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Problem and Contributions

Text-to-image Correspondence (Learning)
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This Work

> Large training set of densely labeled images > Weakly supervised setup: use both image tags (cheaper to JERERET T NEMRE = i & oty Eﬁlﬁ;ng Eifiﬁ;ng =
obtain) and labeled pixels (expensive to obtain)
» Each image classified independently > Solve jointly for all pixels and classes LMO dataset — 2688 images, 33 words, 50% images tagged, 1% labeled

> Use dense image correspondences to resolve visual ambiguities

Propagation (Inference)
Local evidence (data term):
D, (c;(p) = 1) = —1og P, (c;(p); D;i(p), ©®) — log Pt (1) — Aslog Ps(c;(p)) — A log P (c;(p))

Harder to disambiguate
sea and sky

Easier to dlsamblguate Appearance With spatial With spatial Appearance Bias towards frequent Spatial prior Color prior
sea and sky only regularization regularization and tags and tag co-occurences
correspondences
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Formulation Pi(D) =%5[1 € t;]4 Zﬁ z Z ho (1, m)
L .
N. .
Input: Images I = {I;, ..., Iy}, vocabulary V = {l,, ..., [} } JETEmEL e S e
Partial annotations: I, T; - tagged images + their tags, I, C; - labeled images + their labels ?xpa(cip)" max{p @) — D)+ P}
Output: _Labeling € = {cq, ..., cy}, s.t. for pixel p = (x,y) € 1;, c;(p) € {1, ..., L, 0} Intra-image regularization: paea, qen,

Tags T = {tq, ..., ty, t; € {1, ..., L}} defined directly as the set union of pixel labels met(ci(p) =L, ci(q) = lq) — 5[lp -+ lq]/lmtexp(_wi(p) — LD

Assumptions:
a) Each word has distinct visual appearance Inter-image reqularization: ren, pea, r=p+w;®

b) Neighboring pixels in an image tend to have the same annotation
c) Similar visual patterns across different images should have similar annotation LIlex,;(ci (p) =1L, ¢i(r) = lr) = 5[lp 7 lr]/lextexp(—‘Si (p) — S (r)D

d) Tags and tag co-occurrences which are more frequent in the database are also more probable
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w;; - dense correspondence I; - ;

MAP appearance
+ intra-image reg.

MAP appearance
+ intra-image + inter-image reg.
(final result)

Neighbors Correspondence Neighbors warped Neighbors local evidence warped

By Annotation Propagation in Large Image Databases via Dense Image Correspondence

Results

Microsoft:

Research

SUN (9556 images, 522 words) and LMO (2688 images, 33 Words) 50% images tagged, 5% images labeled
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Labeling Tagging

T r P P R R
Makadia [1] — 53.87 30.23 60.82 25.51
STF [4] 52.83 249 3421 30.56 73.83 58.67
LT [5] 531 24.6 41.07 35.5 443 19.33
AP (ours) 63.29 29.52 | 55.26 38.8 59.09 22.62
AP-RF 56.17 26.1 @ 48.9 36.43 60.22 24.34
AP-NN 57.62 26.45 47.5 3534 59.83 24.01

Results on LMO

Labeling Tagging

r r P P R R
Makadia [1]] — 26.67 11.33 395 14.32
STF [4] 20.52 9.18  11.2 581 62.04 16.13
AP (ours) 33.29 19.21 32.25 14.1 47 13.74
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Results on SUN
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Comparison with Semantic Texton Forests [Shotton et al. 2008]
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ESP (21,846 images, 269 words) and IAPR (19,805 images, 291 words) - 90% images tagged, 0% labeled

ESP IAPR
P R P R P R P R
Makadia [1] | 22 25 — — 28 29 — —
AP (Ours) 2417 23.64 20.28 13.78 | 27.89 2563 19.89 12.23
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