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Assumptions:
a) Each word has distinct visual appearance
b) Neighboring pixels in an image tend to have the same annotation
c) Similar visual patterns across different images should have similar annotation
d) Tags and tag co-occurrences which are more frequent in the database are also more probable

Formulation

Image graph for LabelMe Outdoors (LMO)

- dense correspondence

Input: Images vocabulary 
Partial annotations: - tagged images + their tags, - labeled images + their labels

Output: Labeling s.t. for pixel , 
Tags defined directly as the set union of pixel labels

Local evidence Intra-image regularization Inter-image regularization
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Input Output

Prior Work This Work
 Large training set of densely labeled images  Weakly supervised setup: use both image tags (cheaper to 

obtain) and labeled pixels (expensive to obtain)
 Each image classified independently  Solve jointly for all pixels and classes

 Use dense image correspondences to resolve visual ambiguities

Fully tagged and labeled image databaseSparsely tagged and (even not) labeled image database

Algorithm

Local evidence (data term):

Intra-image regularization:

Inter-image regularization:

Propagation (Inference)

Input image

Neighbors

MAP appearanceLocal evidence

MAP appearance 
+ intra-image + inter-image reg.

(final result)
Correspondence Neighbors warped Neighbors local evidence warped

MAP appearance
+ intra-image reg.

Flow color
coding

MAP appearancegrass mountain sky tree

Text-to-image Correspondence (Learning)

Appearance model:

Posterior:

LMO dataset – 2688 images, 33 words, 50% images tagged, 1% labeled

Appearance Bias towards frequent
tags and tag co-occurences

Spatial prior Color prior

SUN (9556 images, 522 words) and LMO (2688 images, 33 words) - 50% images tagged, 5% images labeled
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Failure cases

ESP (21,846 images, 269 words) and IAPR (19,805 images, 291 words) - 90% images tagged, 0% labeled
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Results

Comparison with Semantic Texton Forests [Shotton et al. 2008]

Input Ours STF

Labeling Tagging
r r̄ P P̄ R R̄

Makadia [1] − − 53.87 30.23 60.82 25.51
STF [4] 52.83 24.9 34.21 30.56 73.83 58.67
LT [5] 53.1 24 .6 41 .07 35 .5 44.3 19 .33
AP (ours) 63.29 29.52 55.26 38.8 59.09 22.62
AP-RF 56.17 26.1 48.9 36.43 60.22 24.34
AP-NN 57.62 26.45 47.5 35.34 59.83 24.01

Labeling Tagging
r r̄ P P̄ R R̄

Makadia [1] − − 26.67 11.33 39.5 14.32
STF [4] 20.52 9.18 11.2 5.81 62.04 16.13
AP (ours) 33.29 19.21 32.25 14.1 47 13.74

ESP IAPR
P R P̄ R̄ P R P̄ R̄

Makadia [1] 22 25 − − 28 29 − −
AP (Ours) 24.17 23.64 20.28 13.78 27.89 25.63 19.89 12.23
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