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Nearest neighbor ordering using standard Gist
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Basic Idea: Jointly discover and segment the object in all the images!

Pixels (features) belonging to the common object should be:

(a) Salient - dissimilar to other pixels (features)
       in their image
(b) Sparse - similar to other pixels (features)
       in other images

Intra-image regularization

Captured by image
saliency measures

Captured by (dense)
image correspondence

Inter-image regularization

Foreground likelihood (data term):

Image correspondence:

Objective function:

Per-image F/B color modelLikelihood

Goal: Automatically segment out the common object in a set of images, without additional info on the images or the object

Challenges in Internet datasets: (a) Extreme variation in appearance (color, texture, shape, pose, size, location, ...)
(b) Many noise images (image not containing the common object)

- Saliency maps computed with an 
  off-the-shelf measure [Cheng11]

(dataset-wide normalized)

- Dense SIFT descriptors of image 
- Pixel correspondence 

(dataset-wide normalized)
- Nearest neighbors of image 

Input: image dataset

Output: binary masks          ,       Foreground (the common object)
                  Background (not the object)

3D histograms in color space

(with respect to smooth transformations between the images)

This paper: An unsupervised algorithm that can segment the common 
visual category(ies) in noisy image datasets. Performs considerably 
better than previous co-segmentation methods on Internet datasets.

Large-scale graphical model 
connecting similar images 
and corresponding pixels

Noise level
(% images not containing the common object)

A Small Test Case
1 3 4 52

So
ur

ce
Sa

lie
nc

y
N

ei
gh

bo
r w

ar
pe

d
M

at
ch

in
g

Se
gm

en
ta

tio
n

1 2 3 4 5

Results on Internet Datasets
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Method Car (11%) Horse (7%) Airplane (18%)
P J P J P J

Baseline 1 68.91 0 81.54 0 87.48 0
Baseline 2 31.09 34.93 18.46 19.85 12.52 15.26
[Joulin10] 58.7 37.15 63.84 30.16 49.25 15.36
[Joulin12] 59.2 35.15 64.22 29.53 47.48 11.72
[Kim11] 68.85 0.04 75.12 6.43 80.2 7.9
Ours 85.38 64.42 82.81 51.65 88.04 55.81

Method Car (7.5%) Horse (7.8%) Airplane (16%)
P J P J P J

Without corr. 72.25 46.10 74.88 50.06 80.53 51.18
With corr. 83.38 63.36 83.69 53.89 86.14 55.62

Quantitative results with and without utilizing image correspondences:

Comparison with recent co-seg methods (100 randomly selected images from each dataset):
4,542 images4,347 images 6,381 images
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[Cheng11] M. Cheng, G. Zhang, N. Mitra, X. Huang, and S. Hu. Global contrast based salient region detection. CVPR, 2011

Results on Standard Co-segmentation Datasets
• Standard co-segmentation datasets are too simple!
• Can get good (state-of-the-art) accuracy without co-segmentation:

MSRC iCoseg

Method MSRC iCoseg
P̄ J̄ P̄ J̄

[Vicente11] 90.2 70.6 85.34 62.04
Ours 92.16 74.7 89.6 67.63

Comparison with “Object Cosegmentation”:

Image Correspondence and Nearest Neighbors
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