

Unsupervised Joint Object Discovery and Segmentation in Internet Images

Object Discovery and Segmentation

Goal: Automatically segment out the common object in a set of images, without additional info on the images or the object

Challenges in Internet datasets: (a) Extreme variation in appearance (color, texture, shape, pose, size, location, ...) (b) Many *noise* images (image not containing the common object)

This paper: An unsupervised algorithm that can segment the common visual category(ies) in *noisy* image datasets. Performs considerably better than previous co-segmentation methods on Internet datasets.

Basic Idea: Jointly discover and segment the object in all the images!

Pixels (features) belonging to the common object should be:

(a) Salient - dissimilar to other pixels (features) in <u>their image</u> (b) **Sparse** - similar to other pixels (features)

saliency measures

Captured by (dense) image correspondence

Captured by image

in <u>other images</u>

Input: image dataset $I = \{I_1, \dots I_N\}$ <u>Output</u>: binary masks $B = \{b_1, \dots, b_N\}$, $b_i(x) = 1 \rightarrow$ Foreground (the common object) $\boldsymbol{b}_i(\boldsymbol{x}) = 0 \rightarrow \text{Background}$ (not the object)

Foreground likelihood (data term):

$$\Phi^{i}(\boldsymbol{x}) = \begin{cases} \Phi^{i}_{saliency}(\boldsymbol{x}) + \lambda_{match} \Phi^{i}_{match}(\boldsymbol{x}), & \boldsymbol{b}_{i}(\boldsymbol{x}) = 1 \\ \beta, & \boldsymbol{b}_{i}(\boldsymbol{x}) = 0 \end{cases} \qquad \Phi^{i}_{saliency}(\boldsymbol{x}) = -\log M_{i}(\boldsymbol{x}) \qquad \Phi^{i}_{match}(\boldsymbol{x}) \\ \boldsymbol{b}_{i}(\boldsymbol{x}) = 0 \end{cases}$$

 M_i - Saliency maps computed with an off-the-shelf measure [Cheng11] dataset-wide normalized)

Objective function:

$$E(B; W, H) = \sum_{i=1}^{N} \sum_{x \in \Lambda_i} \left(\Phi^i(x) + \lambda_{color} \Phi^i_{color}(x, h_i) + \sum_{y \in N_x^i} \lambda_{int} \Psi^i_{int}(x, y) + \sum_{j \in N_i} \lambda_{ext} \Psi^i$$

$$\Phi_{color}^{i}(x, h_{i}) = -\log h_{i}^{b_{i}(x)}(x)$$
3D histograms in color space
$$\Psi_{int}^{i}(x, y) = [b_{i}(x) \neq b_{i}(y)] \exp(-\|I_{i}(x) - I_{i}(y)\|_{2}^{2})$$

$$\Psi_{ext}^{ij}(x, z) = [b_{i}(x) \neq b_{j}(z)] \exp(-\|S_{i}(x) - S_{j}(z)\|_{1})$$

$$z = x + w_{ij}(x)$$
Large-scale graphical model connecting similar images and corresponding pixels

Image correspondence:

$$E(\boldsymbol{w}_{ij}; \boldsymbol{b}_i, \boldsymbol{b}_j) = \sum_{\boldsymbol{x} \in \Lambda_i} \boldsymbol{b}_i(\boldsymbol{x}) \left(\boldsymbol{b}_j(\boldsymbol{x} + \boldsymbol{w}_{ij}(\boldsymbol{x})) \| S_i(\boldsymbol{x}) - S_j(\boldsymbol{x} + \boldsymbol{w}_{ij}(\boldsymbol{x})) \|_1 + \left(1 - \boldsymbol{b}_j(\boldsymbol{x} + \boldsymbol{w}_{ij}(\boldsymbol{x})) \right) C_0 + \sum_{\boldsymbol{y} \in N_x^i} \alpha \| \boldsymbol{w}_{ij}(\boldsymbol{x}) - \boldsymbol{w}_{ij}(\boldsymbol{y}) \|_2 \right)$$

Michael Rubinstein^{1,3}

Armand Joulin^{2,3} ²INRIA ¹MIT CSAIL

Our automatic segmentation results

Recent co-segmentation results [Joulin12]

- Dense SIFT descriptors of image I_i w_{ii} - Pixel correspondence $I_i \rightarrow I$ - Nearest neighbors of image *I_i* (dataset-wide normalized)

r-image regularization

A Small Test Case

Results on Standard Co-segmentation Datasets

- Standard co-segmentation datasets are too simple!
- Can get good (state-of-the-art) accuracy without co-segmentation: $\lambda_{match} = 0, \lambda_{ext} = 0$

[Joulin10] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. CVPR, 2010 [Joulin12] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation. CVPR, 2012 G. Kim, E. Xing, L. Fei-Fei, and T. Kanade. Distributed cosegmentation via submodular optimization on anisotropic [Kim11] diffusion. ICCV, 2011

[Vicente11] S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmentation. CVPR, 2011 [Cheng11] M. Cheng, G. Zhang, N. Mitra, X. Huang, and S. Hu. Global contrast based salient region detection. CVPR, 2011

Image Correspondence and Nearest Neighbors

Neighbor image Foreground estimates Weighted Sift flow and warped neighbor

Johannes Kopf³ ³Microsoft Research

Ce Liu³

Method $70.6 \quad 85.34 \quad 62.04$ 90.2 [Vicente11] Ours

iCoseg

Results on Internet Datasets

	With corr.	83.3	8 63.30	6 83.6	9 53.89	86.14	55.	
		4,	4,347 images		6,381 images		4,542 images	
Co	mparison with rec	ent co-seg m	ethods (100 ra	andomly sele	ected images fr	rom each data	set):	
	Method	Car (Car (11%)		Horse (7%)		Airplane (18)	
		P	J	P	J	P	J	
ł	Baseline 1	68.91	0	81.54	0	87.48	0	
ł	$\begin{array}{c c} \text{Baseline } 2 \end{array}$	31.09	34.93	18.46	19.85	12.52	15.2	
	[Joulin10]	58.7	37.15	63.84	30.16	49.25	15.3	
	[Joulin12]	59.2	35.15	64.22	29.53	47.48	11.	
	[Kim11]	68.85	0.04	75.12	6.43	80.2	7.9	
	Ours	85.38	64.42	82.81	51.65	88.04	55.8	