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The Permutahedron

Lett=[1,2,3,...n], P=conv{m(t)|is permutation}

[How many facets of P have? } exponentially many!

e.9. SCIN], & o x 21 +2+ . +[S| = [S[(S|+1)/2
Let Q = {A| Ais doubly-stochastic}

Then P is the projection of Q: P = {ATTAiIn Q}

[Yet Q has only O(n?) facets}
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Extended Formulations

The extension complexity (xc) of a polytope P is the
minimum number of facets of Q so that P = proj(Q)

e.g. xc(P) = ©(n logn)
for permutahedron

“ xc(P) = ©(logn) for a
, ; regular n-gon, but Q(vn)
for its perturbation

.................

oooooooooooooooooooo

!)

In general, P = {x |3y, (x,y) in Q}

...analogy with quantifiers in Boolean formulae
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.
Applications of EFs

In general, P = {x |3y, (x,y) in Q}

[Through EFs, we can reduce # facets exponentially! }

Hence, we can run standard LP solvers instead of
the ellipsoid algorithm

EFs often give, or are based on new combinatorial
insights

e.g. Birkhoff-von Neumann Thm and permutahedron

e.g. prove there is low-cost object, through its polytope
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Explicit, Hard Polytopes?
Definition: TSP polytope:
P = conv{1¢| F is the set of edges on a tour of K}

(If we could optimize over this polytope, then P = NP)

[Can we prove unconditionally there is no small EF? J

Caveat: this is unrelated to proving complexity l.b.s

[Yannakakis ’90]: Yes, through the nonnegative rank
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An Abridged History

Theorem [Yannakakis '90]: Any symmetric EF for
TSP or matching has size 29

...but asymmetric EFs can be more powerful

Theorem [Fiorini et al ’12]: Any EF for TSP has size
220In) (based on a 220 [ower bd for clique)

Approach: connections to non-deterministic CC
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An Abridged History Il

Theorem [Braun et al ’12]: Any EF that approximates
clique within n'2ps has size exp(n®rs)

Approach: Razborov’s rectangle corruption lemma

Theorem [Braverman, Moitra ’13]: Any EF that
approximates clique within n'-°rPs has size exp(ners)

Approach: information complexity

see also [Braun, Pokutta ’13]: reformulation using
common information, applications to avg. case
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An Abridged History Il

Theorem [Chan et al '12]: Any EF that approximates
MAXCUT within 2-eps has size n¢(log nloglog n)

Approach: reduction to Sherali-Adams

Theorem [Rothvoss ’13]: Any EF for perfect matching
has size 29" (same for TSP)

Approach: hyperplane separation lower bound
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Nonnegative Rank

rank one, nonnegative

A
[ |

S p— M, -4 -4 M.

Definition: rank*(S) is the smallest r s.t. S can be
written as the sum of r rank one, nonneg. matrices

Note: rank*(S) = rank(S), but can be much larger too!
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The Factorization Theorem

[How can we prove lower bounds on EFs? J

[Yannakakis '90]: XC(P) — rank*(S(P))
Geometric ﬁ Algebraic
Parameter Parameter

Intuition: the factorization gives a change of variables
that preserves the slack matrix!

Next we will give a method to lower bound rank* via
information complexity...
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The Rectangle Bound

rank one, nonnegative

A
[ |

+ +

[Non-deterministic Comm. Complexity }

L

rank*(S) is at least # rectangles needed to cover supp of S
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A Sampling Argument

T = {}, set of entries in S with same value

= + +

Choose M, proportional to total value on T

Choose (a,b) in T proportional to relative value in M.

[If r is too small, this procedure uses too little entropy! }
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The Construction of [Fiorini et al]

correlation polytope: P__ = conv{aa'|a in {0,1}" }

corr

vertices: a in {0,1}"

@ R

UNIQUE DISJ.
Output YES' if a
and b as sets
are disjoint, and
‘NO’ifaand b
have one index

In common
N o

constraints:
bin {0,1}" S

(1-a’b)?
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A Hard Distribution
Let T ={(a,b)|a’b =0}, |T| =3"

Recall: S, ,=(1-a'b)?, so S, =1 for all pairs in T

p
How does the sampling procedure specialize to
this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:
* Let R, be the sum of M,(a,b) over (a,b) in T and
let R be the sum of R,
* Choose i with probability R/R
e Choose (a,b) with probability M(a,b)/R 7
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Sampling Procedure:
* Let R, be the sum of M,(a,b) over (a,b) in T and

let R be the sum of R,
e Choose i with probability R/R
e Choose (a,b) with probability M.(a,b)/R;

Total Entropy: choose (a,b)

choose i conditioned on i
A |

nlog,3 < | Iogzr‘ + | (1-0)n Iog23‘ (?)
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If a=1, b=1then a'b = 1, hence M,(a,b) = 0

But rank(M.)=1, hence there must be another
zero in either the same row or column

[H(aj,bjl i, a_j, b-j) <1< |Og23 J ( ( b 1 )

(@41.;.1:8=0,a,.4 )

(@1.1.8=1,a11 )
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* Let R, be the sum of M,(a,b) over (a,b) in T and

let R be the sum of R,
e Choose i with probability R/R
e Choose (a,b) with probability M.(a,b)/R;

Total Entropy: choose (a,b)

choose i conditioned on i

| |
[ |
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Approximate EFs [Braun et al]

corr -

[ Is there a K (with small xc) s.t. P, Kc (C+1)P_,,? }

vertices: a in {0,1}"

- A

New Goal:
Output the answer to
UDISJ with prob. at
least 'z + 1/2(C+1)/

constraints:
bin {0,1}" S

AU

(1-ab)? +C
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Is the correlation polytope hard to approximate for
large values of C?

Analogy: Is UDISJ hard to compute with prob.
Y2+1/2(C+1) for large values of C?

EThere is a natural barrier at C = n for proving l.b.s: }

Claim: If UDISJ can be computed with prob.
Y2+1/2(C+1) using o(n/C?) bits, then UDISJ can be
computed with prob. ¥ using o(n) bits

Proof: Run the protocol O(C?) times and take the
majority vote
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Is the correlation polytope hard to approximate for
large values of C?

Analogy: Is UDISJ hard to compute with prob.
Y2+1/2(C+1) for large values of C?

{There is a natural barrier at C = n for proving l.b.s: }

Theorem [B-M]: Any EF that approximates clique within
n'-ers has size exp(ners)

Theorem [B-M]: Computing UDISJ with probability
Y2+1/2(C+1) requires Q(n/C) bits
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-
The Matching Polytope [Edmonds]

Poy= conv{1,,| M is a perfect matching in K}

vertices: 1y,
nstraints: ‘ o
constraints. Is there a small
U< [n] 3 rectangle covering?
with |U| = odd - J

Yes! Just guess two
edges in M, crossing
the cut

10(U)NM|-1
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Hyperplane Separation Lemma

[Rothvoss] attributed to [Fiorini]:

Lemma: For slack matrix S, any matrix W.:
. Sswp

1S]]. a

rank*(S

where a = max{W,R) s.t. R is rank one, entries in [0,1]

Proof:

(W,S) = Z[IRjl].<W, R/IIR|l.p < ar[[S]|.
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[ How do we choose W?}

11Q; if |o(U)nM
-1/Q, if |o(U)NM
. 0 else

Wym = <

e O EE

=3
=k



Theorem [Rothvoss ’13]: Any EF for perfect matching
has size 29" (same for TSP)

[ How do we choose W?}

(- if [D(U)NM| =1
1/1Q; if |0(U)NM| =3
-1/Q, if |d(U)NM| =k
. 0 else

Wym = <

Proof is a substantial modification to Razborov’s rectangle
corruption lemma
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.
Any Questions?

Summary:

e Extended formulations and Yannakakis’
factorization theorem

 Lower bound techniques: rectangle bound,
iInformation complexity, hyperplane separation

* Applications: connections between correlation
polytope and disjointness,

 Open question: Can we prove lower bounds
against general SDPs?



Thanks!



