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Abstract

We propose a novel method for template matching in un-
constrained environments. Its essence is the Best-Buddies
Similarity (BBS), a useful, robust, and parameter-free simi-
larity measure between two sets of points. BBS is based on
counting the number of Best-Buddies Pairs (BBPs)—pairs
of points in source and target sets, where each point is the
nearest neighbor of the other. BBS has several key features
that make it robust against complex geometric deformations
and high levels of outliers, such as those arising from back-
ground clutter and occlusions. We study these properties,
provide a statistical analysis that justifies them, and demon-
strate the consistent success of BBS on a challenging real-
world dataset.

1. Introduction
Finding a template patch in a target image is a core com-

ponent in a variety of computer vision applications such as
object detection, tracking, image stitching and 3D recon-
struction. In many real-world scenarios, the template—a
bounding box containing a region of interest in the source
image —undergoes complex deformations in the target im-
age: the background can change and the object may un-
dergo nonrigid deformations and partial occlusions.

Template matching methods have been used with great
success over the years but they still suffer from a number
of drawbacks. Typically, all pixels (or features) within the
template and a candidate window in the target image are
taken into account when measuring their similarity. This
is undesirable in some cases, for example, when the back-
ground behind the object of interest changes between the
template and the target image (see Fig. 1). In such cases, the
dissimilarities between pixels from different backgrounds
may be arbitrary, and accounting for them may lead to false
detections of the template (see Fig. 1(b)).

In addition, many template matching methods assume
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Figure 1. Best-Buddies Similarity (BBS) for Template Match-
ing: (a), The template, marked in green, contains an object of
interest against a background. (b), The object in the target image
undergoes complex deformation (background clutter and large ge-
ometric deformation); the detection results using different similar-
ity measures are marked on the image (see legend); our result is
marked in blue. (c), The Best-Buddies Pairs (BBPs) between the
template and the detected region are mostly found the object of
interest and not on the background; each BBP is connected by a
line and marked in a unique color.

a specific parametric deformation model between the tem-
plate and the target image (e.g., rigid, affine transformation,
etc.). This limits the type of scenes that can be handled, and
may require estimating a large number of parameters when
complex deformations are considered.

In this paper, we propose a new method to address these
problems, and show that it can be applied successfully to
template matching in the wild. Specifically, we introduce
a novel similarity measure termed Best-Buddies Similarity
(BBS), analyze its key features, and perform extensive eval-
uation of its performance compared to a number of com-
monly used alternatives on a challenging data set.

BBS measures the similarity between two sets of points
in Rd. A key feature of this measure is that it relies only on
a subset (usually small) of pairs of points – the Best-Buddies
Pairs (BBPs). A pair of points is considered a BBP if each
point is the nearest neighbor of the other in the correspond-
ing point set. BBS is then taken to be the fraction of BBP
out of all the points in the set.



Albeit simple, this measure turns out to have important
and nontrivial properties. Because BBS counts only the
pairs of points that are best buddies, it is robust to significant
amounts of outliers. Another, less obvious property is that
the BBS between two point sets is maximal when the points
are drawn from the same distribution, and drops sharply as
the distance between the distributions increases. In other
words, if two points are BBP, they were likely drawn from
the same distribution. We provide a statistical formulation
of this observation, and analyze it numerically in the 1D
case for point sets drawn from distinct Gaussian distribu-
tions (often used as a simplified model for natural images).
The ability of BBS to reliably match features coming from
the same distribution, in the presence of outliers, makes it
highly attractive for robust template matching under visual
changes and geometric deformations.

We apply the BBS measure for template matching by
representing both the template and each of the candidate
image regions as point sets in a joint xyRGB space. BBS
is used to measure the similarity between the two sets of
points in this location-appearance space. The aforemen-
tioned properties of BBS now readily apply to template
matching. That is, pixels on the object of interest in both
the template and the candidate patch can be thought of as
originating from the same underlying distribution. These
pixels in the template are likely to find best buddies in the
candidate patch, and hence would be considered as inliers.
In contrast, pixels that come from different distributions,
e.g., pixels from different backgrounds, are less likely to
find best buddies, and hence would be considered outliers
(see Fig. 1(c)). Given this important property, BBS by-
passes the need to explicitly model the underlying object
appearance and deformation.

To summarize, the main contributions of this paper are:
(a) introducing BBS – a useful, robust, parameter-free mea-
sure for template matching in unconstrained environments,
(b) analysis providing theoretical justification of its key fea-
tures, and (c) extensive evaluation on challenging real data
and comparison to a number of commonly used template
matching methods.

2. Related Work
Template matching algorithms depend heavily on the

similarity measure used to match the template and a can-
didate window in the target image. Various similarity mea-
sures have been used for this purpose. The most popular
are the Sum of Squared Differences (SSD), Sum of Abso-
lute Differences (SAD) and Normalized Cross-Correlation
(NCC), mostly due to their computational efficiency [14].
Different variants of these measures have been proposed to
deal with illumination changes and noise [7, 6].

Another family of measures is composed of robust error

Signal P Signal Q

Figure 2. Best-Buddies Pairs (BBPs) between 2D Gaussian Sig-
nals: First row, Signal P consists of “foreground” points drawn
from a normal distribution,N(µ1, σ1), marked in blue; and “back-
ground” points drawn from N(µ2, σ2), marked in red. Simi-
larly, the points in the second signal Q are drawn from the same
distribution N(µ1, σ1), and a different background distribution
N(µ3, σ3). The color of points is for illustration only, i.e., BBS
does not know which point belongs to which distribution. Sec-
ond row, only the BBPs between the two signals which are mostly
found between foreground points.

functions such as M-estimators [2, 20] or Hamming-based
distance [19, 15], which are less affected by additive noise
and ’salt and paper’ outliers than cross correlation related
methods. However, all the methods mentioned so far as-
sume a strict rigid geometric deformation (only translation)
between the template and the target image, as they penal-
ize pixel-wise differences at corresponding positions in the
template and the query region.

A number of methods extended template matching to
deal with parametric transformations (e.g., [23, 10]). Re-
cently, Korman et al. [11] introduced a template matching
algorithm under 2D affine transformation that guarantees an
approximation to the globally optimal solution. Likewise,
Tian and Narasimhan [22] find a globally optimal estima-
tion of nonrigid image distortions. However, these methods
assume a one-to-one mapping between the template and the
query region for the underlying transformation. Thus, they
are prone to errors in the presence of many outliers, such as
those caused by occlusions and background clutter. Further-
more, these methods assume a parametric model for the dis-
tortion geometry, which is not required in the case of BBS.

Measuring the similarity between color histograms,
known as Histogram Matching (HM), offers a non-
parametric technique for dealing with deformations and is
commonly used in visual tracking [3, 16]. Yet, HM com-
pletely disregards geometry, which is a powerful cue. Fur-
ther, all pixels are evenly treated. Other tracking methods
have been proposed to deal with cluttered environments and
partial occlusions [1, 9]. But unlike tracking, we are inter-
ested in detection in a single image, which lacks the redun-
dant temporal information given in videos.

Olson [12] formulated template matching in terms of
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Figure 3. BBS template matching results. Three toys examples
are shown: (A) cluttered background, (B) occlusions, (C) nonrigid
deformation. The template (first column) is detected in the target
image (second column) using the BBS; the results using BBS are
marked in a blue. The likelihood maps (third column) show well-
localized distinct modes. The BBPs are shown in last column. See
text for more details.

maximum likelihood estimation, where an image is repre-
sented in a 3D location-intensity space. Taking this ap-
proach one step further, Oron et al.[13] use xyRGB space
and reduced template matching to measuring the EMD [18]
between two point sets. Although BBS works in the same
space, it differs from EMD, which requires 1 : 1 matching
and does not distinguish between inliers and outliers.

The BBS is a bi-directional measure. The importance
of such two-side agreement has been demonstrated by the
Bidirectional similarity (BDS) in [21] for visual summa-
rization. Specifically, the BDS was used as a similarity mea-
sure between two images, where an image is represented by
a set of patches. The BDS sums over the distances between
each patch in one image to its nearest neighbor in the other
image, and vice versa. In contrast, the BBS is based on
a count of the BBPs, and makes only implicit use of their
actual distance. Moreover, the BDS does not distinguish be-
tween inliers and outliers. These proprieties makes the BBS
a more robust and reliable measure as demonstrated by our
experiments.

In the context of image matching, another widely used
measure is the Hausdorff distance [8]. To deal with occlu-
sions or degradations, Huttenlocher et al. [8] proposed a
fractional Hausdorff distance in which the Kth farthest point
is taken instead of the most farthest one. Yet, this measure
highly depends on K that needs to be tuned. Alternatively,
Dubuisson and Jain [5] replace the max operator with sum.

It is worth mentioning, that the term Best Buddies was
used by Pomeranz et al. [17] in the context of solving jig-
saw puzzles. Specifically, they used a metric similar to ours
in order to determine if a pair of pieces are compatible with
each other.

3. Method
Our goal is to match a template to a given image, in the

presence of high levels of outliers (i.e., background clutter,
occlusions) and nonrigid deformation of the object of in-
terest. We follow the traditional sliding window approach
and compute the Best-Buddies Similarly (BBS) between the
template and every possible window (of the size of the tem-
plate) in the image. In the following, we give a general def-
inition of BBS and demonstrate its key features via simple
intuitive toy examples. We then statistically analyze these
features in Sec. 4.

General Defination: BBS measures the similarity between
two sets of points P ={pi}Ni=1 and Q={qi}Mi=1, where
pi, qi ∈ Rd. The BBS is the fraction of Best-Buddies Pairs
(BBPs) between the two sets. Specifically, a pair of points
{pi ∈ P, qj ∈ Q} is a BBP if pi is the nearest neighbor of
qj in the set Q, and vice versa. Formally,

bb(pi, qj , P,Q) =

{
1 NN(pi, Q) = qj ∧ NN(qj , P ) = pi
0 otherwise

(1)
where, NN(pi, Q)=argmin

q∈Q
d(pi, q), and d(pi, q) is some

distance measure. The BBS between the point sets P and
Q is given by:

BBS(P,Q) =
1

min{M,N}
·

N∑
i=1

M∑
j=1

bb(pi, qj , P,Q). (2)

The key properties of the BBS are: 1) it relies only on a
(usually small) subset of matches i.e., pairs of points that
are BBPs, whereas the rest are considered as outliers. 2)
BBS finds the bi-directional inliers in the data without any
prior knowledge on the data or its underlying deformation.
3) BBS uses rank, i.e., it counts the number of BBPs, rather
than using the actual distance values.

To understand why these properties are useful, let us con-
sider a simple 2D case of two point sets P andQ. The set P
consist of 2D points drawn from two different normal dis-
tributions, N(µ1,Σ1), andN(µ2,Σ2). Similarly, the points
in Q are drawn from the same distribution N(µ1,Σ1), and
a different distribution N(µ3,Σ3) (see first row in Fig. 2).
The distribution N(µ1,Σ1) can be treated as a foreground
model, whereasN(µ2,Σ2) andN(µ3,Σ3) are two different
background models. As can be seen in Fig. 2, the BBPs are
mostly found between the foreground points in P and Q.
For set P , where the foreground and background points are
well separated, 95% of the BBPs are foreground points. For
set Q, despite the significant overlap between foreground
and background, 60% of the BBPs are foreground points.

This example demonstrates the robustness of BBS to
high level of outliers in the data. BBS captures the fore-
ground points and does not force the background points
to match. By doing so, BBS sidesteps the need to model
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Figure 4. The expectation of BBS in the 1D Gaussian case:
Two point sets, P and Q, are generated by sampling points from
N(0, 1), and N(µ, σ), respectively. (a), the approximated expec-
tation of BBS(P,Q) as a function of σ (x-axis), and µ (y-axis).(b)-
(c), the expectation of SSD(P,Q), and SAD(P,Q), respectively. (d),
the expectation of BBS as a function of µ plotted for different σ.

the background/foreground parametrically or have a prior
knowledge about their underlying distributions. Further-
more, it shows that a pair of points {p, q} is more likely
to be BBP if p and q are drawn from the same distribution.
We formally prove this general argument for the 1D case in
Sec. 3.1. With this observations in hand, we continue with
the use of BBS for template matching.

BBS for Template Matching: To apply BBS to template
matching, one needs to convert each image patch to a point
set in Rd. To this end, we represent an image window in a
spatial-appearance space. That is, we break the region into
k× k distinct patches. Each k× k patch is represented by a
k2 vector of its RGB values and xy location of the central
pixel, relative to the patch coordinate system (see Sec. 3.2
for more details). However, our method is not restricted to
this particular representation and others can be used.

Following the intuition presented in the 2D Gaussian ex-
ample (see Fig. 2), the use of BBS for template matching
allows us to overcome several significant challenges such as
background clutter, occlusions, and nonrigid deformation of
the object. This is demonstrated in three synthetic examples
shown in Fig. 3. The templates A and B include the object
of interest in a cluttered background, and under occlusions,
respectively. In both cases the templates are successfully
matched to the image despite the high level of outliers. As
can be seen, the BBPs are found only on the object of in-
terest, and the BBS likelihood maps have a distinct mode
around the true location of the template. In the third exam-
ple, the templateC is taken to be a bounding box around the
forth duck in the original image, which is removed from the
searched image using inpating techniques. In this case, BBS
matches the template to the fifth duck, which can be seen as
a nonrigid deformed version of the template. Note that the
BBS does not aim to solve the pixel correspondence. In
fact, the BBPs are not necessarily semantically correct (see
third row in Fig. 3), but rather pairs of points that likely
originated from the same distribution. This property, which
we next formally analyze, helps us deal with complex visual
and geometric deformations in the presence of outliers.

3.1. Analysis

So far, we have empirically demonstrated that the BBS
is robust to outliers, and results in well-localized modes.
Here, we give a statistical analysis that justifies these prop-
erties, and explains why using the count of the BBP is a
good similarity measure.

We begin with a simple mathematical model in 1D, in
which an “image” patch is modeled as a set of points drawn
from a general distribution. Using this model, we derive
the expectation of BBS between two sets of points, drawn
from two given distributions fP (p) and fQ(q), respectively.
We then analyze numerically the case in which fP (p), and
fQ(q) are two different normal distributions. Finally, we
relate these results to the multi-dimentional case. We show
that the BBS distinctively captures points that are drawn
from similar distributions. That is, we prove that the likeli-
hood of a pair of points being BBP, and hence the expecta-
tion of the BBS, is maximal when the points in both sets are
drawn from the same distribution, and drops sharply as the
distance between the two normal distributions increases.

One-dimentional Case: Following Eq. 2, the expectation
BBS(P,Q), over all possible samples of P and Q is given by:

E[BBS(P,Q)] = 1
min{M,N}

N∑
i=1

M∑
j=1

E[bbi,j(P,Q)],

(3)
where bbi,j(P,Q) is defined in Eq. 1. We continue with
computing the expectation of a pair of points to be BBP,
over all possible samples of P and Q, denoted byEBBP. That
is,

EBBP =

∫∫
P,Q

bbi,j(P,Q) Pr{P}Pr{Q}dPdQ, (4)

This is a multivariate integral over all points in P and Q.
However, assuming each point is independent of the others
this integral can be simplified as follows.

Claim:

EBBP =
∞∫∫
−∞

(FQ(p−)+1−FQ(p+))M−1·

(FP (q−)+1−FP (q+))N−1fP (p)fQ(q)dpdq,
(5)

where, FP (x), and FQ(x) denote the CDFs of P and Q,
respectively. That is, FP (x) = Pr{p ≤ x}. And, p−= p −
d(p, q), p+ =p+ d(p, q), and q+, q− are similarly defined.

Proof: Due to the independence between the points, the
integral in Eq.4 can be decoupled as follows:

EBBP =∫
p1

· · ·
∫
pN

∫
q1

· · ·
∫
qM

bbi,j(P,Q)
N∏

k=1

fP (pk)
M∏
l=1

fQ(ql)dPdQ

(6)
With abuse of notation, we use dP = dp1 · dp2 · · · dpN ,
and dQ = dq1 · dq2 · · · dqM . Let us consider the function
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Figure 5. BBS results on Real Data: (a), the templates are marked in green over the input images. (b) the target images marked with the
detection results of 6 different methods (see text for more details). BBS results are marked in blue. (c)-(e), the resulting likelihood maps
using BBS, EMD and NCC , respectively; each map is marked with the detection result, i.e., its global maxima.

bbi,j(P,Q) for a given realization of P and Q. By definition,
this indicator function equals 1 when pi and qj are near-
est neighbors of each other, and zero otherwise. This can
be expressed in terms of the distance between the points as
follows:

bbi,j(P,Q) =
N∏

k 6=i,k=1

I[d(pk, qj) > d(pi, qj)]
M∏

l 6=j,l=1

I[d(ql, pi) > d(pi, qj)]

(7)
where I is an indicator function. It follows that for a given
value of pi and qj , the contribution of pk to the integral in
Eq. 6 can be decoupled. Specifically, we define:

Cpk =

∞∫
−∞

I[d(pk, qj) > d(pi, qj)]fP (pk)dpk (8)

Assuming d(p, q) =
√

(p− q)2 = |p− q|, the latter can be
written as:

Cpk =
∞∫
−∞

I[pk<q−j ∨ pk>q
+
j ]fP (pk)dpk (9)

where q−j = qj − d(pi, qj) , q+j = qj + d(pi, qj). Since
q−j < q+j , it can be easily shown that Cpk can be expressed
in terms of FP (x), the CDF of P:

Cpk = FP (q
−
j )+1−FP (q+j ) (10)

The same derivation hold for computing Cql, the contri-
bution of ql to the integral in Eq. 6, given pi, and qj . That
is,

Cql = FQ(p−i )+1−FQ(p+i ) (11)

where p−i , p
+
i are similarly defined and FQ(x) is the CDF

of Q. Note that Cpk and Cql depends only on pi and qj and
on the underlying distributions. Therefore, Eq. 6 results in:

EBBP =
∫∫

pi,qj

dpidqjfP (pi)fQ(qj)
N∏

k=1,k 6=i

Cpk
N∏

l=1,l 6=j

Cql

=
∫∫

pi,qj

dpidqjfP (pi)fQ(qj)Cp
N−1
k CqM−1l

(12)
Substituting the expressions for Cpk and Cql in Eq. 12, and
omitting the subscripts i, j for simplicity, result in Eq. 5,
which completes the proof.

In general, the integral in Eq. 5 does not have a closed
form solution, but it can be solved numerically for selected
underlying distributions. To this end, we proceed with
Gaussian distributions, which are often used as simple sta-
tistical models of image patches. We then use Monte-Carlo
integration to approximate EBBP for discrete choices of pa-
rameters µ and σ of Q in the range of [0, 10] while fixing
the distribution of P to have µ = 0, σ = 1. We also fixed
the number of points to N = M = 100. The resulting ap-
proximation for EBBP as a function of the parameters µ, σ
is shown in Fig. 4, on the left. As can be seen, EBBP is the
highest at µ = 0, σ = 1, i.e., when the points are drawn
from the same distribution, and drops rapidly as the the un-
derlying distribution of Q deviates from N(0, 1).

Note that EBBP does not depends on p and q (because of
the integration, see Eq. 5. Hence, the expected value of the
BBS between the sets (Eq. 3) is given by:

E[BBS(P,Q)] = c · EBBP (13)
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where c = MN
min{M,N} is constant.

We can compare the BBS to the expectation of SSD, and
SAD. The expectation of the SSD has a closed form solution
given by:

E[SSD(P,Q)] =

∞∫∫
−∞

(p− q)2fP (p)fQ(q|k)dpdq = 1+µ2 +σ2.

(14)
Replacing (p − q)2 with |p − q| results in the expression

of the SAD. In this case, the expected value reduces to the
expectation of the Half-Normal distribution and is given by:

E[SAD(P,Q)] =
1√
2π
σK exp−µ

2/(2σ2) +µ(1− 2fP (−µ/σ))

(15)
Fig. 4(b)-(c) shows the maps of the expected values for 1−
SSDn(P,Q), and 1−SADn(P,Q), where SSDn,SADn are
the expectation of SSD and SAD, normalized to the range
of [0,1]. As can be seen, the SSD and SAD results in a much
wider spread around their mode. Thus, we have shown that
the likelihood of a pair of points to be a BBP (and hence
the expectation of the BBS) is the highest when P and Q are
drawn from the same distribution and drops sharply as the
distance between the distributions increases. This makes the
BBS a robust and distinctive measure that results in well-
localized modes.

Multi-dimensional Case: With the result of the 1D case
in hand, we can bound the expectation of BBS when P and
Q are sets of multi-dimensional points, i.e., pi, qj ∈ Rd.

If the d-dimensions are uncorrelated (i.e., the covariance
matrices are diagonals in the Gaussian case), a necessary
(but not sufficient) condition for a pair of points to be BBP
is that the point would be BBP in each of the dimensions.
In this case, the analysis is done in each dimension inde-
pendently according to the 1D case given earlier 5. The ex-
pectation of the BBS in the multi-dimensional case is then
bounded by the product of the expectations in each of the
dimensions. That is,

EBBS ≥
d∏

i=1

Ei
BBS, (16)

where Ei
BBS denote the expectation of BBS in the ith di-

mension. This means that the BBS is expected to be more
distinctive, i.e., to drop faster as d increases. Note that if a
pair of points is not a BBP in one of the dimensions, it does
not necessarily imply that the multi-dimentional pair is not
BBP. Thus, this condition is necessary but not sufficient.

3.2. Implementation Details and Complexity

Computing the BBS between two point sets P,Q ∈
Rd, requires computing the distance between each pair of
points. That is, constructing a distance matrix D where

Figure 6. Examples results with annotated data. Left, input im-
ages with the annotated template marked in green. Right, target
images and the detected bounding boxes (see legend); the ground-
truth (GT) marked in green (our results in blue). BBS successfully
match the template in all these examples.

[D]i,j =d(pi, qj). GivenD, the nearest neighbor of pi ∈ P ,
i.e. NN(pi, Q), is the minimal element in the ith row ofD.
Similarly,NN(qj , P ) is the minimal element in the jth col-
umn of D. BBS is then computed by counting the number
of mutual nearest neighbors (divided by a constant).
The distance measure used in our experiments is:

d(pi, qj) = ||p(A)
i − q(A)

j ||
2
2 + λ||p(L)

i − q(L)
j ||

2
2 (17)

where superscript A denotes pixel appearance (e.g. RGB)
and superscript L denotes pixel location (x, y within the
patch normalized to the range [0, 1]). λ = 2 was chosen
empirically and was fixed in all of our experiments.
As previously mentioned, we break both image and tem-
plate into k×k distinct patches, however for clarity we first
analyze BBS complexity using all the individual pixels and
only then extend it to the k× k non-overlapping patch case.
Assuming |P | = N and |Q| = M , the complexity of com-
puting D is O(dNM). Given that the image size is |I| = L
then constructing all L distance matrices D would require
O(dNML). Fortunately, computing D from scratch for
each window in the image is not required as many com-
putations can be reused.
In practice, we scan the image column by column, and
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(a) Success using maximum confidence (b) Success of best out of top 7 matches
Figure 7. Accuracy: Success curves showing the fraction of examples with overlap > TH ∈ [0, 1]. (a), using only the most likely target
position (global max). (b), using the best out of top 7 modes of the confidence map. Area-under-curve (AUC) shown in the legend.

buffer all the distance matrices computed for the previous
column. By doing so, all distance matrices in a new col-
umn, except the first one, require computing the distance
between just one new pixel in Q and the template P which
is done in O(N) (the rest of the required distances were
already computed in the previous column). Since the tem-
plate is smaller than the image (typically L >> N,M ),
the complexity is dominated by O(dNL) which is typically
two orders of magnitude smaller than O(dNML).
It is now easy to see that in the case where k × k dis-
tinct patches are used (instead of individual pixels) then
p
(A)
i , q

(A)
j ∈ R(k×k×d). In which case the dominant com-

plexity term becomes O(k2dN
k2

L
k2 ) = O(dNL

k2 ). Using
k × k patches results in a higher dimensional appearance
space leading to more reliable BBPs and as can be seen by
our analysis also reduces the computational complexity.
Using unoptimized Matlab code, the typical running time
of our algorithm, with k = 3, is ∼ 4 seconds for 360x480
image, and 40x30 template.

4. Results
We perform qualitative as well as extensive quantitative

evaluation of our method on real world data. We com-
pare BBS with six similarity measures commonly used for
template matching. 1) Sum-of-Square-Difference (SSD), 2)
Sum-of-Absolute-Difference (SAD), 3) Normalized-Cross-
Correlation (NCC), 4) color Histogram Matching (HM),
5) Earth Movers Distance[18] (EMD), 6) Bidirectional
Similarity [21] (BDS) computed in the same appearance-
location space as BBS.

4.1. Qualitative Evaluation

Four template-image pairs taken from the Web are used
for qualitative evaluation. The templates, which were man-
ually chosen, and the target images are shown in Fig. 1(a)-

(b), and in Fig. 5. In all examples, the template drastically
changes its appearance due to large geometric deformation,
partial occlusions, and change of background.

Detection results in Fig. 1(a)-(b), and in Fig. 5(b), show
that BBS is the only method successfully matching the tem-
plate in all these challenging examples. The confidence
maps of BBS, presented in Fig. 5(c), show distinct and
well-localized modes compared to other methods. Only
EMD and NCC are shown for comparison due to space
limitations1. The BBPs for the first example are shown in
Fig. 1(c). As discussed in Sec. 3, BBS captures the bidi-
rectional inliers, which are mostly found on the object of
interest. Note that the BBPs, as discussed, are not necessar-
ily true physical corresponding points.

4.2. Quantitative Evaluation

We now turn to the quantitative evaluation. The data
for this experiment was generated from annotated video se-
quences previously used in Wu et al.[24]. The 35 color
videos in this dataset capture a wide range of challenging
scenes. The objects of interest are diverse and typically un-
dergo nonrigid deformations, perform in/out-of-plane rota-
tion and may be partially occluded.

For the purpose of template matching, 105 template-
image pairs were sampled, three pairs per video. Each im-
age pair consists of frames f and f + 20, where f was ran-
domly chosen. The ground-truth annotated bounding box in
frame f was used as template, and frame f + 20 was used
as the target image. This random choice of frames creates
a challenging benchmark with a wide baseline in both time
and space (see examples in Fig. 6).

BBS was compared with the 6 similarity measures men-
tioned above. In addition, we add another similarity mea-

1Our data and code are publicly available at: http://people.csail.mit.
edu/ talidekel/Best-BuddiesSimilarity.html
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sure that is based on SSD using dense Histogram-Of-
Gradients (HOG) [4]. The ground-truth annotations were
used for quantitative evaluation. Specifically, we measure
the accuracy of both the top match (”accuracy”) as well as
the top k ranked matches (”rank-accuracy”), as follows.

Accuracy: was measured using the common bounding box
overlap measure: Acc. =

area(Be∩Bg)
area(Be∪Bg)

where Be and Bg

are the estimated and ground truth bounding boxes, respec-
tively. The ROC curves show the fraction of examples with
overlap larger than a threshold (TH ∈ [0, 1]), and the area-
under-curve (AUC) measured quantifies overall accuracy.
The success rates of all methods, based on the global max-
imum confidence score, are presented in Fig. 7-(a). As can
be seen, BBS achieves the highest AUC score of 0.55 dom-
inating the competing methods we have tested, with a sig-
nificant margin for all threshold values ≤ 0.65. For overlap
values > 0.7 the performance of all methods drops sharply.
This can be attributed to the fact that overlap drops sharply
for small errors and in our case using the non-overlapping
patch representation generates an inherent uncertainty of 3
pixels in target localization.

We have relaxed the requirement that only the top match
will be considered and tested the top 7 modes of the con-
fidence map (instead of just the global maximum). That
is, we test the 7 best matches and report the one with the
highest accuracy score. See Fig. 7-(b). Again BBS outper-
forms competing methods reaching AUC of 0.69 and keep-
ing a noticeable performance margin especially for thresh-
old range [0.3, 0.75]. Some examples that demonstrate the
power of BBS are shwon in Fig. 6.

Rank-Accuracy: For each rank k, we compute the aver-
age target position based on all top k scores, compute the
accuracy, and take the median accuracy over all 105 target-
image pairs. We expect methods having distinct and well-
localized modes to show moderate performance decrease as
more and more positions are considered for position local-
ization. However, for methods in which modes are not well
localized (i.e. where peaks are broad and the difference in
confidence between the correct location and other locations
is very small) we expect a more rapid drop in accuracy. The
analysis was performed for all methods with k ranging from
1 to 500.

This test relates to the claim made in Sec. 3.1, where we
proved that in the 1D case, BBS drops sharply as the dis-
tance between the foreground and background distributions
increases. In the context of template matching this means
we expect the confidence maps of BBS to have distinct and
well localized modes as is the case in the example shown in
Fig. 5.

Results are presented in Fig. 8, and as expected, for
methods such as SSD, SAD and NCC, which typically do
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Figure 8. Rank-accuracy: For each rank k, we compute the aver-
age target position based on all top k scores, compute the accuracy,
and take the median accuracy over all 105 template-image pairs.
BBS dominates all other methods for any given value of k. Some
methods show fast decay in accuracy relative to an increase in k in-
dicating non-distinct modes in the confidence map which suggests
such method are less robust.

not have well-localized modes, the score decreases rapidly
as k increases. More robust methods such as EMD, BDS
and BBS have a moderate accuracy decrease as k increases.
Note that BBS which has high accuracy and distinct modes
shows the best performance among the methods tested.

5. Conclusions
We introduced a new measure, Best-Buddies Similarity

(BBS), for template matching in the wild. We identified its
key features, analyzed them and demonstrated the ability
of BBS to overcome several challenges that are common
in real scenes. We showed that our method outperforms a
number of commonly used methods for template matching
such as normalized cross correlation, histogram matching
and EMD.

Our method may fail when the template is very small
compared to target image, or when the outliers (occluding
object or background clutter) cover most of the template.

In the scope of this paper, we worked in xyRGB space,
but other feature spaces may be used such as HOG features,
edges or filter responses. This opens the use of BBS to
other domains in computer-vision that could benefit from
its properties. A natural future direction of research is to
explore the use of BBS as an image similarity measure or
for object localization.

Acknowledgments.

This work was supported in part by an Israel Science Foun-
dation grant 1556/10, National Science Foundation Robust
Intelligence 1212849 Reconstructive Recognition, and a
grant from Shell Research.

8



References
[1] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust l1 tracker

using accelerated proximal gradient approach. CVPR, 2012.
2

[2] J.-H. Chen, C.-S. Chen, and Y.-S. Chen. Fast algorithm for
robust template matching with m-estimators. Signal Process-
ing, IEEE Transactions on, 2003. 2

[3] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In CVPR, 2000. 2

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 8

[5] M.-P. Dubuisson and A. Jain. A modified hausdorff distance
for object matching. In Pattern Recognition, 1994. Vol. 1
- Conference A: Computer Vision amp; Image Processing.,
Proceedings of the 12th IAPR International Conference on,
volume 1, pages 566–568 vol.1, Oct 1994. 3

[6] E. Elboher and M. Werman. Asymmetric correlation: a noise
robust similarity measure for template matching. Image Pro-
cessing, IEEE Transactions on, 2013. 2

[7] Y. Hel-Or, H. Hel-Or, and E. David. Matching by tone map-
ping: Photometric invariant template matching. IEEE Trans.
Pattern Anal. Mach. Intell., 36(2):317–330, 2014. 2

[8] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge.
Comparing images using the hausdorff distance. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
15(9):850–863, 1993. 3

[9] X. Jia, H. Lu, and M. Yang. Visual tracking via adaptive
structural local sparse appearance model. CVPR, 2012. 2

[10] H. Y. Kim and S. A. De Araújo. Grayscale template-
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