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Background

History of the Minimum Bisection Problem

1 Applications through Divide-and-Conquer: VLSI design, sparse matrix
computations, approximation algorithms

2 [Kernighan, Lin 1970] Local search heuristic

3 [Garey, Johnson, Stockmeyer 1976] NP-Complete

4 [Leighton, Rao 1988] O(log n) approximate minimum bisection

5 [Saran, Vazirani 1995] n
2 -approximation algorithm

6 [Arora, Karger, Karpinski 1999] PTAS for dense graphs

7 [Feige, Krauthgamer 2001] O(log1.5 n)-approximation algorithm

8 [Khot 2004] No PTAS, unless P = NP

9 [Räcke, 2008] O(log n)-approximation algorithm
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9 [Räcke, 2008] O(log n)-approximation algorithm

Ankur Moitra (MIT) Sparsification January 25, 2011



Background

History of the Minimum Bisection Problem

1 Applications through Divide-and-Conquer: VLSI design, sparse matrix
computations, approximation algorithms

2 [Kernighan, Lin 1970] Local search heuristic

3 [Garey, Johnson, Stockmeyer 1976] NP-Complete

4 [Leighton, Rao 1988] O(log n) approximate minimum bisection

5 [Saran, Vazirani 1995] n
2 -approximation algorithm

6 [Arora, Karger, Karpinski 1999] PTAS for dense graphs

7 [Feige, Krauthgamer 2001] O(log1.5 n)-approximation algorithm

8 [Khot 2004] No PTAS, unless P = NP
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Background

Question

Can we find a poly(log k)-approximation algorithm?

Some approximation guarantees can be made independent of the graph
size:

1 O(log k) generalized sparsest cut for k commodities
[Linial, London, Rabinovich 1995] and [Aumann, Rabani 1997]

2 O(log k) multicut for k terminals
[Garg, Vazirani, Yannakakis 1996]

3 O( log k
log log k ) 0-extension for k terminals

[Fakcharoenphol, Harrelson, Rao, Talwar 2003]
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Background

A Meta Question

Given

A poly(log n) approximation algorithm (integrality gap or competitive
ratio) for an optimization problem characterized by cuts or flows

Let k be the number of ”interesting” nodes

Meta Question

Can we give a poly(log k) approximation algorithm (integrality gap or
competitive ratio)?

Yes we can...
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Background

Highlights of Vertex Sparsification

1 Approximation Guarantees Independent of the Graph Size:
We give the first poly(log k) approximation algorithms (or
competitive ratios) for:

Steiner minimum bisection, requirement cut,

l-multicut, oblivious 0-extension, and Steiner generalizations of oblivious

routing, min-cut linear arrangement, and minimum linear arrangement

2 Oblivious Reductions: All you need to know about the underlying
communication network is its vertex sparsifier

3 Abstract Integrality Gaps: We give O(log k) flow-cut gaps for any
graph packing problem, if the integrality gap is constant on trees
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Vertex Sparsifiers

General Approach: Cut Sparsifiers
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Vertex Sparsifiers

Cut Sparsifiers, Informally

Definition

G ′ = (K ,E ′) is a Cut Sparsifier for G = (V ,E ) if all cuts in G ′ are at
least as large as the corresponding min-cut in G .

Definition

The Quality of a Cut Sparsifier is the maximum ratio of a cut in G ′ to the
corresponding min-cut in G .
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Vertex Sparsifiers

Cut Sparsifiers

Good quality Cut Sparsifiers exist!

And such graphs can be computed
efficiently!

Theorem (Moitra, FOCS 2009)

For all (undirected) weighted graphs G = (V ,E ), and all K ⊂ V there is
an (undirected) weighted graph G ′ = (K ,E ′) such that G ′ is a
O(log k/ log log k)-quality Cut Sparsifier.

This bound improves to O(1) if G is planar, or if G excludes any fixed
minor!
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Vertex Sparsifiers

An Application to Steiner Minimum Bisection
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Vertex Sparsifiers

This is a general strategy!

For any problem characterized by cuts or flows:

1 Construct G ′ so OPT ′ ≤ poly(log k)OPT

2 Run approximation algorithm on G ′

3 Map solution back to G

This will bootstrap a poly(log k) guarantee from a poly(log n) guarantee
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Vertex Sparsifiers

Oblivious Reductions

This approach is useful even for efficiently solvable problems!

Question

What if we are asked to solve a routing problem on K , but we don’t yet
know the demands?

1 Construct G ′

Given G ′, there will be a canonical way to map flows in G ′ back to G

2 Given demands, optimally solve on G ′

3 Map solution back to G
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Vertex Sparsifiers

Highlights of Vertex Sparsification

1 Approximation Guarantees Independent of the Graph Size:
We give the first poly(log k) approximation algorithms (or
competitive ratios) for: Steiner minimum bisection, requirement cut,

l-multicut, oblivious 0-extension, and Steiner generalizations of oblivious

routing, min-cut linear arrangement, and minimum linear arrangement

2 Oblivious Reductions: All you need to know about the underlying
communication network is its vertex sparsifier

Abstract Integrality Gaps: We give O(log k) flow-cut gaps for any
graph packing problem, if the integrality gap is constant on trees
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Vertex Sparsifiers

Definition

Let f : V → K , is a 0-extension if for all a ∈ K , f (a) = a.

G=(V,E)
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Vertex Sparsifiers

Lemma

Gf is a Cut Sparsifier

G  =(K,E )f f
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Non-constructive Proof

Proof Outline

1 Define a Zero-Sum Game

2 The Best Response is a 0-Extension Problem

3 Construct a Feasible Solution for the Linear

Programming Relaxation

4 Round the solution to bound the Game Value
[Fakcharoenphol, Harrelson, Rao, Talwar 2003]
[Calinescu, Karloff, Rabani 2001]
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Non-constructive Proof

The Extension-Cut Game
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Non-constructive Proof

Definition

Let ν denote the game value of the extension-cut game

So ∃ a distribution γ on 0-extensions s.t. for all A ⊂ K :

Ef←γ [N(f ,A)] ≤ ν

Let G ′ =
∑

f γ(f )Gf . Then for all A ⊂ K :

h′(A) =
∑
f

γ(f )hf (A) = Ef←γ [N(f ,A)]hK (A) ≤ νhK (A)
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Non-constructive Proof

Proof Outline

1 Define a Zero-Sum Game

2 The Best Response is a 0-Extension Problem

3 Construct a Feasible Solution for the Linear

Programming Relaxation

4 Round the solution to bound the Game Value
[Fakcharoenphol, Harrelson, Rao, Talwar 2003]
[Calinescu, Karloff, Rabani 2001]
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Non-constructive Proof

Bounds on the Integrality Gap

(OPT ∗ = value of the LP)

Theorem (Fakcharoenphol, Harrelson, Rao, Talwar)

OPT ≤ O(
log k

log log k
)OPT ∗

Theorem (Calinescu, Karloff, Rabani)

If G excludes any fixed minor,

OPT ≤ O(1)OPT ∗
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Limits

Limits to Cut Sparsification

planar graphs, graphs excluding a fixed minor, expanders all admit
O(1)-quality Cut Sparsifiers

Question

Does every graph admit an O(1)-quality Cut Sparsifier?

Theorem

There is an infinite family of graphs that admits no Cut Sparsifier of
quality better than Ω(log1/4 k)

Independently proven in [Charikar, Leighton, Li, Moitra, FOCS 2010] and
[Makarychev, Makarychev, FOCS 2010]
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Abstract Integrality Gaps

”Simple” Cut Sparsifiers

Question

Can we compute good Cut Sparsifiers on which our optimization problem
is easy?

Question

Can we compute good Cut Sparsifiers that can be realized as a convex
combination of (contraction-based) trees?

Independently asked in [Englert, Gupta, Krauthgamer, Räcke,
Talgam-Cohen, Talwar, APPROX 2010] with similar algorithmic
implications...
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Abstract Integrality Gaps

Fractional Graph Partitioning Problems

Definition

We call an optimization problem a Fractional Graph Partitioning Problem
if it can be written as

(for some monotone increasing function f ):

min
∑

(u,v)∈E c(u, v)d(u, v)

s.t.
d : V × V → <+ is a semi-metric

...

f (d
∣∣∣
K

) ≥ 1
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Abstract Integrality Gaps

Examples

Consider the (standard) fractional relaxations for:

1 Multi-Cut:

f (d
∣∣∣
K

) = mini d(si , ti )

Goal: Separate all pairs of demands, cutting few edges

2 Sparsest Cut:

f (d
∣∣∣
K

) =
∑

i dem(i)d(si , ti )

Goal: Find a cut with small ratio

3 Requirement Cut:

f (d
∣∣∣
K

) = mini
MST(Ri )

pi

Goal: Separate all sets Ri into at least pi components, cutting few
edges
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Abstract Integrality Gaps

Theorem

(Charikar, Leighton, Li, Moitra, FOCS 2010) For any graph partitioning
problem, the maximum integrality gap is at most O(log k) times the max
integrality gap restricted to trees

This encapsulates known integrality gaps for fractional graph partitioning
problems such as:

1 [Garg, Vazirani, Yannakakis]

2 [Linial, Londan, Rabinovich], [Aumann, Rabani]

3 [Gupta, Nagarajan, Ravi]

4 ...
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Abstract Integrality Gaps

Highlights of Vertex Sparsification

1 Approximation Guarantees Independent of the Graph Size:
We give the first poly(log k) approximation algorithms (or
competitive ratios) for: Steiner minimum bisection, requirement cut,

l-multicut, oblivious 0-extension, and Steiner generalizations of oblivious

routing, min-cut linear arrangement, and minimum linear arrangement

2 Oblivious Reductions: All you need to know about the underlying
communication network is its vertex sparsifier

3 Abstract Integrality Gaps: We give O(log k) flow-cut gaps for any
graph partitioning problem, if the integrality gap is constant on trees
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Thanks!

Epilogue

1 Constructive results through lifting

2 Extensions to multicommodity flow – implications for network coding

3 Lower bounds via examples from functional analysis

4 Separations using harmonic analysis of Boolean functions
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