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How to Use a Vertex Sparsifier

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a
graph with only 4 nodes!

Applications of Vertex Sparsification:

Save SPACE (store a much smaller network)

Save TIME (run algorithms on a much smaller network)

UNIFIES many rounding algorithms for graph partitioning
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What to Preserve, and How Well?

Question

Can we find a communication network on just the terminals, so
that minimum congestion routing is approximately preserved?

i.e. for all routing requests ~f , congG (~f ) ≈ congH(~f )

Quality:
(

max~f
congG (~f )

congH(~f )

)(
max~f

congH(~f )

congG (~f )

)
Question

Should good quality vertex sparsifiers exist?
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Results (Good Vertex Sparsifiers Exist!)

K is the set of terminals (data centers):

Can compute a vertex sparsifier of ”quality” O( log |K |
log log |K |) in

general networks

Can compute a vertex sparsifier of ”quality” constant if the
original network is{

planar, bounded treewidth, padded decomposition property, ...
}

in quadratic time (approximately a single minimum congestion solve)

Examples: road networks (planar), internet graph backbone
(bounded treewidth), social networks (p.d.p.)

(Makarychev, Makarychev): Ω̃(
√

log |K |) ”quality” is necessary
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”Vertex sparsifiers: new results from old techniques”, APPROX
2010

6 Chuzhoy. ”On vertex sparsifiers with Steiner nodes”, STOC 2012



Outline

Introduction

Minimum Congestion Routing

Application: Routing

Application: Graph Partitioning

Vertex Sparsification

Definitions

Zero-Sum Game

Graph Partitioning, Revisited

Learning via Polynomials



Outline

Introduction

Minimum Congestion Routing

Application: Routing

Application: Graph Partitioning

Vertex Sparsification

Definitions

Zero-Sum Game

Graph Partitioning, Revisited

Learning via Polynomials



Solving a Sequence of Routing Problems

Observation

What we really want are good routing schemes in the original
network!

There is a CANONICAL mapping of flows in H to flows in G :

Claim

A good vertex sparsifier can be SIMULATED with low overhead, in
the original network

For each routing request, run off-the-shelf algorithm on a 4 node
network (instead of on a gigantic one)
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COMPARE: Räcke’s oblivious routing scheme is
Θ(log |V |)-competitive; ours is O(log |K |)



Outline

Introduction

Minimum Congestion Routing

Application: Routing

Application: Graph Partitioning

Vertex Sparsification

Definitions

Zero-Sum Game

Graph Partitioning, Revisited

Learning via Polynomials



Outline

Introduction

Minimum Congestion Routing

Application: Routing

Application: Graph Partitioning

Vertex Sparsification

Definitions

Zero-Sum Game

Graph Partitioning, Revisited

Learning via Polynomials



Graph Partitioning Made Easy

Graph Partitioning

Goal: cut few edges, disconnect terminals according to some
constraints

Diverse set of problems and applications

Can use Min-Cut Max-Flow Theorem to prove:

Claim

Preserve flows ⇒ Preserve cuts

(Charikar, Leighton, Li, Moitra): Vertex sparsifiers yield many known
approximation guarantees as a special case, and give new ones too!
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Proof Outline

1 Define a Zero-Sum Game

2 The Best Response is a 0-Extension

Problem

3 Construct a Feasible Solution for the Linear

Programming Relaxation

4 Round the solution to get a Valid Response
[Fakcharoenphol, Harrelson, Rao, Talwar 2003]
[Calinescu, Karloff, Rabani 2001]
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Minmax

Theorem (von Neumann)

min
γ
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A

Ef←γ[N(f ,A)] = max
λ
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f

EA←λ[N(f ,A)]

Bound on game value implies that good Cut Sparsifiers exist!

Let G ′ =
∑

f γ(f )Gf (no good response for the cut player)

Question

For every distribution λ on A ⊂ K , is there a good response f for
the extension player?
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Problem

3 Construct a Feasible Solution for the Linear
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Summary, So Far

Non-constructive proof that good quality cut sparsifiers exist,
through a zero sum game

MORAL: Challenge someone else to prove you wrong (if he can’t,
you’re right!)

This proof can be made constructive:

Solve a sequence of routing problems as fast as solving just one!

Reduce all your graph partitioning problems to trees!
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Make the Problem Smaller AND Simpler

Recall, graph partitioning: cut few edges, disconnect terminals
according to some constraints

Claim

Graph partitioning problems are often easy to solve on trees

Question

Can we use vertex sparsification to make the problem smaller and
simpler?

e.g. can we ROUND the graph to a tree (on just the terminals)?
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Fractional Graph Partitioning Problems

Definition

We call an optimization problem a Fractional Graph Partitioning
Problem if it can be written as

(for some monotone increasing
function f ):

min
∑

(u,v)∈E c(u, v)d(u, v)

s.t.
d : V × V → <+ is a semi-metric
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Examples

Consider the (standard) fractional relaxations for:

1 Multi-Cut:

f (d
∣∣∣
K

) = mini d(si , ti)

Goal: Separate all pairs of demands, cutting few edges

2 Sparsest Cut:

f (d
∣∣∣
K

) =
∑

i dem(i)d(si , ti)

Goal: Find a cut with small ratio

3 Requirement Cut:

f (d
∣∣∣
K

) = mini
MST(Ri )

pi

Goal: Separate all sets Ri into at least pi components, cutting
few edges
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A Master Theorem

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is
at most O(log k) times the max integrality gap restricted to trees

This yields many known integrality gaps for fractional graph
partitioning problems (and new ones too):

1 [Garg, Vazirani, Yannakakis]

2 [Linial, Londan, Rabinovich], [Aumann, Rabani]

3 [Gupta, Nagarajan, Ravi]

4 ...
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Thanks! Any Questions?

Vertex sparsification
existence via an exponential-sized zero-sum game

Implications for routing
save space and time, when solving a sequence of problems

Implications for graph partitioning
general case can be reduced to trees (on the set of terminals)

Other: Learning, Lattices, Convex
Geometry


