Vertex Sparsification

Ankur Moitra, IAS

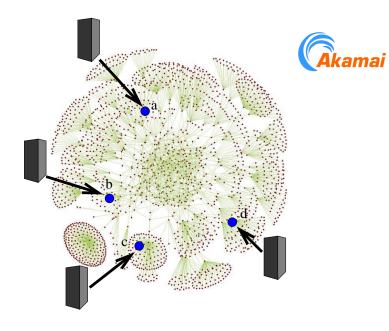
February 15th, 2012

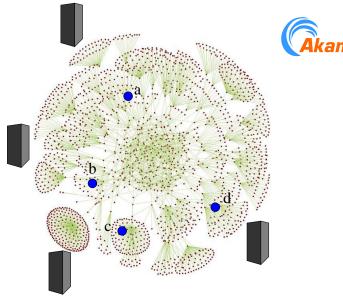
Ankur Moitra (IAS)

Vertex Sparsification

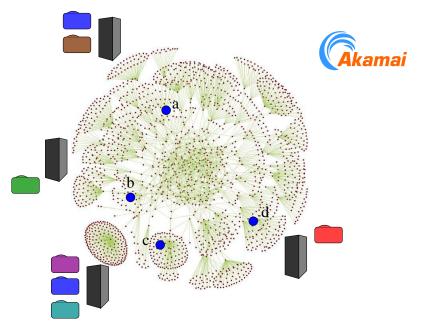
February 15th, 2012

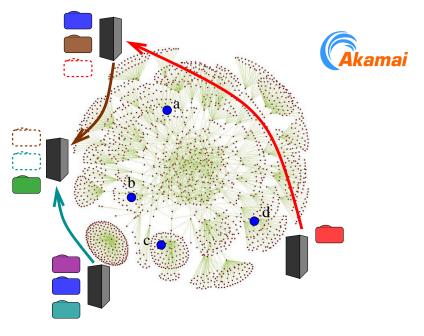
æ



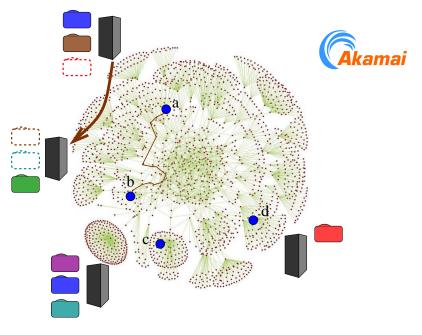


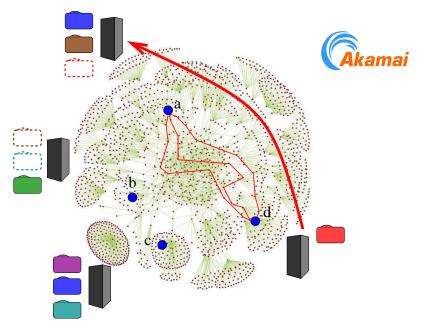
Akamai

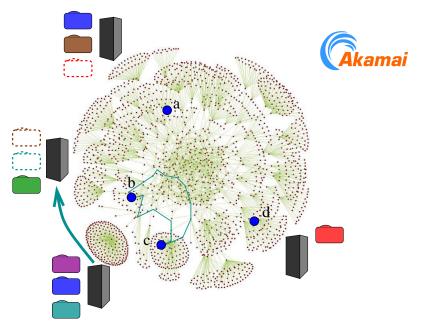


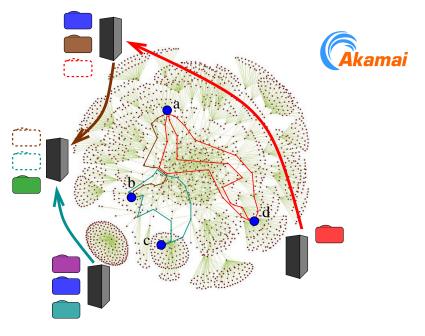


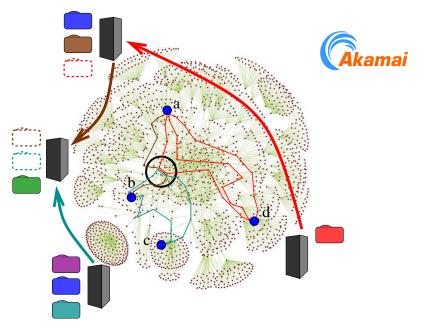
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

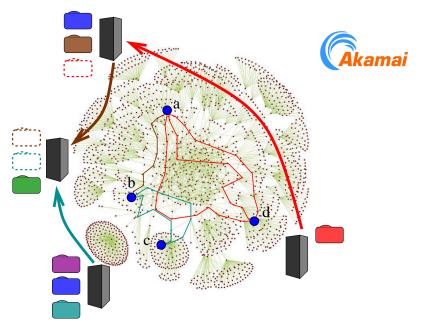


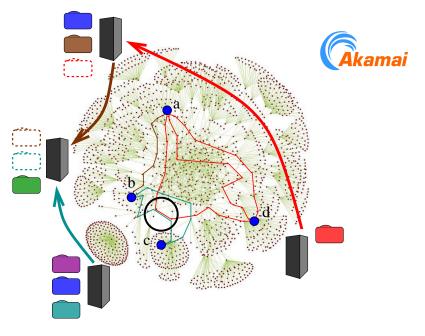


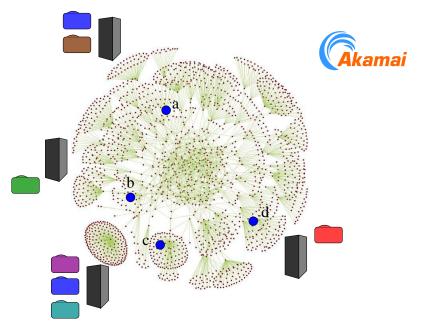


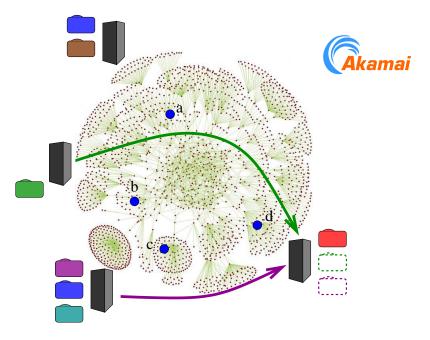




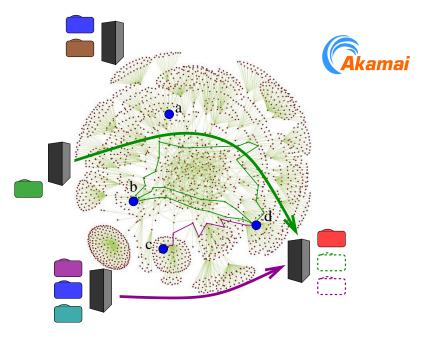




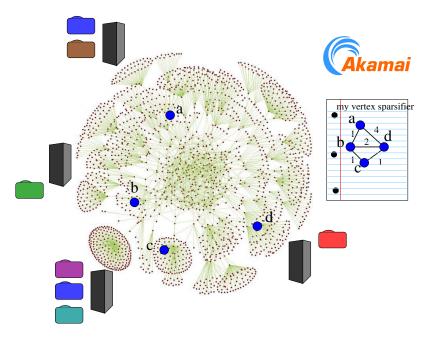


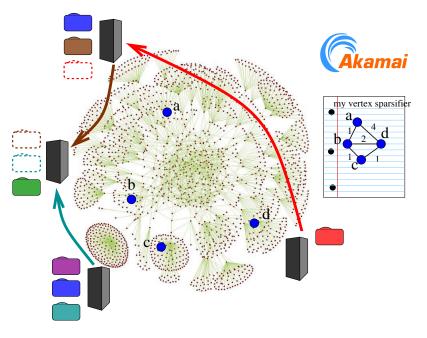


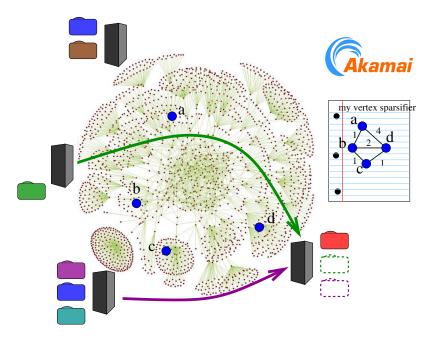
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで







Question

What if you believe me, that there is a good vertex sparsifier?

<ロ> (四) (四) (三) (三) (三) (三)

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a graph with only 4 nodes!

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ― 湟

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a graph with only 4 nodes!

(中) (문) (문) (문) (문)

Applications of Vertex Sparsification:

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a graph with only 4 nodes!

<ロ> (四) (四) (三) (三) (三) (三)

Applications of Vertex Sparsification:

• Save **SPACE** (store a much smaller network)

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a graph with only 4 nodes!

Applications of Vertex Sparsification:

- Save **SPACE** (store a much smaller network)
- Save **TIME** (run algorithms on a much smaller network)

<ロ> (四) (四) (三) (三) (三) (三)

Question

What if you believe me, that there is a good vertex sparsifier?

i.e. we can represent the relevant communication properties on a graph with only 4 nodes!

Applications of Vertex Sparsification:

- Save **SPACE** (store a much smaller network)
- Save **TIME** (run algorithms on a much smaller network)
- UNIFIES many rounding algorithms for graph partitioning

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

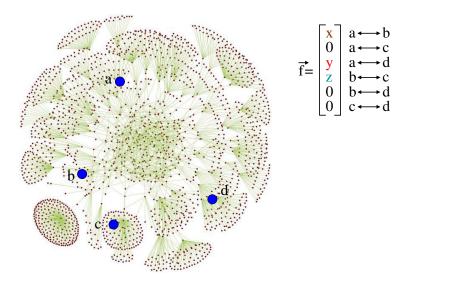
Outline

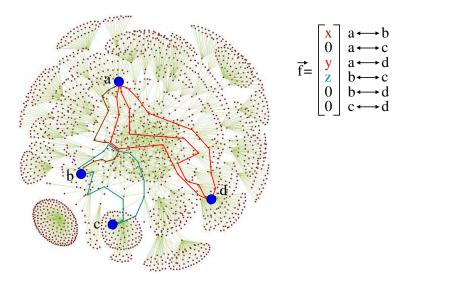
Introduction

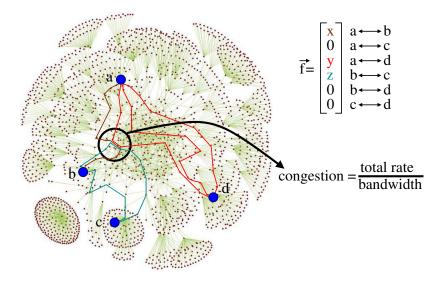
- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

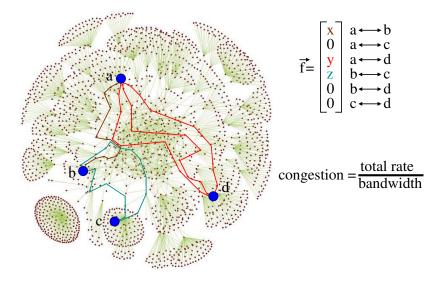
- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials



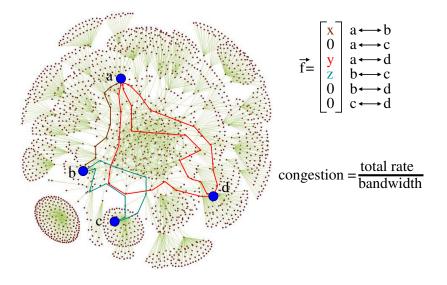




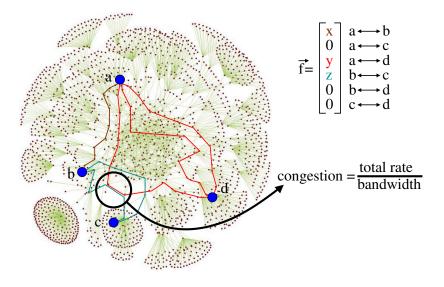
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで



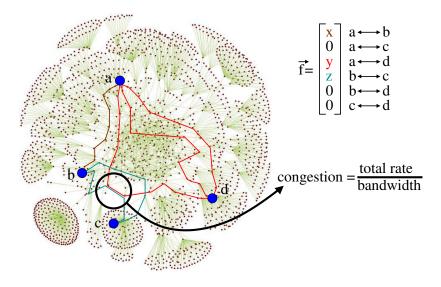
シック・ ボー・ (川・ (町)・ (日)・



- ◆ □ ▶ → ₫ ▶ → 重 ▶ → ■ → のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○



What to Preserve, and How Well?

Question

Can we find a communication network **on just the terminals**, so that **minimum congestion** routing is approximately preserved?

《曰》 《聞》 《臣》 《臣》 三臣

What to Preserve, and How Well?

Question

Can we find a communication network **on just the terminals**, so that **minimum congestion** routing is approximately preserved?

< □ > < (四 > < (回 >) < (u >

i.e. for all routing requests \vec{f} , $cong_G(\vec{f}) \approx cong_H(\vec{f})$

What to Preserve, and How Well?

Question

Can we find a communication network **on just the terminals**, so that **minimum congestion** routing is approximately preserved?

i.e. for all routing requests \vec{f} , $cong_G(\vec{f}) \approx cong_H(\vec{f})$

Quality:
$$\left(\max_{\vec{f}} \frac{cong_G(\vec{f})}{cong_H(\vec{f})}\right) \left(\max_{\vec{f}} \frac{cong_H(\vec{f})}{cong_G(\vec{f})}\right)$$

What to Preserve, and How Well?

Question

Can we find a communication network **on just the terminals**, *so that* **minimum congestion** *routing is approximately preserved?*

i.e. for all routing requests \vec{f} , $cong_G(\vec{f}) \approx cong_H(\vec{f})$

Quality:
$$\left(\max_{\vec{f}} \frac{cong_G(\vec{f})}{cong_H(\vec{f})}\right) \left(\max_{\vec{f}} \frac{cong_H(\vec{f})}{cong_G(\vec{f})}\right)$$

< □ > < (四 > < (回 >) < (u = 1) <

Question

Should good quality vertex sparsifiers exist?

<ロ> (四) (四) (三) (三) (三) (三)

K is the set of terminals (data centers):

K is the set of terminals (data centers):

• Can compute a vertex sparsifier of "quality" $O(\frac{\log |K|}{\log \log |K|})$ in general networks

・ロト ・四ト ・ヨト ・ヨト

- 1

K is the set of terminals (data centers):

- Can compute a vertex sparsifier of "quality" $O(\frac{\log |K|}{\log \log |K|})$ in general networks
- Can compute a vertex sparsifier of "quality" **constant** if the original network is

 $\left\{ \textit{planar, bounded treewidth, padded decomposition property, ...}
ight\}$

《曰》 《聞》 《臣》 《臣》

K is the set of terminals (data centers):

- Can compute a vertex sparsifier of "quality" $O(\frac{\log |K|}{\log \log |K|})$ in general networks
- Can compute a vertex sparsifier of "quality" **constant** if the original network is

 $\left\{ \textit{ planar, bounded treewidth, padded decomposition property, ... }
ight.
ight.$

in quadratic time (approximately a single minimum congestion solve)

<ロ> (四) (四) (三) (三) (三) (三)

K is the set of terminals (data centers):

- Can compute a vertex sparsifier of "quality" $O(\frac{\log |K|}{\log \log |K|})$ in general networks
- Can compute a vertex sparsifier of "quality" **constant** if the original network is

{ planar, bounded treewidth, padded decomposition property, ... }

in quadratic time (approximately a single minimum congestion solve)

《曰》 《聞》 《臣》 《臣》 三臣

Examples: road networks (planar), internet graph backbone (bounded treewidth), social networks (p.d.p.)

K is the set of terminals (data centers):

- Can compute a vertex sparsifier of "quality" $O(\frac{\log |K|}{\log \log |K|})$ in general networks
- Can compute a vertex sparsifier of "quality" **constant** if the original network is

{ planar, bounded treewidth, padded decomposition property, ... }

in quadratic time (approximately a single minimum congestion solve)

Examples: road networks (planar), internet graph backbone (bounded treewidth), social networks (p.d.p.)

(Makarychev, Makarychev): $\tilde{\Omega}(\sqrt{\log |K|})$ "quality" is necessary

- Moitra, "Approximation algorithms with guarantees independent of the graph size", FOCS 2009
- Leighton, Moitra, "Extensions and limits to vertex sparsification", STOC 2010
- Charikar, Leighton, Li, Moitra, "Vertex sparsifiers and abstract rounding algorithms", FOCS 2010
- Makarychev, Makarychev, "Metric extension operators, vertex sparsifiers and Lipschitz extendability", FOCS 2010
- Englert, Gupta, Krauthgamer, Räcke, Talgam-Cohen, Talwar, "Vertex sparsifiers: new results from old techniques", APPROX 2010
- Schuzhoy. "On vertex sparsifiers with Steiner nodes", STOC 2012

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

(日) (四) (문) (문) (문)

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Observation

What we really want are good routing schemes in the original network!

<ロ> (四) (四) (三) (三) (三) (三)

Observation

What we really want are good routing schemes in the original network!

There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

◆□▶ ◆舂▶ ◆厘▶ ◆厘▶

훈

Observation

What we really want are good routing schemes in the original network!

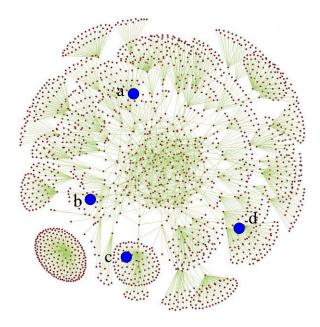
There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

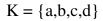
Claim

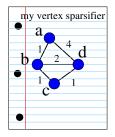
A good vertex sparsifier can be **SIMULATED** with low overhead, in the original network

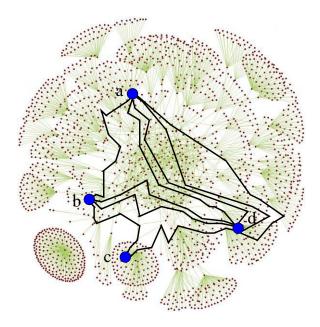
(日) (日) (日) (日) (日)

E

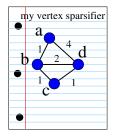


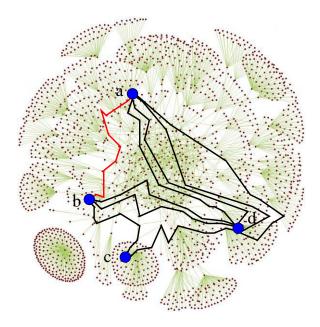




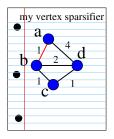


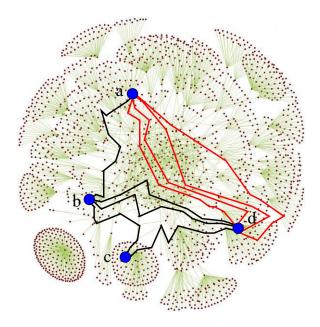
$$\mathbf{K} = \{a, b, c, d\}$$



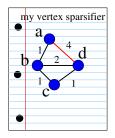


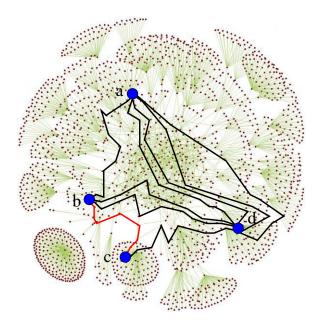
$$\mathbf{K} = \{a, b, c, d\}$$



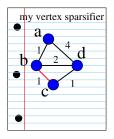


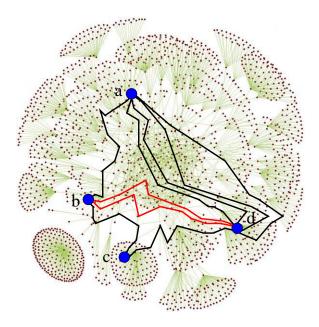
$$\mathbf{K} = \{a, b, c, d\}$$



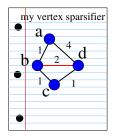


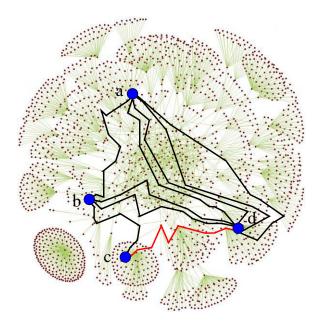
$$\mathbf{K} = \{a, b, c, d\}$$



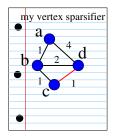


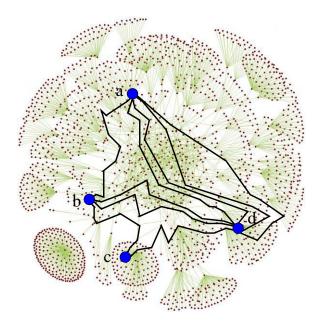
$$\mathbf{K} = \{a, b, c, d\}$$

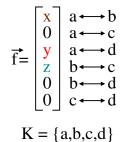


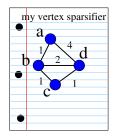


$$\mathbf{K} = \{a, b, c, d\}$$

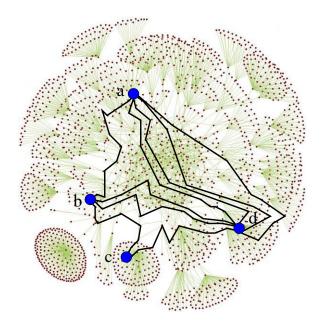




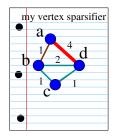




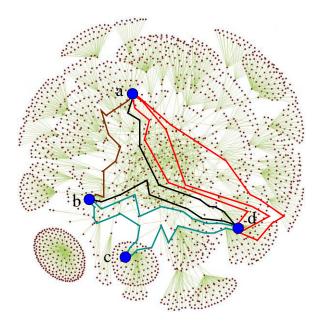
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで



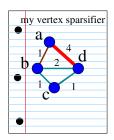
$$\vec{f} = \begin{bmatrix} x \\ 0 \\ y \\ z \\ 0 \\ 0 \end{bmatrix} \stackrel{a \longleftrightarrow b}{a \longleftrightarrow c}_{a \longleftrightarrow d}_{b \longleftrightarrow c}_{b \longleftrightarrow d}_{c \longleftrightarrow d}$$
$$K = \{a, b, c, d\}$$



◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへぐ



$$\vec{f} = \begin{bmatrix} \mathbf{x} \\ 0 \\ \mathbf{y} \\ \mathbf{z} \\ 0 \\ 0 \end{bmatrix} \stackrel{a \longleftrightarrow b}{\underset{b \longleftrightarrow c}{\overset{a \longleftrightarrow d}{\overset{b \longleftrightarrow c}{\overset{b \longleftrightarrow d}{\overset{b \longleftrightarrow c}{\overset{b \longleftrightarrow d}{\overset{b \longleftrightarrow d}{\overset{c \longleftrightarrow d}}}}}}}{\underset{c \longleftrightarrow d}{\overset{b \longleftrightarrow c}{\overset{b \longleftrightarrow d}{\overset{c \longleftrightarrow d}}}}$$



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Observation

What we really want are good routing schemes in the original network!

There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

Claim

A good vertex sparsifier can be **SIMULATED** with low overhead, in the original network

E

Observation

What we really want are good routing schemes in the original network!

There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

Claim

A good vertex sparsifier can be **SIMULATED** with low overhead, in the original network

For each routing request, run off-the-shelf algorithm on a 4 node network (instead of on a gigantic one)

Observation

What we really want are good routing schemes in the original network!

There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

Claim

A good vertex sparsifier can be **SIMULATED** with low overhead, in the original network

E

Observation

What we really want are good routing schemes in the original network!

There is a **CANONICAL** mapping of flows in *H* to flows in *G*:

Claim

A good vertex sparsifier can be **SIMULATED** with low overhead, in the original network

< □ > < (四 > < (回 >) < (u = 1) <

COMPARE: Räcke's oblivious routing scheme is $\Theta(\log |V|)$ -competitive; ours is $O(\log |K|)$

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Graph Partitioning

• **Goal**: cut few edges, disconnect terminals according to some constraints

Graph Partitioning

• **Goal**: cut few edges, disconnect terminals according to some constraints

<ロ> (四) (四) (三) (三) (三)

æ

• Diverse set of problems and applications

Graph Partitioning

• **Goal**: cut few edges, disconnect terminals according to some constraints

훈

• Diverse set of problems and applications

Can use Min-Cut Max-Flow Theorem to prove:

Claim

Preserve flows \Rightarrow Preserve cuts

Graph Partitioning

- **Goal**: cut few edges, disconnect terminals according to some constraints
- Diverse set of problems and applications

Can use Min-Cut Max-Flow Theorem to prove:

Claim

Preserve flows \Rightarrow Preserve cuts

(Charikar, Leighton, Li, Moitra): Vertex sparsifiers yield many known approximation guarantees as a special case, and give new ones too!

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

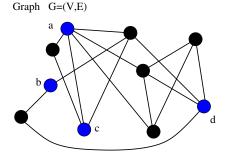
Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

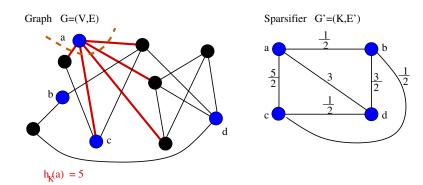
< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials



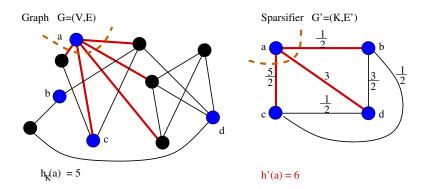
Sparsifier G'=(K,E') a $\frac{1}{2}$ b $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ d

◆□> ◆□> ◆三> ◆三> ● 三 のへで



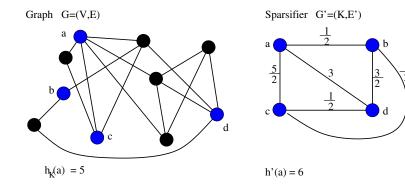
<ロ> (四)、(四)、(三)、(三)、

æ



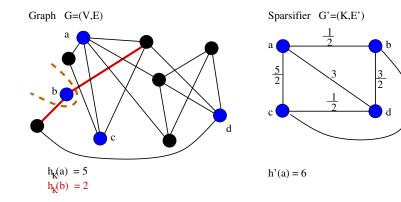
<ロ> (四)、(四)、(三)、(三)、

æ

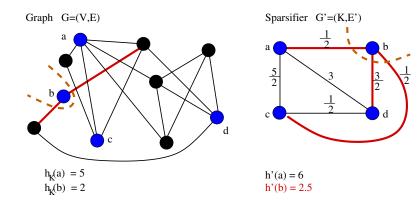


<ロ> (四)、(四)、(三)、(三)、

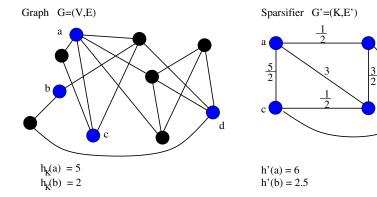
- 2



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で



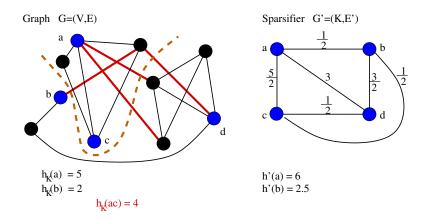
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で



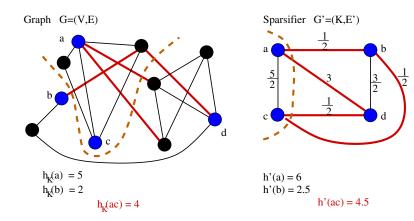
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で

b

d

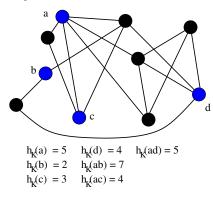


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● の ● ●

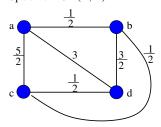


▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Graph G=(V,E)

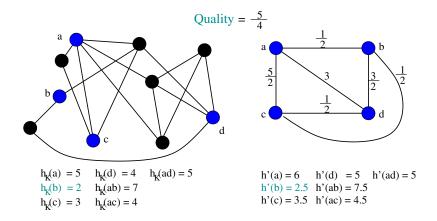


Sparsifier G'=(K,E')



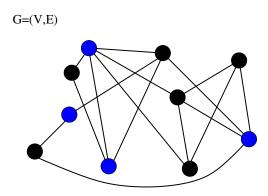
 $\begin{aligned} h'(a) &= 6 & h'(d) = 5 & h'(ad) = 5 \\ h'(b) &= 2.5 & h'(ab) = 7.5 \\ h'(c) &= 3.5 & h'(ac) = 4.5 \end{aligned}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

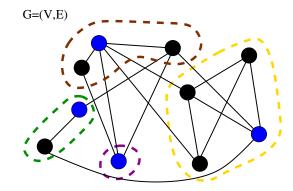


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

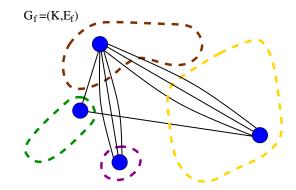
Definition



Definition



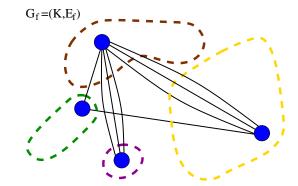
Definition



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆

Definition

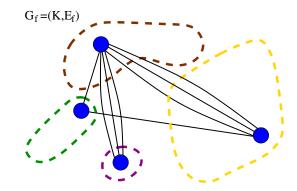
Let $f: V \to K$, is a 0-extension if for all $a \in K$, f(a) = a.



▲ロト ▲御ト ▲注ト ▲注ト 注目 のへで

Lemma

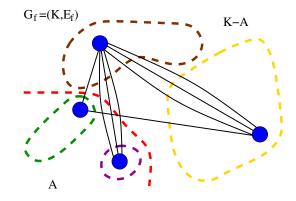
G_f is a Cut Sparsifier



◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Lemma

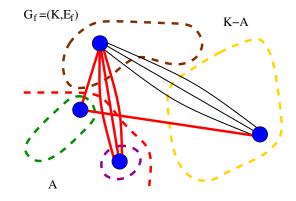
G_f is a Cut Sparsifier



◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

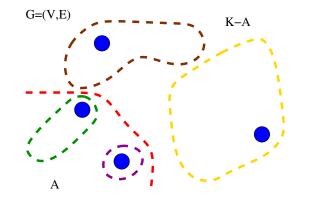
Lemma

G_f is a Cut Sparsifier



Lemma

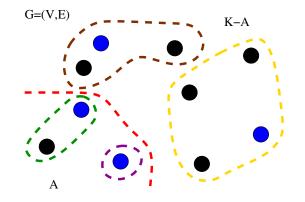
G_f is a Cut Sparsifier



◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

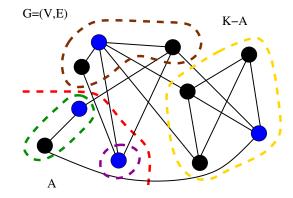
Lemma

G_f is a Cut Sparsifier



Lemma

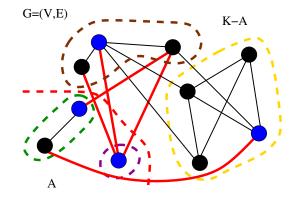
G_f is a Cut Sparsifier



◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Lemma

G_f is a Cut Sparsifier



Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

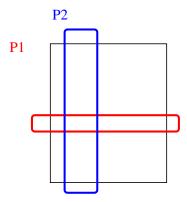
- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Proof Outline

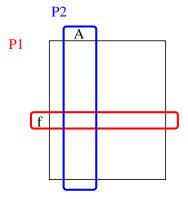
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof Outline

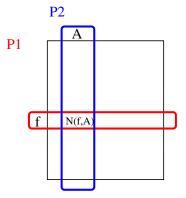
• Define a Zero-Sum Game



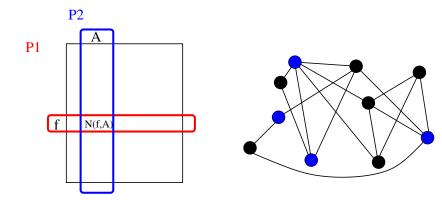
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

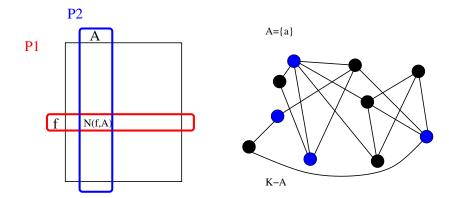


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

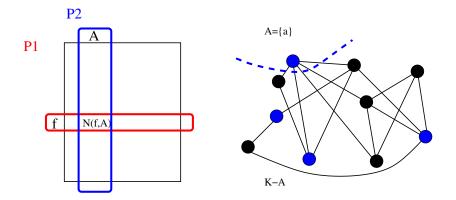


(日) (문) (문) (문) (문)

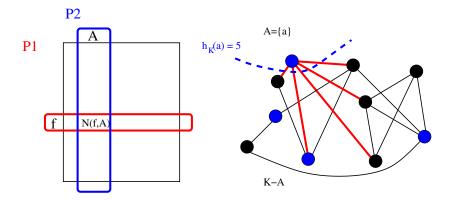




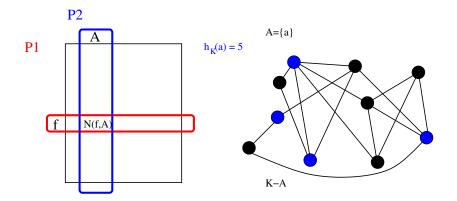
<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>



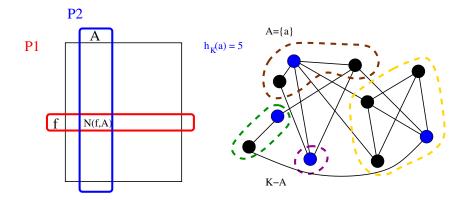
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



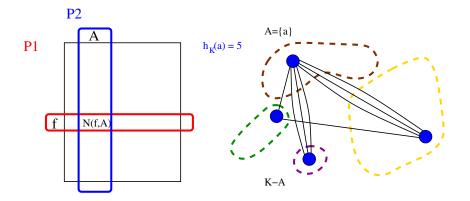
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



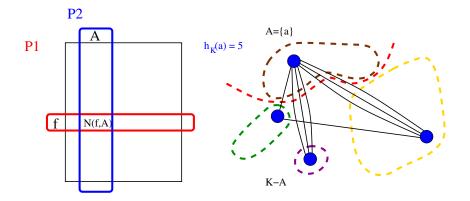
<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>

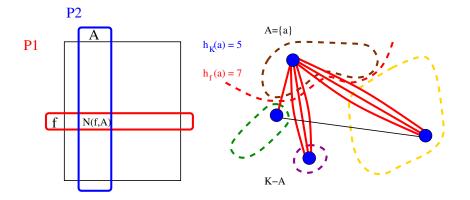


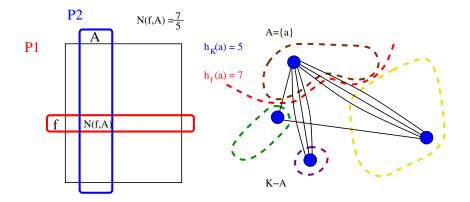
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

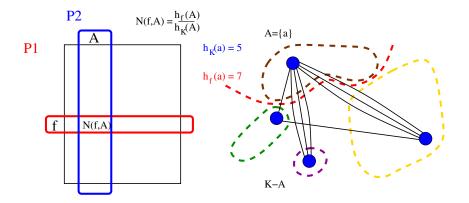


◆□> ◆□> ◆三> ◆三> ● 三 のへで









Theorem (von Neumann)

$$\min_{\gamma} \max_{A} E_{f \leftarrow \gamma}[N(f, A)] = \max_{\lambda} \min_{f} E_{A \leftarrow \lambda}[N(f, A)]$$

< □ > < 個 > < 回 > < 至 > < 至 > □ 至 □

Theorem (von Neumann)

$$\min_{\gamma} \max_{A} E_{f \leftarrow \gamma}[N(f, A)] = \max_{\lambda} \min_{f} E_{A \leftarrow \lambda}[N(f, A)]$$

Bound on game value implies that good Cut Sparsifiers exist!

Theorem (von Neumann)

$$\min_{\gamma} \max_{A} E_{f \leftarrow \gamma}[N(f, A)] = \max_{\lambda} \min_{f} E_{A \leftarrow \lambda}[N(f, A)]$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Bound on game value implies that good Cut Sparsifiers exist! Let $G' = \sum_{f} \gamma(f) G_{f}$ (no good response for the cut player)

Theorem (von Neumann)

$$\min_{\gamma} \max_{A} E_{f \leftarrow \gamma}[N(f, A)] = \max_{\lambda} \min_{f} E_{A \leftarrow \lambda}[N(f, A)]$$

Bound on game value implies that good Cut Sparsifiers exist!

Let
$$G' = \sum_{f} \gamma(f) G_{f}$$
 (no good response for the cut player)

Question

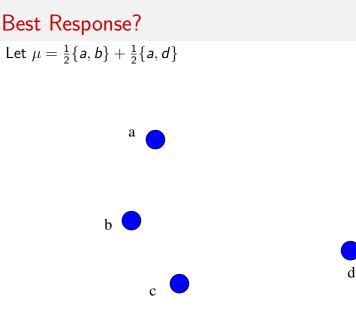
For every distribution λ on $A \subset K$, is there a **good** response f for the extension player?

<ロ> (四) (四) (三) (三) (三)

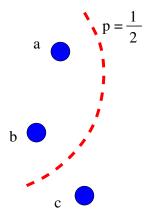
훈

• Define a Zero-Sum Game

- Define a Zero-Sum Game
- The Best Response is a 0-Extension Problem

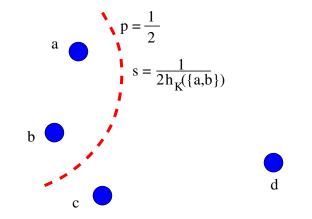


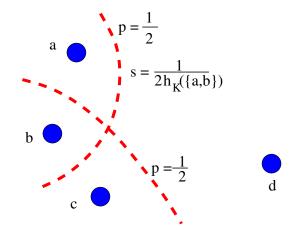
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

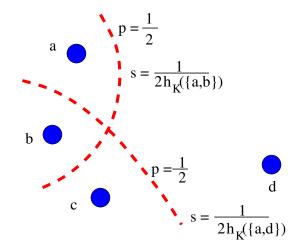


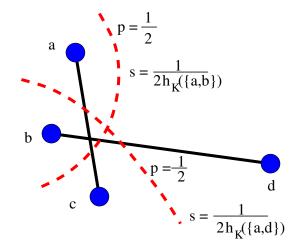
d

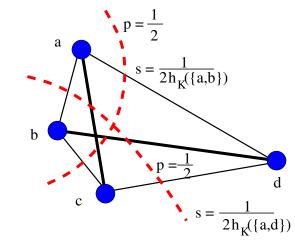
◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで











◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Define a Zero-Sum Game
- The Best Response is a 0-Extension Problem

- Define a Zero-Sum Game
- The Best Response is a 0-Extension Problem
- Construct a Feasible Solution for the Linear Programming Relaxation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Define a Zero-Sum Game
- The Best Response is a 0-Extension
 Problem
- Construct a Feasible Solution for the Linear Programming Relaxation
- Round the solution to get a **Valid** Response

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Define a Zero-Sum Game
- The Best Response is a 0-Extension Problem
- Construct a Feasible Solution for the Linear Programming Relaxation
- Round the solution to get a Valid Response [Fakcharoenphol, Harrelson, Rao, Talwar '03] [Calinescu, Karloff, Rabani '01]

Summary, So Far

Non-constructive proof that good quality cut sparsifiers exist, through a zero sum game

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary, So Far

Non-constructive proof that good quality cut sparsifiers exist, through a zero sum game

MORAL: Challenge someone else to prove you wrong (if he can't, you're right!)

Non-constructive proof that good quality cut sparsifiers exist, through a zero sum game

MORAL: Challenge someone else to prove you wrong (if he can't, you're right!)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This proof can be made constructive:

Non-constructive proof that good quality cut sparsifiers exist, through a zero sum game

MORAL: Challenge someone else to prove you wrong (if he can't, you're right!)

This proof can be made constructive:

• Solve a sequence of routing problems as fast as solving just one!

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Non-constructive proof that good quality cut sparsifiers exist, through a zero sum game

MORAL: Challenge someone else to prove you wrong (if he can't, you're right!)

This proof can be made constructive:

• Solve a sequence of routing problems as fast as solving just one!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Reduce all your graph partitioning problems to trees!

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

< □ > < (四 > < (回 >) < (u >

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Outline

Introduction

- Minimum Congestion Routing
- Application: Routing
- Application: Graph Partitioning

(日) (四) (문) (문) (문)

- Vertex Sparsification
 - Definitions
 - Zero-Sum Game
- Graph Partitioning, Revisited
- Learning via Polynomials

Make the Problem Smaller AND Simpler

Recall, graph partitioning: cut few edges, disconnect terminals according to some constraints

Make the Problem Smaller AND Simpler

Recall, graph partitioning: cut few edges, disconnect terminals according to some constraints

Claim

Graph partitioning problems are often easy to solve on trees

<ロ> (四) (四) (三) (三) (三) (三)

Make the Problem Smaller AND Simpler

Recall, graph partitioning: cut few edges, disconnect terminals according to some constraints

Claim

Graph partitioning problems are often easy to solve on trees

Question

Can we use vertex sparsification to make the problem smaller and simpler?

e.g. can we **ROUND** the graph to a tree (on just the terminals)?

Fractional Graph Partitioning Problems

Definition

We call an optimization problem a Fractional Graph Partitioning Problem if it can be written as

min
$$\sum_{(u,v)\in E} c(u,v)d(u,v)$$

s.t.
 $d: V \times V \rightarrow \Re^+$ is a semi-metric

《曰》 《聞》 《臣》 《臣》 三臣

Fractional Graph Partitioning Problems

Definition

We call an optimization problem a Fractional Graph Partitioning Problem if it can be written as (for some monotone increasing function f):

$$\begin{array}{ll} \min & \sum_{(u,v)\in E} c(u,v)d(u,v) \\ \text{s.t.} & \\ & d:V\times V \to \Re^+ \text{ is a semi-metric} \\ & f(d\Big|_{K}) \geq 1 \end{array}$$

Consider the (standard) fractional relaxations for:

Consider the (standard) fractional relaxations for:

Multi-Cut:

Goal: Separate all pairs of demands, cutting few edges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider the (standard) fractional relaxations for:

• Multi-Cut: $f(d|_{\kappa}) = \min_i d(s_i, t_i)$ Goal: Separate all pairs of demands, cutting few edges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider the (standard) fractional relaxations for:

• Multi-Cut: $f(d|_{\kappa}) = \min_i d(s_i, t_i)$ Goal: Separate all pairs of demands, cutting few edges

▲口> ▲舂> ▲注> ▲注> 注

Sparsest Cut:

Goal: Find a cut with small ratio

Consider the (standard) fractional relaxations for:

• Multi-Cut: $f(d|_{\kappa}) = \min_i d(s_i, t_i)$ Goal: Separate all pairs of demands, cutting few edges

▲口> ▲舂> ▲注> ▲注> 注

Sparsest Cut: $f(d|_{\kappa}) = \sum_{i} dem(i)d(s_{i}, t_{i})$ **Goal:** Find a cut with small ratio

Consider the (standard) fractional relaxations for:

• Multi-Cut: $f(d|_{\kappa}) = \min_i d(s_i, t_i)$ Goal: Separate all pairs of demands, cutting few edges

3 Sparsest Cut:
$$f(d|_{K}) = \sum_{i} dem(i)d(s_{i}, t_{i})$$

Goal: Find a cut with small ratio

ı

Oracle Requirement Cut:

Goal: Separate all sets R_i into at least p_i components, cutting few edges

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider the (standard) fractional relaxations for:

• Multi-Cut: $f(d|_{\kappa}) = \min_i d(s_i, t_i)$ Goal: Separate all pairs of demands, cutting few edges

3 Sparsest Cut:
$$f(d|_{K}) = \sum_{i} dem(i)d(s_{i}, t_{i})$$

Goal: Find a cut with small ratio

Sequirement Cut: $f(d|_{\kappa}) = \min_i \frac{MST(R_i)}{p_i}$ Goal: Separate all sets R_i into at least p_i components, cutting few edges

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is at most $O(\log k)$ times the max integrality gap restricted to trees

< □ > < (四 > < (回 >) < (u = 1) <

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is at most $O(\log k)$ times the max integrality gap restricted to trees

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ― 湟

This yields many known integrality gaps for fractional graph partitioning problems (and new ones too):

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is at most $O(\log k)$ times the max integrality gap restricted to trees

< □ > < (四 > < (回 >) < (u = 1) <

This yields many known integrality gaps for fractional graph partitioning problems (and new ones too):

Garg, Vazirani, Yannakakis]

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is at most $O(\log k)$ times the max integrality gap restricted to trees

< □ > < (四 > < (回 >) < (u >

This yields many known integrality gaps for fractional graph partitioning problems (and new ones too):

- Garg, Vazirani, Yannakakis]
- 2 [Linial, Londan, Rabinovich], [Aumann, Rabani]

Theorem (Charikar, Leighton, Li, Moitra)

For any graph partitioning problem, the maximum integrality gap is at most $O(\log k)$ times the max integrality gap restricted to trees

(日) (四) (문) (문) (문) (문)

This yields many known integrality gaps for fractional graph partitioning problems (and new ones too):

- Garg, Vazirani, Yannakakis]
- [Linial, Londan, Rabinovich], [Aumann, Rabani]
- Gupta, Nagarajan, Ravi]

Thanks! Any Questions?

- Vertex sparsification existence via an exponential-sized zero-sum game
- Implications for routing save space and time, when solving a sequence of problems
- Implications for graph partitioning general case can be reduced to trees (on the set of terminals)

< □ > < (四 > < (回 >) < (u =) < (u =

• Other: Learning, Lattices, Convex Geometry