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Plan for Part II

1. What can transformers do?

2. Overview of some theoretical perspectives
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1. What can transformers do?
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TRANSFORMERS

Transforms sequence of N tokens to sequence of N vectors
by composing several sequence-to-sequence maps

it is a truth …
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SINGLE QUERY ATTENTION

Given a query q, and keys and values for previous words compute

where

weighted average of 
other values

weights are given 
by softmax

[the] [quick] [brown] [dog]…

𝑣…

Input

Output



ATTENTION PATTERNS

1. Query aligns with only a few keys
→ sparse weighted average of values

2. Query equally (mis)aligned with all previous keys
→ uniform average all previous values

How might these patterns arise?
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EXAMPLE: POSITIONAL PATTERN

Query aligns only with previous token's key

𝑥1 𝑥𝑁−1𝑥𝑁−2 𝑥𝑁…

𝑦𝑁…
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(Recall: input vectors = word embeddings + positional embeddings)

Input

Output



EXAMPLE: SKIP-GRAM PATTERN

Query for "\" token aligns with key of "left"

[\] [left] [(] [\]…

[right]…
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Training identifies "skip-grams"---e.g., ("left", "\")---that help predict next token

Input

Output

[Elhage et al, 2021]



EXAMPLE: AGGREGATION PATTERN

Query for "." (period) token aligns with keys of all previous tokens

[.]…

𝑦…

What information gets passed up the layers?

Limited "size" of embedding 
prevents entire input from 

accumulating in a single token
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Input

Output



EXAMPLE: INDUCTION HEADS

[Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):
[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive] 
[,] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,] 
[thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you] 
['d] [expect] [to] [be] [involved] [in] [anything] [strange] [or] 
[mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such] 
[nonsense] [.] [Mr] [Durs]

10
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INDUCTION HEADS ABSTRACTION

[Elhage et al, 2021; Olsson et al, 2022]

Induction head: abstraction of a salient sub-circuit found in LLMs

• 𝑖th output: Find latest time 𝑗 < 𝑖 that 𝑥𝑖 occurs, output 𝑥𝑗+1

[A] [B] [A]……

[B]……

Position 𝑗 Position 𝑗 + 1 Position 𝑖
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Input

Output



INDUCTION HEADS IMPLEMENTATION

Composition of two self-attention heads

Layer 1: move prev. token's
key (+ use "skip connection")

(…,A) (A,B) (…,A)……

Layer 2: find ⟨𝑘, 𝑞⟩ match

[B]……

Input to induction head[A] [B] [A]……
Position 𝑗 Position 𝑗 + 1 Position 𝑖
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Notation: (KEY, QUERY/VALUE)



IN-CONTEXT LEARNING [Brown et al, 2020]

14[Figure from Xie and Min, 2022]



IN-CONTEXT LEARNING VIA INDUCTION HEADS

Prompt:

The mother of Charlotte is Eve. The mother of John is Helen. […] Who is John's mother?

Sequence after some processing by a few transformer layers (perhaps):

… [Charlotte] [Eve] … [John] [Helen] … [John]

"In-context learning" / "meta-learning" / nearest neighbor prediction
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E.g., in-context learning n-gram models: [Edelman, Edelman, Goel, Malach, Tsilivis, 2024]

Also Tengyu's talk this afternoon



FUNCTION COMPOSITION

[Peng, Narayanan, Papadimitriou, 2024; Sanford, Hsu, Telgarsky, 2024]

Prompt:

Jane is a teacher. Helen is a doctor. […] The mother of Charlotte is Eve. The mother of John 
is Helen. […] What is the profession of John's mother?

Function composition = iterated induction head
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What are the key primitives in LLMs, and how are they put together?



2. Some theoretical perspectives

17



SOME (MORE) THEORETICAL PERSPECTIVES

• Transformer as a formal model of computation

• Learning and Chain-of-Thought

• Prediction vs generation

• Associative memories
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TRANSFORMER AS FORMAL MODEL OF COMPUTATION

[Liu, Ash, Goel, Krishnamurthy, Zhang, 2023; Merrill & Sabharwal, 2023; Strobl, 2023]

• 𝑂(1)-layer poly(𝑁)-size transformers ⊆ (Uniform) TC0

• Implications: e.g., cannot simulate all finite automata (unless TC0=NC1)

[Hahn, 2020; Hao, Angluin, Frank, 2022; Angluin, Chiang, Yang, 2023; …]

• Restrictions on "softmax" and/or masking further limit expressivity
[Sanford, Hsu, Telgarsky, 2024]

• Simulation of/by Massively Parallel Computation algorithms
• Lower bounds for induction heads and other primitives

What abstraction is relevant for transformers at practical scales?
19



LEARNING IN PRACTICE

• Transformer maps context (e.g., "the quick brown fox jumped over the lazy") 
to vector ℎ, which is used in a log-linear model 𝑃𝜃 next word ℎ

• Training: Tune parameters 𝜃 = ((Q, K, V) matrices, feedforward nets, 
…, log-linear model) to minimize cross-entropy on training data

෍

𝑡=1

𝑇

− log 𝑃𝜃 word 𝑡 previous 𝑡 − 1 words

• Equivalent:
• Maximize likelihood of 𝜃 given data

• Minimize relative entropy of empirical frequencies w.r.t. 𝑃𝜃
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May truncate to 
last 𝑁 words



LEARNING IN THEORY

[Edelman, Goel, Kakade, Zhang, 2022]

• If I manage to find an 𝐿-layer transformer with low training error, will 
its test error also be low?

• Probably YES if:
• Training/test data are i.i.d. from same distribution over length-𝑁 sequences);

• Token embeddings are computed by "nice" functions and are not too "large";

• Training data size ≳ exp 𝐿 log(𝑁)

[Chen, Li, 2024; Oymak, Rawat, Soltanolkotabi, Thrampoulidis, 2023; Nichani, Damian, Lee, 2024; …]

• Can I efficiently find a low error transformer? With gradient descent?

21

Relevant notion of generalization for LLMs?



CHAIN-OF-THOUGHT (CoT)

22[Figure from Wei et al, 2022]

[Wei, Wang, Schuurmans, Bosma, Xia, Chi, Le, Zhou, 2022; Kojima, Gu, Reid, Matsuo, Iwasawa, 2022; …]



BENEFITS OF CoT

1. Extra "work space" to compute prediction [Merrill & Sabharwal, 2024; …]

2. Extra "worked steps" available during training
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Labeled training example with worked steps:

Traditional labeled training example:



DOES CoT MAKE LEARNING EASIER?

Hard PAC learning problems (e.g., decision trees, DNFs, circuits) 
become easy with extra "worked steps" / "clues" during training
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[Sloan & Rivest, 1988; Malach, 2023] Values of all gates in circuit

[Dvir, Rao, Wigderson, Yehudayoff, 2012] Randomly restricted access to circuit

Extra "worked steps" / "clues"

Where do these "worked steps" come from?



GOALS OF LANGUAGE MODELING

Two roles of a language model ෠𝑃:

1. Prediction (what comes next?)

2. Generation (write new sentences)
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arg max
next word

෠𝑃 next word context

next word ∼ ෠𝑃 ⋅ context



PREDICTION VS GENERATION

[Kalai and Vempala, 2024]

Even in an "idealized" setting: for any trained language model ෠𝑃,

Hallucination rate ≥ ෢MF − miscalibration −
300 Facts

Possible hallucinations
−

7

𝑛

26

Number of facts seen only once in training / n
≈ "missing mass" of facts not seen in training



ASSOCIATIVE MEMORIES

[Hopfield, 1982]

• Hopfield network: Each of 𝑑 neurons is connected to all others

• State of neurons: 𝑥1, … , 𝑥𝑑 ∈ −1,1 𝑑

• How many (random) binary patterns can such a network memorize?



MODERN HOPFIELD NETWORKS

• Hopfield networks: 𝑑 neurons can memorize 𝑛 ∼ 𝑑 binary patterns

• "Modern" Hopfield networks: 𝑛 ∼ exp Ω(𝑑)  [Demircigil et al, 2017; 
Ramsauer et al, 2021; Krotov & Hopfield, 2016, 2021]

• One-step dynamics equivalent to self-attention mechanism in transformers

• Continuous dynamics [Geshkovski, Letrouit, Polyanskiy, Rigollet, 2023]:
related to interacting particle systems and models of opinion dynamics

[Figures from Krotov & Hopfield, 2021]

Implications for capabilities of transformers?
28



CLOSING

This tutorial:
+ How do transformers work?
+ Some theoretical perspectives

Open question: Which ingredients are essential?

29

Thank you! Any questions?
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