Extended Formulations and Information Complexity

Ankur Moitra

Massachusetts Institute of Technology

Dagstuhl, March 2014

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

exponentially many!

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

exponentially many!

e.g.
$$S \subset [n]$$
, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

exponentially many!

e.g.
$$S \subset [n]$$
, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let Q = {A | A is doubly-stochastic}

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

exponentially many!

e.g.
$$S \subset [n]$$
, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let Q = {A | A is doubly-stochastic}

Then P is the projection of Q: $P = \{A \overrightarrow{t} \mid A \text{ in } Q\}$

Let
$$\overrightarrow{t} = [1, 2, 3, ... n]$$
, $P = conv\{\overrightarrow{\pi(t)} \mid \pi \text{ is permutation}\}$

How many facets of P have?

exponentially many!

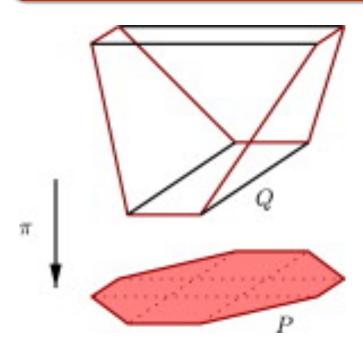
e.g.
$$S \subset [n]$$
, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let Q = {A | A is doubly-stochastic}

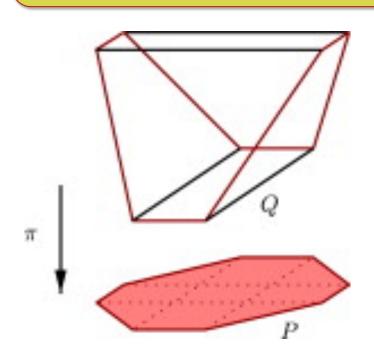
Then P is the projection of Q: $P = \{A \overrightarrow{t} \mid A \text{ in } Q\}$

Yet Q has only O(n²) facets

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that P = proj(Q)

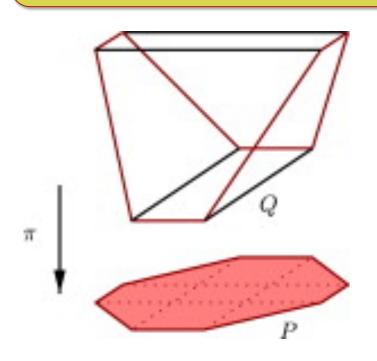


The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that P = proj(Q)



e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

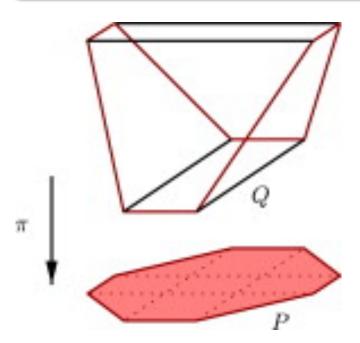
The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that P = proj(Q)



e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

xc(P) = Θ (logn) for a regular n-gon, but Ω (\sqrt{n}) for its perturbation

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that P = proj(Q)

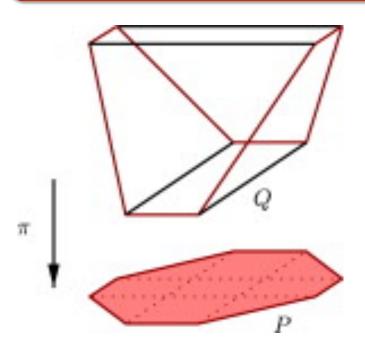


e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

xc(P) = Θ (logn) for a regular n-gon, but Ω (\sqrt{n}) for its perturbation

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that P = proj(Q)



e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

 $xc(P) = \Theta(logn)$ for a regular n-gon, but $\Omega(\sqrt{n})$ for its perturbation

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

...analogy with quantifiers in Boolean formulae

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

e.g. Birkhoff-von Neumann Thm and permutahedron

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

- e.g. Birkhoff-von Neumann Thm and permutahedron
- e.g. prove there is low-cost object, through its polytope

Definition: TSP polytope:

 $P = conv\{1_F | F \text{ is the set of edges on a tour of } K_n\}$

Definition: TSP polytope:

 $P = conv\{1_F | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Definition: TSP polytope:

 $P = conv\{1_F | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove unconditionally there is no small EF?

Definition: TSP polytope:

 $P = conv\{1_F | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove unconditionally there is no small EF?

Caveat: this is unrelated to proving complexity I.b.s

Definition: TSP polytope:

 $P = conv\{1_F | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove unconditionally there is no small EF?

Caveat: this is unrelated to proving complexity I.b.s

[Yannakakis '90]: Yes, through the nonnegative rank

Theorem [Yannakakis '90]: Any symmetric EF for TSP or matching has size $2^{\Omega(n)}$

Theorem [Yannakakis '90]: Any symmetric EF for TSP or matching has size $2^{\Omega(n)}$

...but asymmetric EFs can be more powerful

Theorem [Yannakakis '90]: Any symmetric EF for TSP or matching has size $2^{\Omega(n)}$

...but asymmetric EFs can be more powerful

• •

Theorem [Yannakakis '90]: Any symmetric EF for TSP or matching has size $2^{\Omega(n)}$

...but asymmetric EFs can be more powerful

• • •

Theorem [Fiorini et al '12]: Any EF for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Approach: connections to non-deterministic CC

Theorem [Braun et al '12]: Any EF that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Approach: Razborov's rectangle corruption lemma

Theorem [Braun et al '12]: Any EF that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Approach: Razborov's rectangle corruption lemma

Theorem [Braverman, Moitra '13]: Any EF that approximates clique within n^{1-eps} has size exp(n^{eps})

Approach: information complexity

Theorem [Braun et al '12]: Any EF that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Approach: Razborov's rectangle corruption lemma

Theorem [Braverman, Moitra '13]: Any EF that approximates clique within n^{1-eps} has size exp(n^{eps})

Approach: information complexity

see also [Braun, Pokutta '13]: reformulation using common information, applications to avg. case

Theorem [Chan et al '12]: Any EF that approximates MAXCUT within 2-eps has size $n^{\Omega(\log n/\log\log n)}$

Approach: reduction to Sherali-Adams

Theorem [Chan et al '12]: Any EF that approximates MAXCUT within 2-eps has size $n^{\Omega(\log n/\log\log n)}$

Approach: reduction to Sherali-Adams

Theorem [Rothvoss '13]: Any EF for perfect matching has size $2^{\Omega(n)}$ (same for TSP)

Approach: hyperplane separation lower bound

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

How can we prove lower bounds on EFs?

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

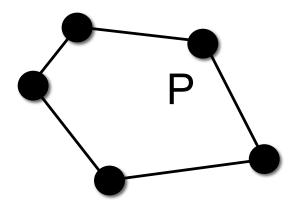
How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

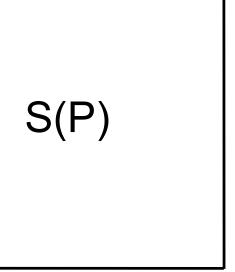
Algebraic Parameter

Definition of the slack matrix...

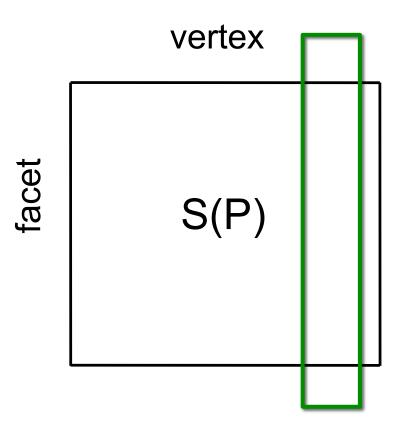


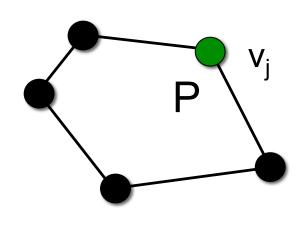
vertex

facet

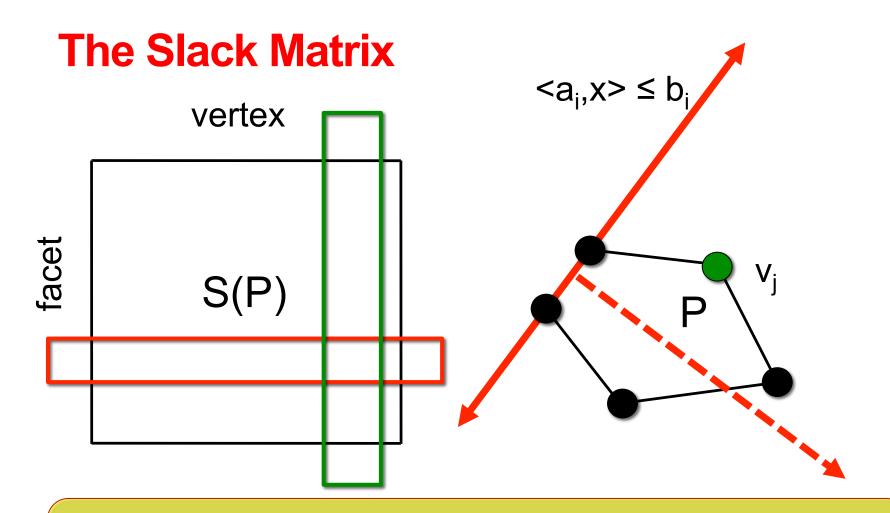




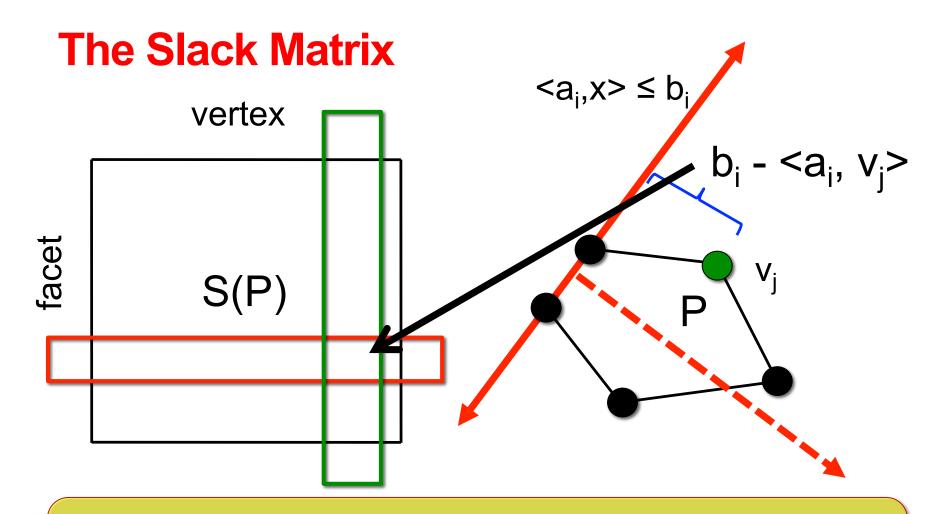




The Slack Matrix $< a_i, x > \le b_i$ vertex facet S(P)



The entry in row i, column j is how *slack* the jth vertex is on the ith constraint



The entry in row i, column j is how *slack* the jth vertex is on the ith constraint

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

Definition of the slack matrix...

How can we prove lower bounds on EFs?

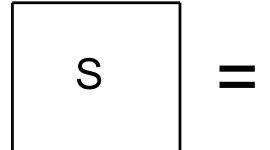
[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

Definition of the slack matrix...

Definition of the **nonnegative rank**...



$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} M_1 \\ + \dots \end{bmatrix} + \begin{bmatrix} M_r \\ \end{bmatrix}$$

rank one, nonnegative

Definition: rank⁺(S) is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

rank one, nonnegative

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} M_1 \\ + \dots \end{bmatrix} + \begin{bmatrix} M_r \\ \end{bmatrix}$$

Definition: rank⁺(S) is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

Note: rank⁺(S) ≥ rank(S), but can be much larger too!

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

How can we prove lower bounds on EFs?

[Yannakakis '90]: $xc(P) = rank^{+}(S(P))$

Geometric Parameter

Algebraic Parameter

How can we prove lower bounds on EFs?

[Yannakakis '90]: $xc(P) = rank^{+}(S(P))$

Geometric Parameter

Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

How can we prove lower bounds on EFs?

[Yannakakis '90]: $xc(P) = rank^{+}(S(P))$

Geometric Parameter

Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

Next we will give a method to lower bound rank* via information complexity...

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

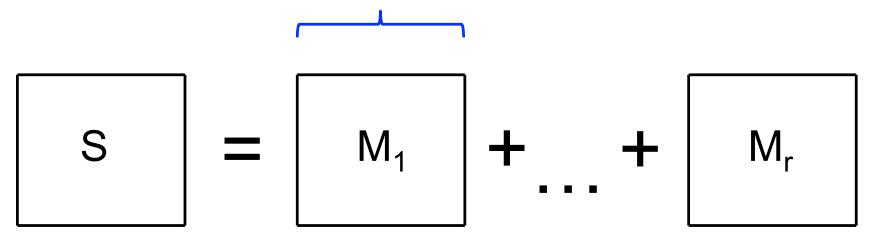
Outline

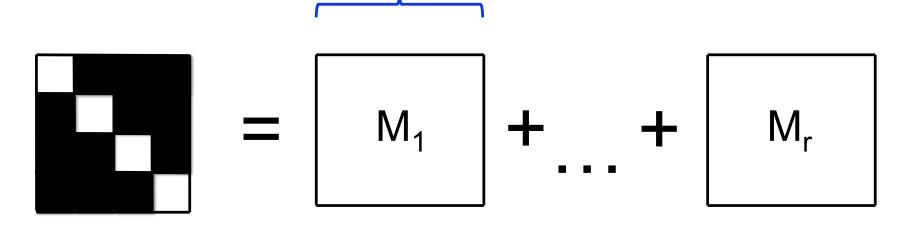
Part I: Tools for Extended Formulations

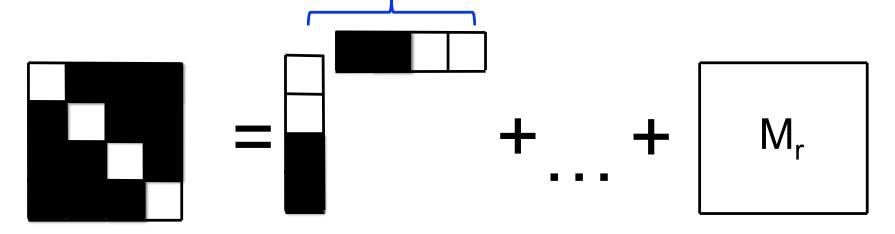
- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

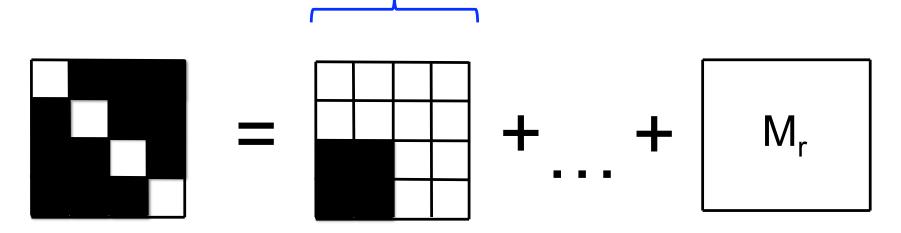
Part II: Applications

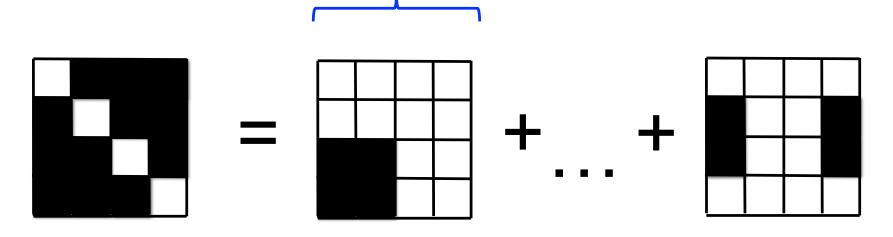
- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope



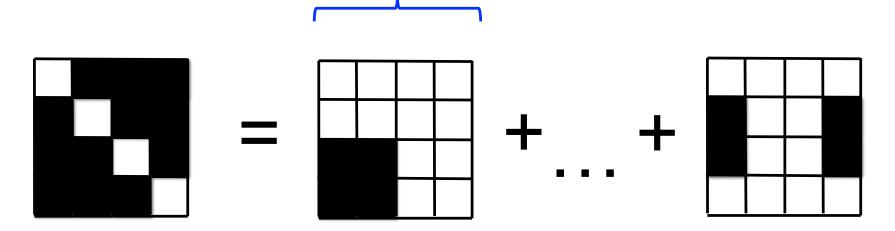






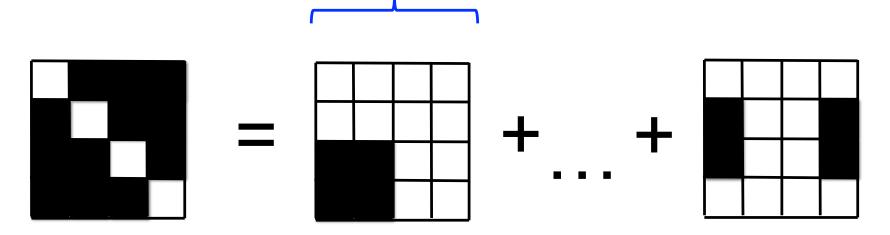


rank one, nonnegative



The support of each M_i is a combinatorial rectangle

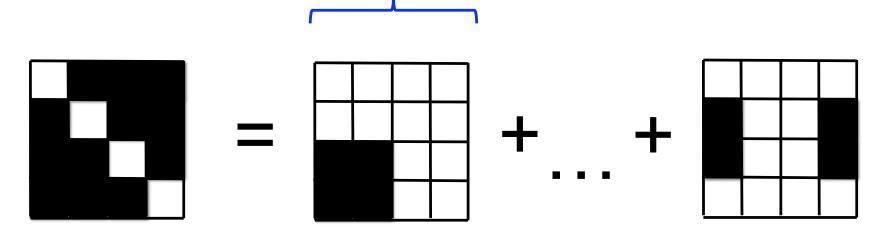
rank one, nonnegative



The support of each M_i is a combinatorial rectangle

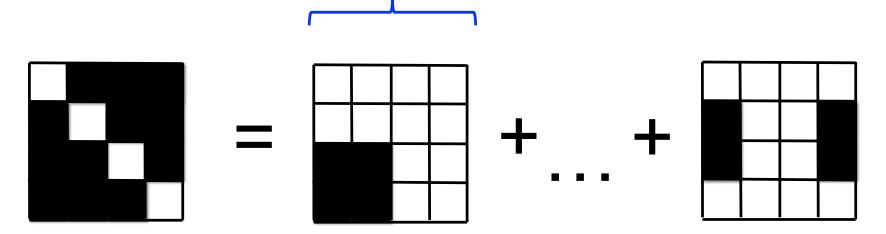
rank+(S) is at least # rectangles needed to cover supp of S

rank one, nonnegative



rank+(S) is at least # rectangles needed to cover supp of S

rank one, nonnegative



Non-deterministic Comm. Complexity

rank+(S) is at least # rectangles needed to cover supp of S

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

Outline

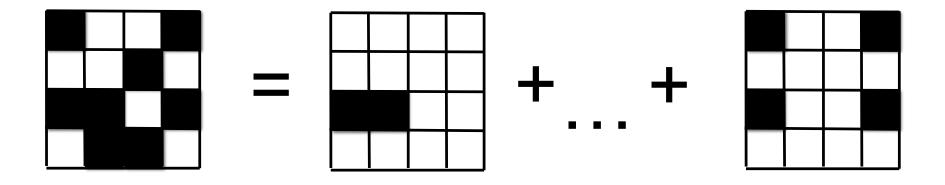
Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

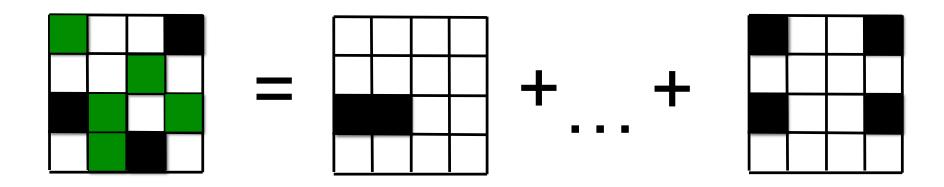
Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

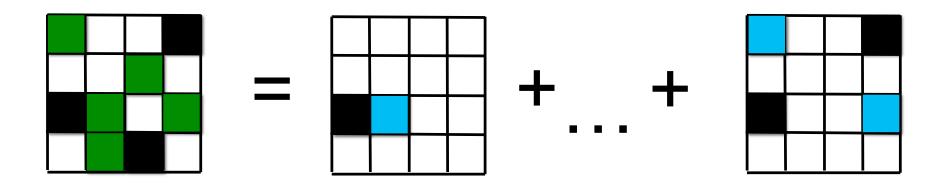
A Sampling Argument



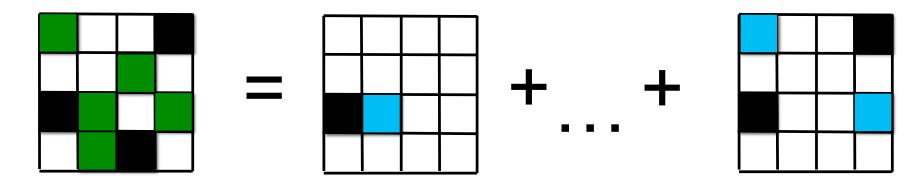
T = { }, set of entries in S with same value



T = { }, set of entries in S with same value

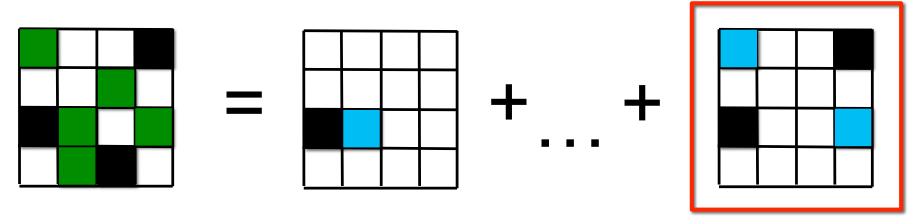


T = { }, set of entries in S with same value



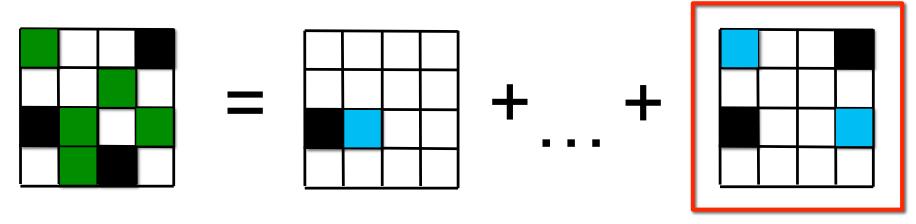
Choose M_i proportional to total value on T

T = { }, set of entries in S with same value



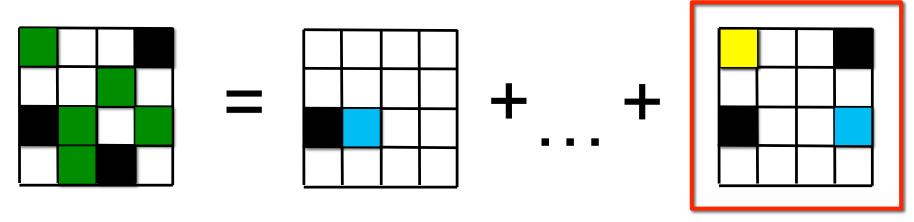
Choose M_i proportional to total value on T

T = { }, set of entries in S with same value



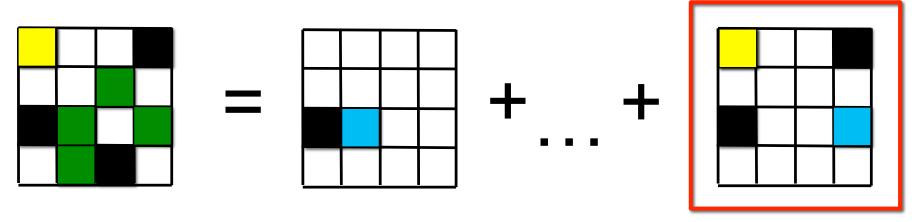
Choose M_i proportional to total value on T

T = { }, set of entries in S with same value



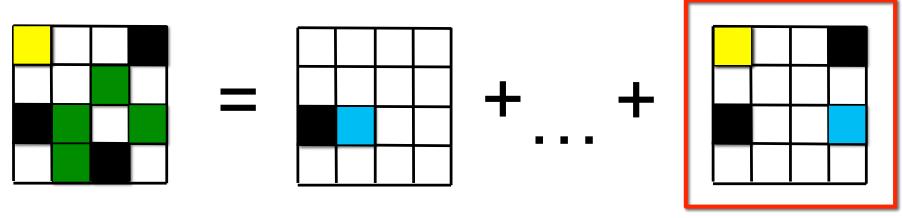
Choose M_i proportional to total value on T

T = { }, set of entries in S with same value



Choose M_i proportional to total value on T

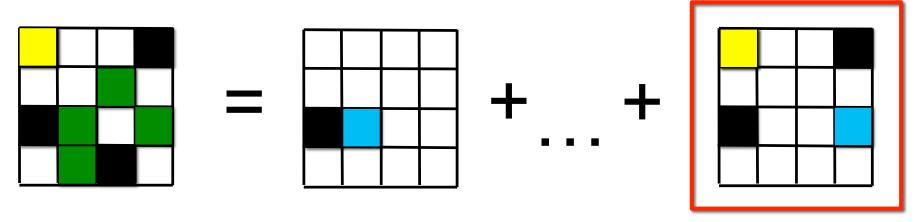
T = { }, set of entries in S with same value



Choose M_i proportional to total value on T Choose (a,b) in T proportional to relative value in M_i

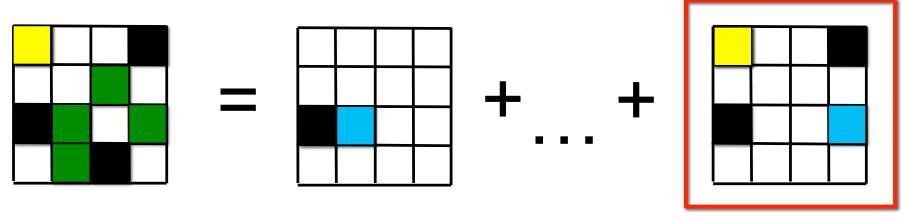
This outputs a uniformly random sample from T

T = { }, set of entries in S with same value



Choose M_i proportional to total value on T

T = { }, set of entries in S with same value



Choose M_i proportional to total value on T Choose (a,b) in T proportional to relative value in M_i

If r is too small, this procedure uses too little entropy!

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

vertices:

constraints:

S

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

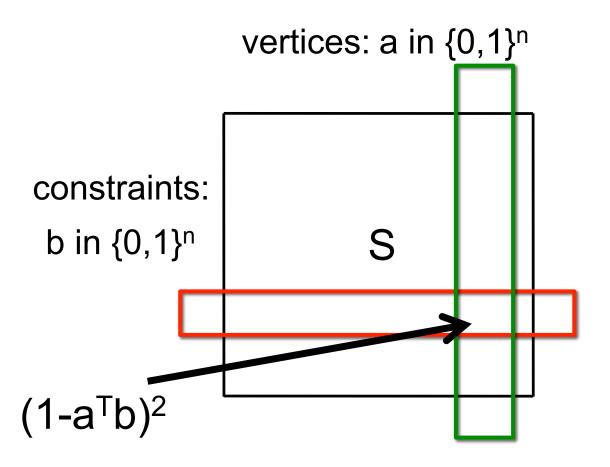
vertices: a in {0,1}ⁿ

constraints:

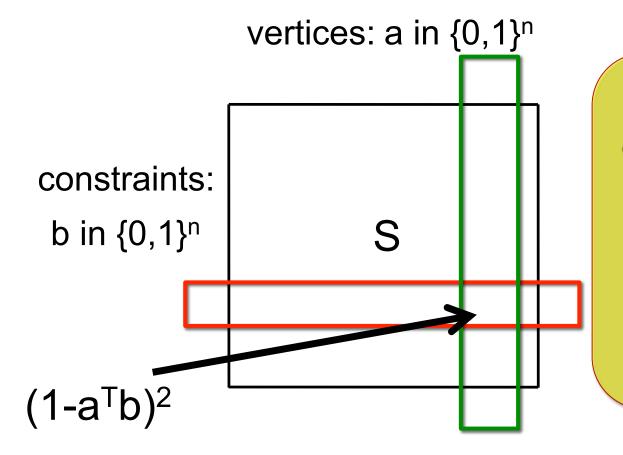
b in $\{0,1\}^n$

S

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$



correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$



UNIQUE DISJ.

Output 'YES' if a and b as sets are disjoint, and 'NO' if a and b have one index in common

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

$$(1-a^{T}b)^{2} = 1 - 2a^{T}b + (a^{T}b)^{2}$$

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

$$(1-a^{T}b)^{2} = 1 - 2a^{T}b + (a^{T}b)^{2}$$

= 1 - 2 \left\(\delta\text{diag(b),aa^{T}}\right\) + \left\(\delta\text{bb}^{T},aa^{T}\right\)

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

$$(1-a^{T}b)^{2} = 1 - 2a^{T}b + (a^{T}b)^{2}$$

= 1 - 2 \left\{diag(b),aa^{T}\right\} + \left\{bb^{T},aa^{T}\right\}
1 \geq \left\{2diag(b) - bb^{T},aa^{T}\right\}

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

Why is that (a sub-matrix of) the slack matrix?

$$(1-a^{T}b)^{2} = 1 - 2a^{T}b + (a^{T}b)^{2}$$

= 1 - 2 \left\{diag(b),aa^{T}\right\} + \left\{bb^{T},aa^{T}\right\}
1 \geq \left\{2diag(b) - bb^{T},aa^{T}\right\}

What is the slack?

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n \}$

Why is that (a sub-matrix of) the slack matrix?

$$(1-a^{T}b)^{2} = 1 - 2a^{T}b + (a^{T}b)^{2}$$

= 1 - 2 \left\{diag(b),aa^{T}\right\} + \left\{bb^{T},aa^{T}\right\}
1 \geq \left\{2diag(b) - bb^{T},aa^{T}\right\}

What is the slack? $(1-a^Tb)^2$

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

How does the sampling procedure **specialize** to this case? (Recall it generates (a,b) unif. from T)

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b}=(1-a^Tb)^2$, so $S_{a,b}=1$ for all pairs in T

How does the sampling procedure **specialize** to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:
7

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

How does the sampling procedure **specialize** to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

 Let R_i be the sum of M_i(a,b) over (a,b) in T and let R be the sum of R_i

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b}=(1-a^Tb)^2$, so $S_{a,b}=1$ for all pairs in T

How does the sampling procedure **specialize** to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

- Let R_i be the sum of M_i(a,b) over (a,b) in T and let R be the sum of R_i
- Choose i with probability R_i/R

Let
$$T = \{(a,b) \mid a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b}=(1-a^Tb)^2$, so $S_{a,b}=1$ for all pairs in T

How does the sampling procedure **specialize** to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

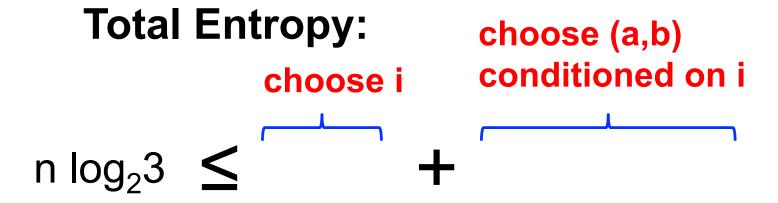
- Let R_i be the sum of M_i(a,b) over (a,b) in T and let R be the sum of R_i
- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
 Choose i with probability R_i/R
 Choose (a,b) with probability M_i(a,b)/R_i

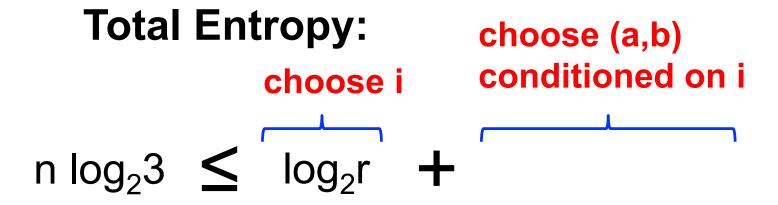
Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
• Choose i with probability R _i /R
 Choose (a,b) with probability M_i(a,b)/R_i

Total Entropy:

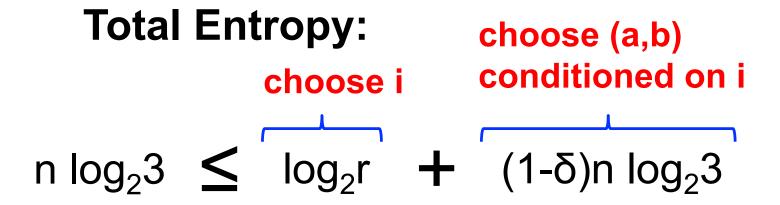
Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
• Choose i with probability R _i /R
 Choose (a,b) with probability M_i(a,b)/R_i



Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
• Choose i with probability R _i /R
 Choose (a,b) with probability M_i(a,b)/R_i

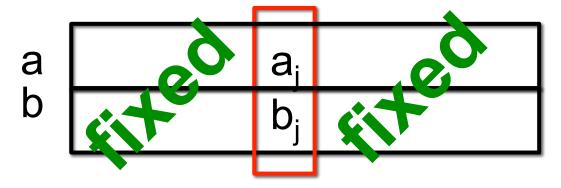


Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
 Choose i with probability R_i/R
 Choose (a,b) with probability M_i(a,b)/R_i

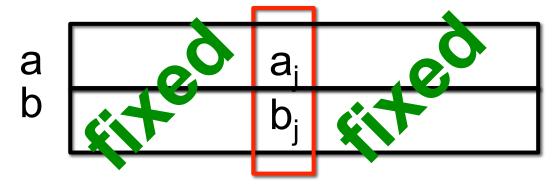


Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
• Choose i with probability R _i /R
 Choose (a,b) with probability M_i(a,b)/R_i

Suppose that a_{-j} and b_{-j} are **fixed**

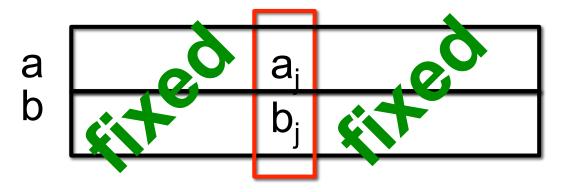


Suppose that a_{-j} and b_{-j} are **fixed**



M_i restricted to (a_{-j},b_{-j})

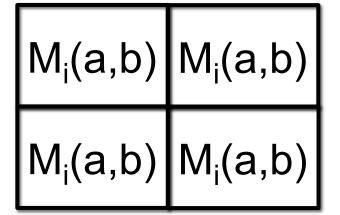
Suppose that a_{-j} and b_{-j} are **fixed**



 M_i restricted to (a_{-j},b_{-j}) $(...b_i=0...)$ $(...b_i=1...)$

$$(a_{1..j-1},a_j=0,a_{j+1...n})$$

$$(a_{1..j-1}, a_j = 1, a_{j+1...n})$$



If $a_i=1$, $b_i=1$ then $a^Tb=1$, hence $M_i(a,b)=0$

If $a_i=1$, $b_i=1$ then $a^Tb=1$, hence $M_i(a,b)=0$

$$(...b_{j}=0...)$$
 $(...b_{j}=1...)$ $(a_{1..j-1},a_{j}=0,a_{j+1...n})$ $M_{i}(a,b)$ $M_{i}(a,b)$ $M_{i}(a,b)$ $M_{i}(a,b)$ $M_{i}(a,b)$ zero

If $a_i = 1$, $b_i = 1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

$$(...b_{j}=0...) (...b_{j}=1...)$$

$$(a_{1..j-1},a_{j}=0,a_{j+1...n}) \qquad M_{i}(a,b) \qquad M_{i}(a,b)$$

$$(a_{1..j-1},a_{j}=1,a_{j+1...n}) \qquad M_{i}(a,b) \qquad \textbf{zero}$$

If $a_i = 1$, $b_i = 1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

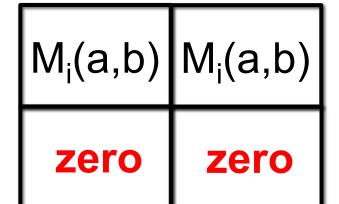
If $a_i = 1$, $b_i = 1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

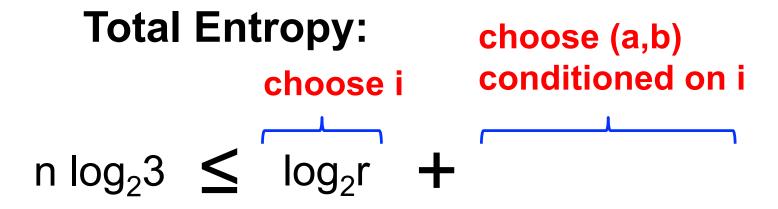
$$H(a_j,b_j|i,a_{-j},b_{-j}) \le 1 < log_2 3$$
 $(...b_j=0...) (...b_j=1...)$

$$(a_{1..j-1},a_j=0,a_{j+1...n})$$

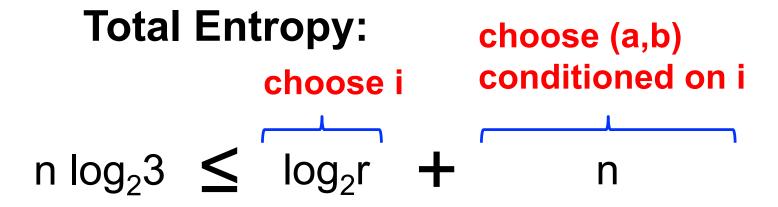
$$(a_{1..j-1},a_j=1,a_{j+1...n})$$



Generate uniformly random (a,b) in T:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
 Choose i with probability R_i/R
 Choose (a,b) with probability M_i(a,b)/R_i



Generate uniformly random (a,b) in T:	
 Let R_i be the sum of M_i(a,b) over (a,b) in T and 	k
let R be the sum of R _i	
 Choose i with probability R_i/R 	
 Choose (a,b) with probability M_i(a,b)/R_i 	



Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

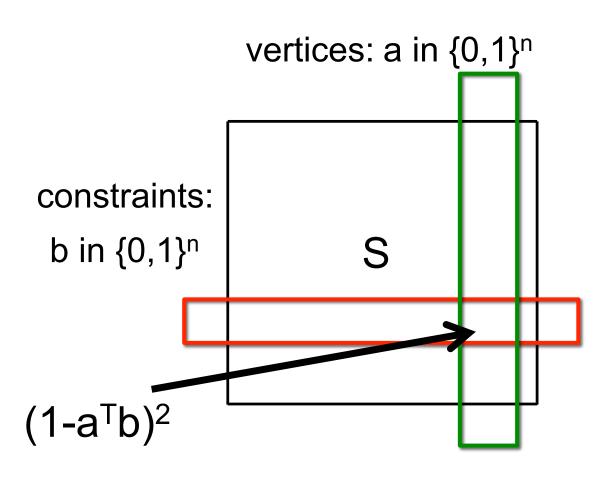
Outline

Part I: Tools for Extended Formulations

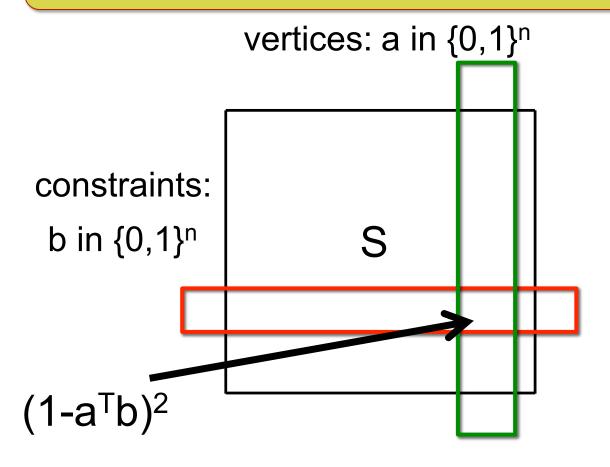
- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

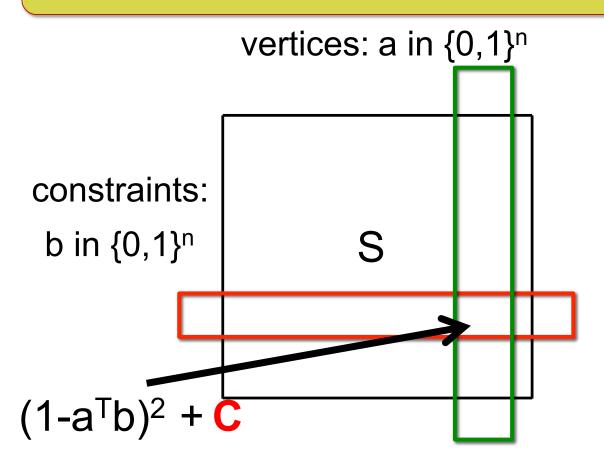
- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope



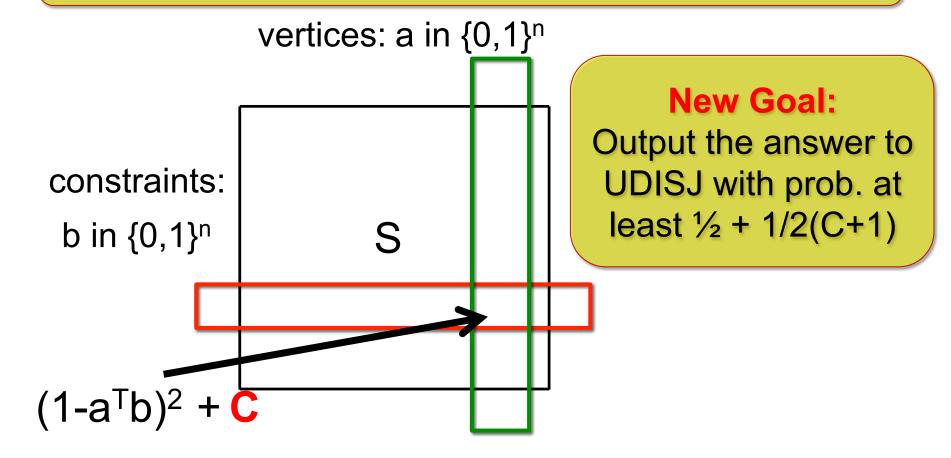
Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?



Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?



Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?



Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Analogy: Is UDISJ hard to compute with prob.

 $\frac{1}{2}$ +1/2(C+1) for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Claim: If UDISJ can be computed with prob. ½+1/2(C+1) using o(n/C²) bits, then UDISJ can be computed with prob. ¾ using o(n) bits

Analogy: Is UDISJ hard to compute with prob.

 $\frac{1}{2}$ +1/2(C+1) for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Claim: If UDISJ can be computed with prob. ½+1/2(C+1) using o(n/C²) bits, then UDISJ can be computed with prob. ¾ using o(n) bits

Proof: Run the protocol O(C²) times and take the majority vote

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Corollary [from K-S]: Computing UDISJ with probability $\frac{1}{2}+\frac{1}{2}(C+1)$ requires $\Omega(n/C^2)$ bits

Analogy: Is UDISJ hard to compute with prob. ½+1/2(C+1) for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Corollary [from K-S]: Computing UDISJ with probability $\frac{1}{2}+\frac{1}{2}(C+1)$ requires $\Omega(n/C^2)$ bits

Theorem [B-M]: Computing UDISJ with probability $\frac{1}{2}+\frac{1}{2}(C+1)$ requires $\Omega(n/C)$ bits

Analogy: Is UDISJ hard to compute with prob. ½+1/2(C+1) for large values of C?

There is a natural barrier at $C = \sqrt{n}$ for proving l.b.s:

Theorem [B-M]: Any EF that approximates clique within n^{1-eps} has size $exp(n^{eps})$

Theorem [B-M]: Computing UDISJ with probability $\frac{1}{2}+\frac{1}{2}(C+1)$ requires $\Omega(n/C)$ bits

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

Outline

Part I: Tools for Extended Formulations

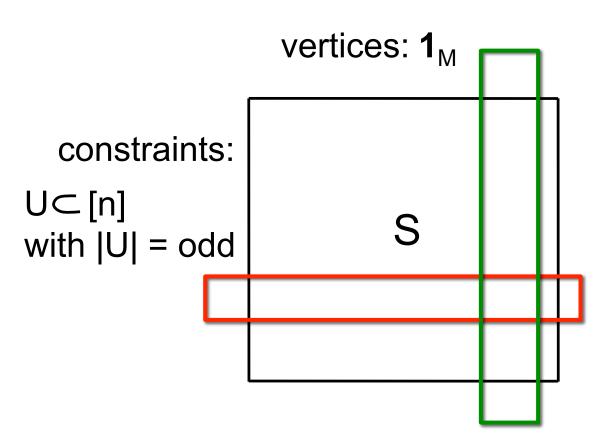
- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

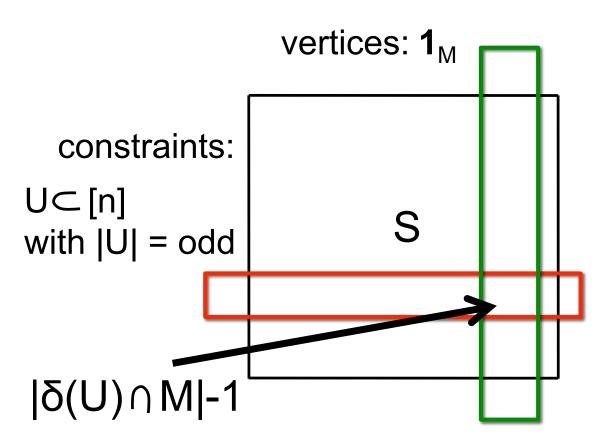
- Correlation Polytope
- Approximating the Correlation Polytope
- Matching Polytope

 P_{PM} = conv{ $\mathbf{1}_{M}$ | M is a perfect matching in K_n }

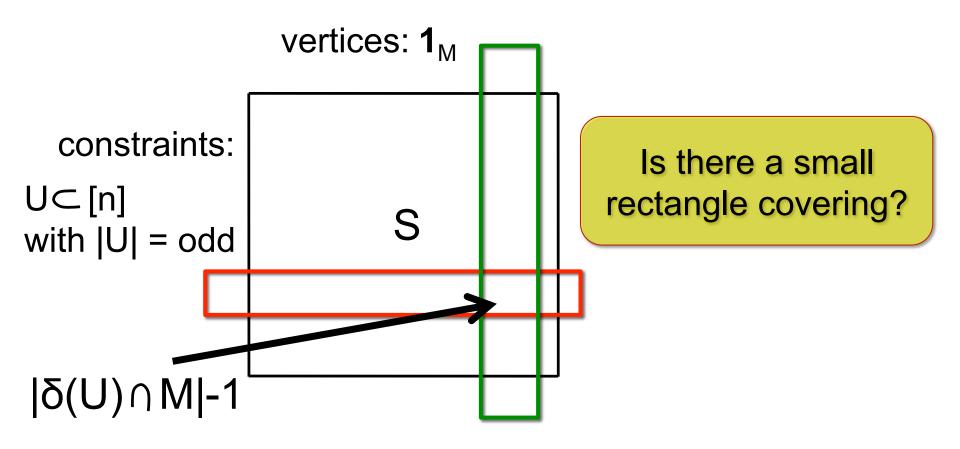
 P_{PM} = conv{ $\mathbf{1}_{M}$ | M is a perfect matching in K_n }



 P_{PM} = conv{ $\mathbf{1}_{M}$ | M is a perfect matching in K_n }

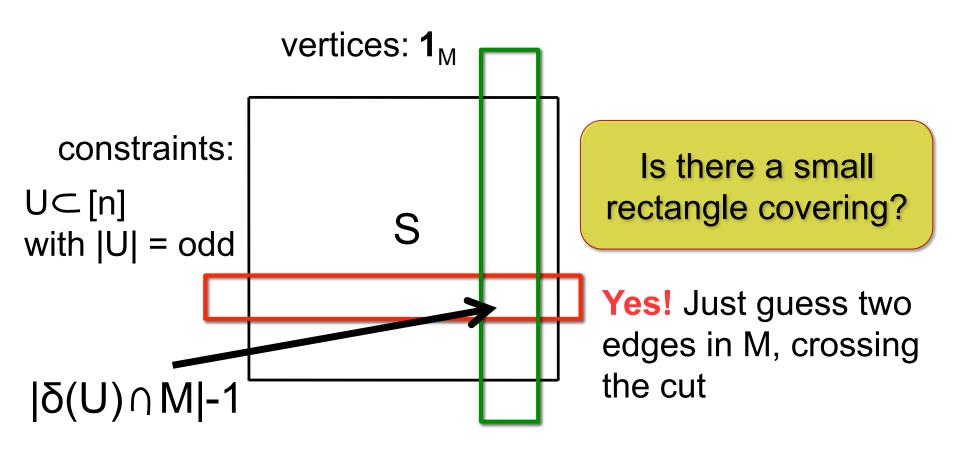


 P_{PM} = conv{ $\mathbf{1}_{M}$ | M is a perfect matching in K_n }



The Matching Polytope [Edmonds]

 P_{PM} = conv{ $\mathbf{1}_{M}$ | M is a perfect matching in K_n }



Hyperplane Separation Lemma

[Rothvoss] attributed to [Fiorini]:

Hyperplane Separation Lemma

[Rothvoss] attributed to [Fiorini]:

Lemma: For slack matrix S, any matrix W:

$$rank^{+}(S) \geq \frac{\langle S, W \rangle}{||S||_{\infty} \alpha}$$

where $\alpha = \max \langle W, R \rangle$ s.t. R is rank one, entries in [0,1]

Hyperplane Separation Lemma

[Rothvoss] attributed to [Fiorini]:

Lemma: For slack matrix S, any matrix W:

$$rank^{+}(S) \ge \frac{\langle S, W \rangle}{||S||_{\infty} \alpha}$$

where $\alpha = \max \langle W, R \rangle$ s.t. R is rank one, entries in [0,1]

Proof:

$$\langle W,S \rangle = \sum ||R_i||_{\infty} \langle W, R_i/||R_i||_{\infty} \rangle \leq \alpha r ||S||_{\infty}$$

How do we choose W?

How do we choose W?

$$W_{U,M} = \begin{cases} -\infty & \text{if } |\delta(U) \cap M| = 1 \\ 1/Q_3 & \text{if } |\delta(U) \cap M| = 3 \\ -1/Q_k & \text{if } |\delta(U) \cap M| = k \\ 0 & \text{else} \end{cases}$$

How do we choose W?

$$W_{\mathsf{U},\mathsf{M}} = \begin{cases} -\infty & \text{if } |\delta(\mathsf{U}) \cap \mathsf{M}| = 1\\ 1/\mathsf{Q}_3 & \text{if } |\delta(\mathsf{U}) \cap \mathsf{M}| = 3\\ -1/\mathsf{Q}_k & \text{if } |\delta(\mathsf{U}) \cap \mathsf{M}| = k\\ 0 & \text{else} \end{cases}$$

Proof is a substantial modification to Razborov's rectangle corruption lemma

• Extended formulations and Yannakakis' factorization theorem

- Extended formulations and Yannakakis' factorization theorem
- Lower bound techniques: rectangle bound, information complexity, hyperplane separation

- Extended formulations and Yannakakis' factorization theorem
- Lower bound techniques: rectangle bound, information complexity, hyperplane separation
- Applications: connections between correlation polytope and disjointness,

- Extended formulations and Yannakakis' factorization theorem
- Lower bound techniques: rectangle bound, information complexity, hyperplane separation
- Applications: connections between correlation polytope and disjointness,
- Open question: Can we prove lower bounds against general SDPs?

Any Questions?

- Extended formulations and Yannakakis' factorization theorem
- Lower bound techniques: rectangle bound, information complexity, hyperplane separation
- Applications: connections between correlation polytope and disjointness,
- Open question: Can we prove lower bounds against general SDPs?

Thanks!

