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Definition
A graph H = (K, Ey) on just the terminal set is a Flow-Sparsifier if for all
demands f € (%)

congH(F) < congg( £ )

Definition
A flow-sparsifier H has quality « if additionally for all demands fe (2)

conge(F) < acongn(F)

Quality measures how faithfully H approximates G as a communication network
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terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K, Ey).

This improves to O(1) if G is planar (or excludes any fixed minor)

Theorem

There is a polynomial (in n and k) time algorithm to compute a
O(Iog2 k/ log log k)-quality flow-sparsifier
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[M, 09]: There is a graph H = (K, En) so that the cut-function of H
approximates minimum cuts in G (separating subsets of terminals)

We will refer to this as Cut Sparsification

Flow Sparsification is harder than Cut Sparsification
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Theorem

There is an infinite family of graphs and sets of terminals for which any
flow-sparsifier has quality Q(log log k)

Motivation for vertex sparsification: obtain approximation algorithms with
guarantees independent of n

Approximation algorithms that reduce to a k-terminal graph must lose a
super-constant factor in the approximation guarantee
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Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

The quality is atleast equal to congg(FH)
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Recent Work

Recent work on both upper bounds and lower bounds

@ |[Englert, Gupta, Krauthgamer, Raecke, Talgam, Talwar]
@ [Makarychev, Makarychev]
@ [Charikar, Leighton, Li, M]

.. super-constant lower bounds for cut sparsification, and constructive results
that match our existential results
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Open Questions

Question

Can the approximation for 0-extension be improved?

Question

What if the semi-metric is {17

(immediately implies improvements to cut-sparsification)

Question

Is flow-sparsification easier than the 0-extension problem?
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