Extensions and Limits to Vertex
Sparsification

Ankur Moitra, MIT

joint work with Tom Leighton

June 5, 2010

Flow Sparsification

G=(V,E)

«O0)>r «F»r «=>»

« =

>

Flow Sparsification

G=(V,E)

Or» «F»r «=»

« =

>

Flow Sparsification

G=(V,E)

K={a,b,c,d}

Flow Sparsification

G=(V,E) H

K: {a’ b’ C’ d}

Flow Sparsification

G=(V,E) H=(X, Ey)

K={a,b,c,d}

Multicommodity Flow and Congestion

Multicommodity Flow and Congestion

Multicommodity Flow and Congestion

Multicommodity Flow and Congestion

a«——b
a——C
a——d
b—c
b—d
c—d

Multicommodity Flow and Congestion

a«——b
a——C
a——d
b—c
b—d
c—d

Multicommodity Flow and Congestion

a«——b
a——C
a——d
b—c
b—d
c—d

Multicommodity Flow and Congestion

O O NOO‘

a«——b
a——C
a——d
b—c
b—d
c—d

Multicommodity Flow and Congestion

cong(routing) =

max

€

flow(e)

capacity(e)

a«——b
a——C
a——d
b—c
b—d
c—d

Multicommodity Flow and Congestion

con%ﬁ: min max

routings

€

flow(e)

capacity(e)

a«——b
a——C
a——d
b—c
b—d
c—d

Flow Sparsification

G=(V,E) H=(X, Ey)

K={a,b,c,d}

Definition
A graph H = (K, Ey) on just the terminal set is a Flow-Sparsifier if for all
demands f € (%)

congH(F) < congg(£)

Definition
A graph H = (K, Ey) on just the terminal set is a Flow-Sparsifier if for all
demands f € (%)

congH(F) < congg(£)

Definition
A flow-sparsifier H has quality « if additionally for all demands fe 5}%(‘2()

cong(f) < acong(f)

Definition
A graph H = (K, Ey) on just the terminal set is a Flow-Sparsifier if for all
demands f € (%)

congH(F) < congg(£)

Definition
A flow-sparsifier H has quality « if additionally for all demands fe (2)

conge(F) < acongn(F)

Quality measures how faithfully H approximates G as a communication network

Our Results |

Theorem

For any undirected, capacitated graph G = (V, E) and any set K C V of k
terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K, Ey).

Our Results |

Theorem

For any undirected, capacitated graph G = (V, E) and any set K C V of k
terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K, Ey).

This improves to O(1) if G is planar (or excludes any fixed minor)

Our Results |

Theorem

For any undirected, capacitated graph G = (V, E) and any set K C V of k
terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K, Ey).

This improves to O(1) if G is planar (or excludes any fixed minor)

Theorem

There is a polynomial (in n and k) time algorithm to compute a
O(Iog2 k/ log log k)-quality flow-sparsifier

Previous Results

[M, 09]: There is a graph H = (K, En) so that the cut-function of H
approximates minimum cuts in G (separating subsets of terminals)

Previous Results

[M, 09]: There is a graph H = (K, En) so that the cut-function of H
approximates minimum cuts in G (separating subsets of terminals)

We will refer to this as Cut Sparsification

Previous Results

[M, 09]: There is a graph H = (K, En) so that the cut-function of H
approximates minimum cuts in G (separating subsets of terminals)

We will refer to this as Cut Sparsification

Flow Sparsification is harder than Cut Sparsification

Our Results |

Theorem

For any undirected, capacitated graph G = (V, E) and any set K C V of k
terminals, there is an O(log k/ log log k)-quality flow-sparsifier H = (K, Ey).

This improves to O(1) if G is planar (or excludes any fixed minor)

Theorem

There is a polynomial (in n and k) time algorithm to compute a
O(Iog2 k/ log log k)-quality flow-sparsifier

Our Results 11

Theorem

There is an infinite family of graphs and sets of terminals for which any
flow-sparsifier has quality Q(log log k)

Our Results 11

Theorem

There is an infinite family of graphs and sets of terminals for which any
flow-sparsifier has quality Q(log log k)

Motivation for vertex sparsification: obtain approximation algorithms with
guarantees independent of n

Our Results 11

Theorem

There is an infinite family of graphs and sets of terminals for which any
flow-sparsifier has quality Q(log log k)

Motivation for vertex sparsification: obtain approximation algorithms with
guarantees independent of n

Approximation algorithms that reduce to a k-terminal graph must lose a
super-constant factor in the approximation guarantee

Outline

Outline

@ Alternate Definition of Quality

Outline

@ Alternate Definition of Quality

@ Geometric Interpretation of Vertex Sparsification

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification

@ Lower Bound for Flow Sparsification

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Computing Quality

Suppose we are given a flow-sparsifier H

Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

Computing Quality

A

Computing Quality

G

Computing Quality

G cu(ab) |
H

cy(a,c)

1@——® T | enad)

béo d cu(b.c)

CH(b’d)

cy(c,d)

Computing Quality

u cy(a,b)
cy(a,c)

1@—>0 ¢ T | enad)
b‘é. d cu(b,c)
cy(b,d)

cy(c,d)

Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

The quality is at least congg(fis)

Computing Quality

Computing Quality

S OO OO

Computing Quality

S OO OO

Computing Quality

S OO OO

Computing Quality

S OO OO

Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

The quality is at least congg(fis)

Computing Quality

Suppose we are given a flow-sparsifier H

Question

Can we compute the quality of H?

The quality is atleast equal to congg(FH)

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

R

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

Geometry of Flow Sparsification

A PGz{?I congG(?L< 1}

What About Cut Sparsification?

>

What About Cut Sparsification?

>

What About Cut Sparsification?

What About Cut Sparsification?

>

What About Cut Sparsification?

>

What About Cut Sparsification?

>

What About Cut Sparsification?

>

What About Cut Sparsification?

o M, 009] \
~ \
. @ f |
N
-~ \
N \
e T \
~~a_
~ S ~a o \
~ e T
. ~ -~
. ~ \ ~ -
[this paper] @ fH S \
~ \
~
~ Y
e \
~
~ Y
AN
L}
W

What About Cut Sparsification?

\
~ B \
<~ [M,’09] \
~ \
. ® T :
F -~ [max concurrent flow] ‘
S
-~ \
-~
~ S~ Y
~ ~<o
— So v oS- o
[this paper] @ fH S \
S 1
~
~ Y
AN \
~
IO}
\\\
‘\
\ ..
\ ~
A}

What About Cut Sparsification?

What About Cut Sparsification?

A
_______ A mm———
M.°09] o
eneralized sparsest cut
® i lized
C
A
N
A
N
A
A
A
— ~
L .
[this paper] @ fH .
A
A Y
Y
~
N
A

What About Cut Sparsification?

>

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Outline

@ Alternate Definition of Quality
@ Geometric Interpretation of Vertex Sparsification
@ Lower Bound for Flow Sparsification

@ Open Questions

Proving Lower Bounds on Expanders

>

Proving Lower Bounds on Expanders

>

Proving Lower Bounds on Expanders

The Graph

G
high—girth, expander

The Graph

G
high—girth, expander

__/c<
a *V.d

x = omega(l)

The Graph

G
high—girth, expander

b c

N
a ?\v_ﬁ

x = omega(l)

The Graph

G
high—girth, expander

a 3\\7&
Ve

x = omega(l)

The Graph

G
high—girth, expander

a ?‘T'li
Vo

x = omega(l)

a

a

5]

The Graph

G
high—girth, expander

a ?‘T.li
Vo

x = omega(l)

G
oo oo
[¢ c, G G
oo oo oo 0o
b b b b d d & d
000
a a; a a3

The Graph

G
high—girth, expander

a *.v dz

x = omega(l)

oo oo
c c ¢ C
oo oo
b\ b; d d & 4
a a a &

The Graph

G
high—girth, expander

a 1
B =
Vo

x = omega(l)

A Thought Experiment

G

high—girth, expander

vV a

X=0mega(l)
Ho o
P

A Thought Experiment

G
high—girth, expander

a ?‘T.li
Vo

x = omega(l)

,

\

) \
\
| 29 |
y [) i
,

S . ’

A Thought Experiment

G

high—girth, expander

vV a

X=0mega(l)
Ho o
P

A Thought Experiment

G
high—girth, expander

a ?‘T.li
Vo

x = omega(l)

H -
N
R \
\
N 7? ‘;
\\\ ‘. /’
))

A Thought Experiment

G
high—girth, expander

a ?‘T.li
Vo

x = omega(l)

,

\

) \
\
| 29 |
y [) i
,

S . ’

A Thought Experiment

G
high—girth, expander

a W
Vo

x = omega(l)

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

A Thought Experiment

G

high—girth, expander

P
13
1
‘ ?‘T.T
vV
x = omega(l)
) /’1_>4V> 7777777777 —;—;\\‘ OnaVerage:
/@ \

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

H s on average:
e ° AN send a unit flow to x terminals

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

on average:
send a unit flow to x terminals

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

on average:
send a unit flow to x terminals

\| using short paths

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

H s on average:
e ° AN send a unit flow to x terminals

\, 99 \ | using short paths

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

H ee--TTTTTTTTTTTT STl on average:
. send a unit flow to x terminals

\| using short paths

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

H ee--TTTTTTTTTTTT STl on average:
. send a unit flow to x terminals

using short paths

A Thought Experiment

G
high—girth, expander

a ?\k
Vo

x = omega(l)

on average:
send a unit flow to x terminals

using short paths

reaching only local terminals

Girth-Routed Edges

[m] = = = = >

Girth-Routed Edges

[m] = = = = >

Girth-Routed Edges

[m] = = = = >

Girth-Routed Edges

Girth-Routed Edges

not too many edges can be routed on girth paths

Girth-Routed Edges

not too many edges can be routed on girth paths

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

A Reduction to Cut-Width

Recent Work

Recent work on both upper bounds and lower bounds

Recent Work

Recent work on both upper bounds and lower bounds

@ |[Englert, Gupta, Krauthgamer, Raecke, Talgam, Talwar]
@ [Makarychev, Makarychev]
@ [Charikar, Leighton, Li, M]

Recent Work

Recent work on both upper bounds and lower bounds

@ |[Englert, Gupta, Krauthgamer, Raecke, Talgam, Talwar]
@ [Makarychev, Makarychev]
@ [Charikar, Leighton, Li, M]

.. super-constant lower bounds for cut sparsification, and constructive results
that match our existential results

Open Questions

Question

Can the approximation for 0-extension be improved?

Open Questions

Question

Can the approximation for 0-extension be improved?

Question

What if the semi-metric is {17

(immediately implies improvements to cut-sparsification)

Open Questions

Question

Can the approximation for 0-extension be improved?

Question

What if the semi-metric is {17

(immediately implies improvements to cut-sparsification)

Question

Is flow-sparsification easier than the 0-extension problem?

Questions?

Thanks!

	Introduction
	Computing Quality
	Proving Lower Bounds
	Thanks!

