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The	maximum	likelihood	
estimator	is	asymptotically	
efficient	(1910-1920)

R.	A.	Fisher J.	W.	Tukey

What	about	errors in	the	
model	itself?	(1960)
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What	estimators	behave	well	in	a	neighborhood around	
the model?

Let’s	study	a	simple	one-dimensional	example….



ROBUST	PARAMETER	ESTIMATION
Given	corrupted samples	from	a	1-D	Gaussian:

can	we	accurately	estimate	its	parameters?
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How	do	we	constrain	the	noise?

Equivalently:

This	generalizes	Huber’s	Contamination	Model:	An	adversary	can
add an	ε-fraction	of	samples

L1-norm	of	noise	at	most	O(ε) Arbitrarily	corrupt	O(ε)-fraction
of	samples	(in	expectation)

Outliers:	Points	adversary	has	corrupted,	Inliers:	Points	he	hasn’t
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From	the	bound	on	the	L1-norm	of	the	noise,	we	have:
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In	what	norm	do	we	want	the	parameters	to	be	close?

Definition:	The	total	variation	distance	between	two	distributions
with	pdfs f(x)	and	g(x)	is

estimate ideal

Goal:	Find	a	1-D	Gaussian	that	satisfies



In	what	norm	do	we	want	the	parameters	to	be	close?

estimate observed

Definition:	The	total	variation	distance	between	two	distributions
with	pdfs f(x)	and	g(x)	is

Equivalently,	find	a	1-D	Gaussian	that	satisfies
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No!

=+
ideal	model noise observed	model

A	single	corrupted	sample	can	arbitrarily	corrupt	the	estimates

But	the	median and	median	absolute	deviation	do	work
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What	about	robust	estimation	in	high-dimensions?

e.g.	microarrays	with	10k	genes

Fact	[Folklore]:	Given	samples	from	a	distribution	that	are	ε-close
in	total	variation	distance	to	a	1-D	Gaussian

the	median	and	MAD	recover	estimates	that	satisfy

where
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give	an	efficient	algorithm	to	find	parameters	that	satisfy

Special	Cases:

(1)	Unknown	mean

(2)	Unknown	covariance
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A	COMPENDIUM	OF	APPROACHES

Error	
Guarantee

Running	
Time

TukeyMedian O(ε) NP-Hard

Geometric	Median O(ε√d) poly(d,N)

Tournament O(ε) NO(d)

O(ε√d)Pruning O(dN)

Unknown
Mean

…
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The	Price	of	Robustness?

All	known	estimators	are	hard	to	compute	or
lose	polynomial factors	in	the	dimension

Equivalently:	Computationally	efficient	estimators	can	only	handle

fraction	of	errors	and	get	non-trivial	(TV	<	1)	guarantees

Is	robust	estimation	algorithmically	possible	in	high-dimensions?
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OUR	RESULTS

Theorem	[Diakonikolas,	Li,	Kamath,	Kane,	Moitra,	Stewart	‘16]:	
There	is	an	algorithm	when	given																											samples	from	a	
distribution	that	is	ε-close	in	total	variation	distance	to	a	
d-dimensional	Gaussian																finds	parameters	that	satisfy

Robust	estimation	is	high-dimensions	is	algorithmically	possible!

Moreover	the	algorithm	runs	in	time	poly(N,	d)

Alternatively:	Can	approximate	the	Tukeymedian,	etc,	in	
interesting	semi-random	models
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Simultaneously	[Lai,	Rao,	Vempala ‘16]	gave	agnostic	algorithms
that	achieve:

and	work	for	non-Gaussian	distributions	too

Many	other	applications	across	both	papers:	product	distributions,
mixtures	of	spherical	Gaussians,	SVD,	ICA
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compromised	

� Step	#3:	Find	good	parameters,	or	make	progress
Filtering:	Fast	and	practical
Convex	Programming:	Better	sample	complexity

Let’s	see	how	this	works	for	unknown	mean…
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PARAMETER	DISTANCE

Step	#1:	Find	an	appropriate	parameter	distance	for	Gaussians

A	Basic	Fact:	

(1)

Corollary:	If	our	estimate	(in	the	unknown	mean	case)	satisfies

then

Our	new	goal	is	to	be	close	in	Euclidean	distance
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DETECTING	CORRUPTIONS

Step	#2:	Detect	when	the	naïve	estimator	has	been	compromised

=	uncorrupted
=	corrupted

There	is	a	direction	of	large	(>	1)	variance
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Key	Lemma:	If	X1,	X2,	…	XN come	from	a	distribution	that	is	ε-close
to																	and																																													then	for	

(1) (2)

with	probability	at	least	1-δ

Take-away:	An	adversary	needs	to	mess	up	the	second	moment
in	order	to	corrupt	the	first	moment	
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Step	#3:	Either	find	good	parameters,	or	remove	many	outliers

Filtering	Approach:	Suppose	that:

We	can	throw	out	more	corrupted	than	uncorrupted	points

If	we	continue	too	long,	we’d	have	no	corrupted	points	left!

Eventually	we	find	(certifiably)	good	parameters	

Running	Time:	 Sample	Complexity:	
Concentration	of	LTFs
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Filtering:	Fast	and	practical
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How	about	for	unknown	covariance?
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PARAMETER	DISTANCE

Step	#1:	Find	an	appropriate	parameter	distance	for	Gaussians

Another	Basic	Fact:	

Again,	proven	using	Pinsker’s Inequality

(2)

Our	new	goal	is	to	find	an	estimate	that	satisfies:

Distance	seems	strange,	but	it’s	the	right	one	to	use	to	bound	TV
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What	if	we	are	given	samples	from														?

How	do	we	detect	if	the	naïve	estimator	is	compromised?

Key	Fact:	Let	 and

Then	restricted	to	flattenings of	d	x	d	symmetric	matrices

Proof	uses	Isserlis’s Theorem
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need	to	project	out

What	if	we	are	given	samples	from														?

How	do	we	detect	if	the	naïve	estimator	is	compromised?

Key	Fact:	Let	 and

Then	restricted	to	flattenings of	d	x	d	symmetric	matrices
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Key	Idea: Transform	the	data,	look	for	restricted	large	eigenvalues

If					were	the	true	covariance,	we	would	have	
for	inliers,	in	which	case:

would	have	small	restricted	eigenvalues

Take-away:	An	adversary	needs	to	mess	up	the	(restricted)	fourth
moment	in	order	to	corrupt	the	secondmoment	
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ASSEMBLING	THE	ALGORITHM

Given	samples	that	are	ε-close	in	total	variation	distance	to	a	
d-dimensional	Gaussian

Step	#1:	Doubling	trick

Now	use	algorithm	for	unknown	covariance

Step	#2:	(Agnostic)	isotropic	position

Now	use	algorithm	for	unknown	mean
right	distance,	in	general	case
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FURTHER	RESULTS

Use	restricted	eigenvalue	problems	to	detect	outliers

Binary	Product	Distributions:

Mixtures	of	Two	c-Balanced	Binary	Product	Distributions:

Mixtures	of	k	Spherical	Gaussians:
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Error	rates	on	synthetic	data	(unknown	mean):
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Famous	study	of	[Novembre et	al.	‘08]:	Take	top	two	singular
vectors	of	people	x	SNP	matrix	(POPRES)

-0.2

-0.1

0

0.1

0.2

0.3

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Original Data

“Genes	Mirror	Geography	in	Europe”
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10%	noise

What	robust	PCA	(via	SDPs)	finds
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no	noise

The	power	of	provably	robust	estimation:
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LOOKING	FORWARD

Can	algorithms	for	agnostically	learning	a	Gaussian	help	in
exploratory	data	analysis	in	high-dimensions?

Isn’t	this	what	we	would	have	been	doing	with	robust	statistical
estimators,	if	we	had	them	all	along?



Thanks!	Any	Questions?

Summary:
� Nearly	optimal	algorithm	for	agnostically	learning
a	high-dimensional	Gaussian

� General	recipe	using	restricted	eigenvalue	problems
� Further	applications	to	other	mixture	models
� Is	practical,	robust	statistics	within	reach?


