorithm to
learning HMMs from random samples

Unfortunately, not all HMMs can be learned:

Proposition [Mossel, Roch]: Learning general HMMs is as hard as
solving the noisy parity learning problem

Can we learn all HMMs from query access?



CONDITIONAL QUERIES

Definition [Kakade et al]: Given any prompt 

the model replies with a sample from the condition distribution
on completions



CONDITIONAL QUERIES

Definition [Kakade et al]: Given any prompt 

the model replies with a sample from the condition distribution
on completions

Note: Learning HMMs from conditional queries would generalize 
Angluin’s classic algorithm for learning DFAs from queries
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LOW RANK LANGUAGE MODELS

More generally can study language models where

history up to timestep t

future from
t+1 to end

If for every t, Mt has low rank (polynomially bounded)
then we say the language model is low rank

Mt =
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LOW RANK LANGUAGE MODELS

Claim: Any HMM on a state space of size S has rank at most S

Proof: Each matrix Mt factorizes through the hidden
state space 

=Mt
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PRIOR WORK

Theorem [Kakade et al.]: There is a polynomial time algorithm
for learning “high fidelity” HMMs and low rank LMs from 
conditional queries

Requires some background to define fidelity, but essentially 
stipulates existence of spectrally well-behaved bases
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OUR RESULTS (FORMAL)

Theorem [Liu, Moitra]: For any LM with

(1) An alphabet of size A

(2) Horizon at most H

(3) and Rank at most S

There is an algorithm that makes at most

conditional queries and outputs the description of an efficiently
samplable distribution that is ε-close in TV distance to the true LM
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A FIRST STEP

Caution: For low rank language models, it’s not even clear
if model stealing is information theoretically possible



A FIRST STEP

The matrices Mt have exponentially many rows and columns

Mt =

all histories

al
l f

u
tu

re
s



A FIRST STEP

Why even can we describe a low rank LM with a polynomial 
number of parameters? 

The matrices Mt have exponentially many rows and columns

Mt =

all histories

al
l f

u
tu

re
s



A FIRST STEP

Why even can we describe a low rank LM with a polynomial 
number of parameters? 

The matrices Mt have exponentially many rows and columns

Mt =

all histories

al
l f

u
tu

re
s

Need to exploit
relations between
Mt and Mt+1 etc
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BARYCENTRIC SPANNERS

Given a set Ω of vectors in an S-dimensional space how can we 
find a representative set?

Think of these vectors as columns of Mt – i.e. encoding the
distribution on possible futures, given the history
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BARYCENTRIC SPANNERS

Definition: Given a set Ω of vectors, we say that x1, x2, …, xS is a
C-approximate barycentric spanner if for any x in Ω we can write

with each | λ i| ≤ C

Proposition [Awerbuch, Kleinberg]: For any C ≥ 1  they exist and
for C > 1 can be efficiently found given an oracle for optimizing 
linear functions over Ω 

Many applications in online learning and RL – can we use them
to parameterize low rank LMs?
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USING BARYCENTRIC SPANNERS

Suppose we’ve computed a barycentric spanner for each timestep
t – i.e. a representative set of histories

How do we use these barycentric spanners to make predictions?

In principle for any history x, we can use the expression

to compute x’s distribution on futures too

But how do we get these coefficients??



TRACKING THE COEFFICIENTS

Main problem: Even if we know the coefficients               and we

can sample the next token from the correct distribution              …



TRACKING THE COEFFICIENTS

Main problem: Even if we know the coefficients               and we

can sample the next token from the correct distribution
how do we get the new coefficients? 
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TRACKING THE COEFFICIENTS

Claim (informal): Can use Bayes rule to compute new coefficients

First for any future f whose t+1st  token is o we have

Can compute a change of basis to express 
these in terms of t+1st barycentric spanner

Returning to our earlier expression we now have



And now using this expression

we can compute the next token probabilities if we know them
for each of the histories in the t+1st barycentric spanner
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IDEALIZED BLUEPRINT

Ignoring for now major statistical and algorithmic complications:

For each timestep t we compute a barycentric spanner 
of the columns of Mt

While sampling a trajectory, track how the representation
evolves

Hence we can describe a low rank language model exactly with
a polynomial number of parameters (barycentric spanners, their
next token probabilities, changes of basis) 
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CHALLENGES

How can we compute barycentric spanners with only sampling
access to the vectors?

When there are errors in the coefficients, how can we prevent
the error from blowing up with the length of the sequence?
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SKETCHING NORMS

Can we construct vectors of polynomial dimension that can act
as a surrogate for the columns of Mt?
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SKETCHING NORMS

Definition: Given a collection of histories     of length t, we say
that a set of vectors

is 𝛾-representative if for all coefficients |ch|≤ 1 we have

A barycentric spanner for one is automatically 
an approximate barycentric spanner for the other
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SKETCHING NORMS

But how do we construct representative vectors?

Claim: For any distribution      on futures, consider

where each fi is drawn iid from     . Then in expectation ℓ1-norms 
will be correct

And with a careful choice of      can get concentration bounds too 
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SKETCHING NORMS

Still need to deal with the fact that there are exponentially many
histories we care about

Claim (informal): With high probability a random collection of
a polynomial number of histories contains a barycentric spanner
that covers most histories
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COMPOUNDING ERRORS

When there is sampling error we can only approximate the 
coefficients

sampling
noise

Main Problem: Estimation error can compound multiplicatively
with each step

Even though the true coefficients should be bounded (by the
barycentric spanner property) the estimates might not be
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AN ABSTRACTION

We know that the true vector                     is in the set

And our estimate is

Goal: Map w to a point               and guarantee 

i.e. our statistical error has not increased, even though we don’t
know what z is



AN ABSTRACTION

But this is impossible, can only guarantee 

by the triangle inequality, and this is tight for the ℓ1-projection
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TAMING THE BLOWUP

Solution: Project according to the KL divergence instead

Fact: If we let                                                 then 

i.e. projecting in KL divergence decreases the distance from all
other points in the set

Now need sketches to preserve (truncated) KL as opposed to 
ℓ1-distances, but this can be done
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NEXT STEPS?

Sometimes can approximate language models as low rank when
working with log probabilities

For N = 10000 sample histories hi and futures fj that are 32 tokens
each and construct induced matrix Mt for TinyStories
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NEXT STEPS?

Plots of the singular values, appropriately scaled

If you can write histories as linear combinations of other histories,
what can you do with it? Reminiscent of word embeddings
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Summary:

  Provable algorithms for learning any low-rank 
        language model via conditional queries

  New techniques for constructing barycentric
       spanners on implicit representations, and taming
       error build up

Thanks! Any Questions?
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