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ABSTRACT
Classification of natural hand gestures is usually approached
by applying pattern recognition to the movements of the
hand. However, the gesture categories most frequently cited
in the psychology literature are fundamentally multimodal;
the definitions make reference to the surrounding linguis-
tic context. We address the question of whether gestures
are naturally multimodal, or whether they can be classi-
fied from hand-movement data alone. First, we describe an
empirical study showing that the removal of auditory in-
formation significantly impairs the ability of human raters
to classify gestures. Then we present an automatic gesture
classification system based solely on an n-gram model of
linguistic context; the system is intended to supplement a
visual classifier, but achieves 66% accuracy on a three-class
classification problem on its own. This represents higher ac-
curacy than human raters achieve when presented with the
same information.

Categories and Subject Descriptors
H.1.2 [User-Machine Systems]: Human information pro-
cessing; H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Artifical, augment-
ed, and virtual realities; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Evaluation/methodol-
ogy, Natural language, Theory and methods, Voice I/O

General Terms
Human Factors, Reliability, Experimentation
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ambiguation, Validity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’04, October 13–15, 2004, State College, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-954-3/04/0010 ...$5.00.

1. INTRODUCTION
A number of multimodal user interfaces afford interaction

through the use of communicative free hand gestures [6, 7, 9,
11]. Since hand gestures can be used for a number of differ-
ent communicative purposes–e.g., pointing at an object to
indicate reference, or tracing a path of motion–classification
of hand gestures is an important problem.

One class of systems focuses on artificial gestures, such as
waving, closed fist, or “thumbs up” (e.g., [6]). These are not
intended to correspond to the natural gestures that sponta-
neously arise during speech. For such systems, the goal is to
maximize ease and speed of recognition, rather than the nat-
uralness of the user interface. With such artificial gestures,
gesture classes are distinguished purely on the basis of the
dynamics of hand motion; however, mutual disambiguation
with speech [16] could be used to improve recognition.

There is, however, a growing set of user interfaces that
attempt to allow users to communicate using more natural
gestures [7, 9, 11]. Here too, gesture classification has been
taken to be primarily a problem for computer vision [9] or
pattern recognition applied to glove input devices [7, 11].
Mutual disambiguation has been applied to improve recog-
nition by constraining the gesture recognition candidates
based on a set of possible semantic frames [7]. But the
idea that gesture classes themselves are fundamentally mul-
timodal entities – defined not only by the hand motion but
also by the role of gesture within the linguistic context – has
not yet been given full consideration.

We begin with a brief summary of the most frequently
cited gesture taxonomy from the psychology literature; there
has been some work on automatic classification for subsets
of this taxonomy. Next, we present an empirical study of
the ability of näıve raters to classify gestures according to
this taxonomy, evaluating the effect of removing either the
visual or auditory modalities. Then we present a gesture
classification system that uses only the linguistic context;
no hand-movement information is used.

2. TYPES OF GESTURES
Kendon describes a spectrum of gesturing behavior [8].

On one end are artificial and highly structured gestural lan-
guages, such as American Sign Language. In the middle,
there are artificial but culturally shared emblems, such as
the “thumbs-up” sign. At the far end is gesticulation, ges-
tures that naturally and unconsciously co-occur with speech.
Gesticulation is of particular interest for HCI since it is com-
pletely natural; speakers do not need to be taught how to



do it. However, gesticulation is challenging because of the
potential for variety in gesturing behavior across speakers,
particularly across cultures.

Linguists have created a taxonomy of gesticulation, and
gestures that naturally co-occur with speech are now typi-
cally divided into several classes: deictic, iconic, metaphoric,
beat [13]. McNeill notes that these types should not be
thought of as discrete, mutually exclusive bins, but rather,
as features that may be present in varying degrees, possibly
in combination. Thus, identification of the extent to which
each feature is present would be the ultimate goal, rather
than gesture classification. For the moment, however, im-
plemented systems have focused on classification [3, 7, 9,
11].

The following definitions are quoted and summarized from
Cassell [2].

• “Deictics spatialize, or locate in physical space...”
Deictics can refer to actual physical entities and loca-
tions, or to spaces that have previously been marked
as relating to some idea or concept.

• “Iconic gestures depict by the form of the gesture
some features of the action or event being described.”
For example, a speaker might say “we were speeding
all over town,” while tracing an erratic path of motion
with one hand.

• “Metaphoric gestures are also representational, but
the concept they represent has no physical form; in-
stead the form of the gesture comes from a common
metaphor.” For example, a speaker might say, “it hap-
pened over and over again,” while repeatedly tracing
a circle.

• “Beat gestures are small baton-like movements that
do not change in form with the content of the accom-
panying speech. They serve a pragmatic function, oc-
curring with comments on one’s own linguistic contri-
bution, speech repairs and reported speech.” Speak-
ers that emphasize important points with a downward
motion of the hand are utilizing beat gestures.

2.1 Vision and Speech
One thing to notice about the definitions of the gesture

types is that they are linguistic in nature. That is, gesture
types are defined in terms of the role they play in the dis-
course, rather than in terms of a specific hand trajectory
or class of trajectories. Indeed, researchers have found that
there is no canonical set of hand trajectories that define each
gesture class. For example, Cassell states, “Deictics do not
have to be pointing index fingers.” [2] For non-deictic ges-
tures, it is even harder to characterize a “typical” set of hand
shapes or trajectories; there are perhaps an infinite variety of
possible iconic and metaphoric gestures [18]. Clearly, some
amount of linguistic evidence – prosodic, lexical, or semantic
– is necessary to classify gestures.

The remainder of this paper will seek to answer two ques-
tions.

1. To what extent does our perception of gesture types
depend on a visual analysis of the hand motion, and to
what extent does linguistic evidence come into play?

2. Can we build an accurate gesture classification sys-
tem using linguistic data? What linguistic features
are most informative for this purpose?

This paper describes two experiments aimed at answer-
ing these questions. In the first, näıve participants were
trained to classify gestures according to the taxonomy de-
scribed above. We assessed the level of interrater agreement
to show that the taxonomy presents meaningful categories.
We then removed the auditory and visual modalities sepa-
rately, and found that participants make significantly differ-
ent ratings in the absence of either modality. In other words,
neither modality alone is sufficient to classify gestures.

Next we describe a gesture classification system that con-
siders only the text surrounding the gesture. This system
is trained using the majority classifications from the human
raters as ground truth. Our classifier achieves a 66% agree-
ment on a cross-validated evaluation; this is higher than the
human coders achieved when they were denied access to the
visual modality.

3. CLASSIFICATION BY HUMAN RATERS
In a previous study, nine speakers were videotaped while

describing the behavior of three different mechanical de-
vices [5]. These monologues were transcribed and the ges-
ture phrases were segmented by the experimenter. Speakers
ranged in age from 22 to 28; eight were native English speak-
ers; four were women. The devices they described were: a
latchbox, a piston, and a pinball machine. None of the par-
ticipants had any special expertise in physics or mechanical
engineering.

A second group of participants was then asked to classify
the gestures from this corpus of videos, using the catego-
rization scheme described above. There were four types of
conditions: both video and audio (VA) were available, video
only (V), audio only (A), and a textual transcription of the
audio with no video (T). The VA condition was presented
twice, and the ordering of conditions was identical for all
participants: VA, V, A, T, VA.

A permutation of the videos was used so that no partici-
pant saw the same video in more than one condition, and so
that each video was used in each condition nearly an equal
number of times. The ninth video, of a male native English
speaker, was used for training examples, as discussed below.
Only videos of the explanations of the piston device were
used. Overall, each video was annotated by eight or nine
different participants in the VA condition, and by four or
five participants in every other condition.

In each condition, participants were required to classify
every gesture in the video. The videos ranged in length
from 10 to 90 seconds, and included as few as four and as
many as 53 distinct gesture phrases.

The entire study was performed using automated software
that required no intervention from the experimenter. Partic-
ipants were able to play each gesture segment from the video
whenever and as frequently as they desired. Radio buttons
were used to indicate the gesture classes in a fixed order,
and were not preset to any value; participants were required
to classify each gesture before moving on to the next condi-
tion. The video was presented in a separate window, 300 by
400 pixels in size. Each video segment ran from the begin-
ning to the end of the gesture phrase, as segmented by the
experimenter. In the audio-only condition, a beep was used



Figure 1: The experimental user interface for the VA, V, and A conditions

to indicate the onset of the stroke phase of the gesture. The
user interface for the experimental tool is shown in Figure 1.

A different user interface was used for the text-only con-
dition (Figure 2). Participants were presented with a list of
the gestures (at left), while the center of the screen presented
a transcript of all of the text used in a 4 second interval sur-
rounding the onset of the stroke phase of the gesture. The
location of the onset of the stroke phase was indicated in
the transcript as “[GESTURE]”. Radio buttons were once
again used for the gesture classification.

3.1 Participants
There were 36 participants in this study; 22 men and 14

women. They ranged in age from 18 to 57, with a median of
26 and a mean of 29.3. Ten of the participants self-reported
their English as being worse than that of a native speaker.
Participants were recruited using posters placed around a
university campus, and were compensated with free movie
passes for completing the study. None of the participants
had any prior experience with gestural or linguistic anal-
ysis, and all can be considered “novice” annotators. One
participant was excluded because the experimental software
crashed.

3.2 Instructions
Text and video examples were used to instruct partici-

pants about the gesture classification scheme. The instruc-
tions described both the kinetic and verbal components of
each gesture class. The label “Action” was used in place
of “Iconic”, since pilot participants found the latter term
to be confusing. Similarly, the label “Other” was used to
capture “Beat” gestures, as well as any additional gestures
that the listener felt did not belong to either of the other
two categories. As reported in [5], metaphoric gestures are
extremely infrequent in this corpus. A subset of participants
were also allowed to classify gestures as “Unknown.”

The written instructions given to participants can be found
in the appendix.

4. RESULTS
The standard Kappa (κ) metric was used to assess inter-

rater reliability [1]. In the Kappa statistic, a value of zero
indicates chance agreement, and a value of one indicates
perfect agreement.

A confusion matrix for the second iteration of the video-
audio (VA) condition is shown in Table 1. For each condi-
tion, a confusion matrix is generated for every pair of raters,
and these confusion matrices are then averaged together.
Given two raters r1 and r2, both pairs 〈r1, r2〉, and 〈r2, r1〉
will be included in the average, so the resulting matrix is
necessarily symmetric.

The table indicates reasonable agreement for the deictic
and action categories: κ = .581 when isolating the subma-
trix containing only these categories. However, the labeling
of the “other” category is essentially random, lowering the
overall Kappa to .449 when this category is included. It is
possible to compute the variance of the Kappa statistic; in
this case, σ = .033, yielding better than chance agreement
at p < .01.

The relatively low Kappa here may reflect McNeill’s con-
tention that the gesture types are not truly mutually exclu-
sive. Another possible factor is the limited training for these
participants, which typically lasted less than five minutes
(see the Appendix for the raters’ instructions). Interrater
agreement was significantly higher in the second iteration of
the VA condition than in the first iteration, where κ = .273.
This suggests that the raters’ assessments of the meaning
of the gesture categories converged as they gained experi-
ence with the rating task. For expert raters, Nakano reports
Kappa agreement of .81 using similar categories [15].

The extremely low agreement on the “other” category sug-
gests that some raters may have used “other” whenever they
were unable to classify the gesture as either “deictic” or



Figure 2: The experimental user interface for the
text-only condition

deictic action other unknown
deictic .270 .069 .060 .017
action .069 .249 .032 .009
other .060 .032 .079 .015
unknown .017 .014 .015 .004

Table 1: Confusion matrix for the second VA con-
dition

“action.” Note that this confusion matrix includes results
from the sixteen participants who did not have access to the
“don’t know” option, as well as those who did have access to
this option. The “don’t know” option increased the Kappa
marginally, to 0.451, but this difference is not significant
(p > .05).

4.1 Conditions
The agreement for the audio-only (A) condition was sig-

nificantly lower than the VA condition, κ = .337, p < .01.
The same is true of the video-only (V) condition, κ = .276,
p < .01, and the text condition (T), κ = .315, p < .01. How-
ever, in all cases, the Kappa value was better than chance,
p < .01.

It may be somewhat surprising that interrater agreement
was lower in the impaired conditions. One conceivable source
of disagreement in the VA condition is the choice of which
modality to favor when each suggests a different classifica-
tion. In the impaired conditions, no such choice need be
made, so one might predict that agreement within the im-
paired conditions would be higher. But in fact, the oppo-
site is the case – intra-condition agreement increases when
both modalities are available. This suggests that the modal-
ities usually provide complementary cues, and that in many

Condition Intra-condition
agreement (κ)

Agreement with
VA majority

VA .451 78%
V .276 59%
A .335 45%
T .315 41%

Table 2: Agreement results for each condition

cases, neither modality provides enough information on its
own.

We computed the majority vote classifications for each
video in the second VA condition, and took this as ground
truth. Then for each condition, we computed the average
percentage agreement between ground truth and each rater’s
annotations. As an upper bound, in the VA condition, the
average rater agreed with the majority annotations at a level
of 78%, σ = 0.018. In the audio-only condition (A), the
average agreement with the modal classifications from the
VA condition is 45%, σ = 0.017. In the video-only condition
(V), the average agreement is better, at 59%, σ = 0.021. In
the text-only condition (T), the average agreement is 41%,
σ = 0.016.

Since the video-only condition had the highest level of
agreement with the VA condition, this would suggest that
visual information is the primary cue for gesture classifi-
cation. However, there is a statistically significant drop-off
from the VA condition to the video-only condition (p < .01),
suggesting that audio cues do play a necessary supplemen-
tary role.

5. AUTOMATIC CLASSIFICATION FROM
TEXT

The previous section shows that human listeners use both
vision and audition when recognizing gestures, and that two
modalities contain complementary information. In this sec-
tion, we explore the idea of classifying gestures using only
linguistic information. The goal here is to determine what
type of linguistic cues are most useful for gesture classifica-
tion, to get a sense for the classification performance these
cues can provide, and to develop a system that could be com-
bined with a vision-based approach in an integrated multi-
modal gesture classifier. We use the majority classifications
from the previous study as ground truth, and evaluate our
system’s ability to replicate these classifications using only
textual information.

5.1 Features
For each gesture, a feature vector was constructed using

the words that appear within a series of windows surround-
ing the onset of the stroke phase of the gesture. According
to the psychology literature, the stroke phase usually over-
laps the most prosodically prominent part of the associated
speech [13]. We used two windows to differentiate words that
appear during the stroke phase from words that appear at
any point during the whole gesture phrase (see Figure 3).
The windows were buffered by 133 milliseconds at the front
and 83 milliseconds at the back. Ideally, these parameters
should be estimated by cross-validation, but the results are
not overly sensitive to their settings.

Since strokes are a component of gesture phrases, the



Figure 3: Separate windows are used to capture stroke and gesture phrase features

stroke window is a subset of the gesture phrase window.
By including the stroke window, we are heeding McNeill’s
advice that the words overlapping the stroke phase are the
most important for determining the semantic content of the
multimodal utterance [13]. This did in fact improve per-
formance; from 61.5% using the only the gesture phrase
window, to 65.9% when using both windows. Using the
stroke phase window alone produced performance of 58.7%;
the multiple-window technique was significantly better than
both alternatives.

The stroke window contained n-grams that were highly
informative but sparse. For example, consider the part-of-
speech unigram “VBZ”, indicating a verb in the 3rd person
singular, present tense. This feature is somewhat informa-
tive when appears in a gesture phrase window:

p(VBZ ∈ GP window | Deictic) = .38 (1)

p(VBZ ∈ GP window | Iconic) = .52 (2)

This feature is more informative if it appears in the stroke
window:

p(VBZ ∈ Stroke window | Deictic) = .21 (3)

p(VBZ ∈ Stroke window | Iconic) = .44 (4)

Put another way, if the VBZ feature appears during the ges-
ture phrase window of an iconic gesture, it is almost always
during the stroke phase. For deictic gestures, it could ap-
pear with equal likelihood anywhere throughout the gesture
phrase.

5.1.1 Linguistic Analysis
Each word was stemmed, using a lexically-based stem-

mer, and tagged, using a Java implementation of the Brill
tagger [12]. Stemming had no appreciable affect on perfor-
mance. Each word stem was included as a feature. We also
tried some coarse word-sense disambiguation by appending
the part-of-speech tag to each word, and including each
type of usage as an independent feature (e.g., “fish/NN”
and “fish/VB”) – this decreased performance from 65.9% to
64.2%. POS tags were used as features on their own; with-
out them, performance decreased to 58.6%. Both differences
were significant.

For both words and POS tags, n-grams of size 1 to 3 were
used. All n-grams were simply thrown into the feature vec-
tor together; in the future we may use backoff models to
combine the different size n-grams in a more intelligent way.

Unigrams alone provided a performance of 55.1%; adding
bigrams improved performance to 60.0%; adding trigrams
improved performance to 65.9%; adding 4-grams decreased
performance to 65.7%, an insignificant change (all other
changes were significant).The mean number of words in each
gesture phrase window was 5.0 (median = 4, σ = 3.7),
and the mean for the stroke window was 2.8 (median =
2, σ = 2.0). Thus it is unsurprising that larger n-grams
afforded no improvement. In total, when using unigrams,
bigrams, and trigrams, there were 2746 features.

5.2 Classifier Performance
Table 3 compares the performance of various classifiers on

this task. For all classifiers except TWCNB, the Weka [19]
implementation was used.

HyperPipes is a simple, fast classifier for situations with
a large number of attributes (there are 2746 in this case).
HyperPipes records the attribute bounds for each category,
and then classifies each test instance according to the cate-
gory that most contains the instance. As shown in the table,
HyperPipes significantly outperforms all other classifiers on
this task.

TWCNB is a modification of the Naive Bayes classifier de-
signed by Rennie et. al [17] to better suit text-classification
problems. It includes a complement-class formulation which
is useful when the number of examples is poorly balanced
across classes, as is the case here. It also implements term-
frequency transformations, addressing the fact that the multi-
nomial distribution is a poor model of text. Our own imple-
mentation of this classifier is used in these experiments.

The NaiveBayes, SVM, and C4.5 classifiers are used “as
is” from the Weka library; default settings are used for all
parameters. While any one of these classifiers might perform
substantially better given an optimal choice of parameters,
our purpose is to show the range of performance on this task
achieved by some commonly-used techniques, rather than to
offer a comprehensive comparison of classifiers.

Table 3 compares the performance of each classifier on the
gesture classification task. The results were the average of
one hundred experiments, each of which involved random-
izing the dataset and then performing a stratified ten-fold
cross-validation. All classification accuracy differences were
significant, except for SVM versus C4.5, where the difference
was not significant.

The “always deictic” classifier chooses the “deictic” class
every time. All classifiers significantly outperformed this



Accuracy σ

HyperPipes 65.9% 1.47
TWCNB 63.5% 1.66
Naive Bayes 58.9% 1.10
C4.5 56.0% 2.17
SVM 55.9% 2.17
Always deictic 48.7% N/A
Humans: audio-only 45% 2.7
Humans: audio-video 78% 2.8

Table 3: Comparison of classifier performance, av-
eraged over 100 stratified, ten-fold cross-validation
experiments

baseline. Another baseline is the performance of human
raters who had access to the same information, the audio
surrounding the gesture. The performance of human raters
in the audio-only condition was actually worse than the “al-
ways deictic” baseline. This suggests that while the linguis-
tic context surrounding the gesture clearly does provide cues
for classification, human raters were unable to use these cues
in any meaningful way when the video was not also present.

As an upper bound, we consider the performance of the
human raters who had access to both the audio and video;
the majority opinion of these raters forms the ground truth
for this experiment. As shown in the table, the average rater
agreed with the majority 78% of the time. This appears to
be a reasonable upper bound for a multimodal gesture clas-
sification system; it seems unlikely that using the text only,
we could achieve higher performance than human raters who
had access to visual and prosodic information.

5.3 Discussion
Table 4 lists the ten features that were found to be carry

the highest information gain. Capital letters indicate part-
of-speech tags, which are defined according to the Penn
Treebank set. “UH” indicates an interjection, e.g., “um”,
“ah”, “uh”; “VB*” is a verb, with the last character indi-
cating case and tense; “PRP” is a personal pronoun.

The features correlate with gesture categories in a way
that accords well with linguistic theory about the role of
speech and gesture as part of an integrated communicative
system [13]. For deictics, the word “here” is a good pre-
dictor, since it is typically accompanied by a gestural refer-
ence to a location in space. The class of “other” gestures
is primarily composed of beats, which serve the same turn-
keeping function as interjections such as “uh.” The “VBZ”
tag – indicating a verb in the third-person singular – is a
good predictor of iconic gestures, as are the more domain-
specific cue words, “back” and “push.” These words were
used by several speakers to describe the motion of the pis-
ton, and were typically accompanied by an iconic gesture
describing that motion.

6. RELATED WORK
For a more detailed discussion of the gesture classes de-

scribed in this paper, see [13]; for an analysis specifically
geared towards multimodal user interfaces, see [2].

Computational analysis of unconstrained, natural gesture
is relatively unexplored territory, but one exception is the

research of Quek and Xiong et al. They have applied Mc-
Neill’s catchment model [14] to completely unconstrained
dialogues, extracting discourse structure information from a
number of different hand movement cues, such as gestural
oscillations [20].

Pattern-recognition approaches to recognizing some of these
gesture classes have been reported in a few publications.
Kaiser et al. [7] describe a system that recognizes deictic
pointing gestures and a set of manipulative gestures: point,
push, and twist. Kettebekov and Sharma [9] present a map-
control user interface that distinguishes between deixis and
“motion” gestures that are a subset of the class of iconic
gestures in the taxonomy that we have used. Kettebekov,
Yeasin, and Sharma also applied prosodic information to im-
prove gesture segmentation and the recognition of movement
phrases and various types of deictic gestures [10].

Perhaps the most closely related research topic is mutual
disambiguation [16], which views speech and gesture as co-
expressive streams of evidence for the underlying seman-
tics. If the speech modality suggests a given semantic frame
with very high probability, then the probabilities on gestures
that are appropriate to that frame are increased; the con-
verse is also possible, with gesture disambiguating speech.
While most of the work on mutual disambiguation involves
pen/speech interfaces [4], it has more recently been applied
to free hand gestures as well [7].

Mutual disambiguation relies on having a constrained do-
main in which the semantics for every utterance can be un-
derstood within the context of a formal model of the topic of
discourse. Our approach gives up some of the power of mu-
tual disambiguation, in that semantic information may pro-
vide tighter constraints on gesture than the linguistic cues
that we use. Our approach is more appropriate to situations
in which a formal model of the domain is not available.

7. FUTURE WORK
The ultimate goal of this research is multimodal gesture

recognition: a combination of linguistic priors of gesture
classes with vision-based recognition. Consequently, the
most pressing future work is to combine the textual classifier
developed here with traditional pattern-recognition tech-
niques. Hopefully this will show that linguistic context does
indeed improve classification performance, as it does for hu-
mans.

In addition, there are a number of other ways in which
both the empirical study and the automatic classifier can be
extended.

7.1 Prosodic versus lexical cues
The experiment involving human raters showed that au-

ditory cues significantly improve visual classification of ges-
tures. However, this experiment does not disambiguate the
role of prosody versus lexical and higher-order linguistic fea-
tures. We can remove prosody by transcribing the speech
and feeding it to a text-to-speech engine. If the results using
this audio and the original video are indistinguishable from
the video-audio condition with human speech, then we could
conclude that prosody plays no role in gesture classification.
Alternatively, we can remove lexical and higher-order lin-
guistic cues by having speakers communicate in a language
unknown to the listeners, but with similar prosodic conven-
tions. If the results prove to be indistinguishable from the
video-audio condition in which the listener understands the



Feature Window Information p(w| Deictic) p(w| Iconic) p(w| Other)
back phrase 0.088 .013 .17 .04
UH stroke 0.064 .051 .017 .24
push stroke 0.058 .013 .12 .04
VBZ stroke 0.056 .21 .44 .16
back stroke 0.055 .026 .15 .04
here phrase 0.054 .23 .051 .24
as phrase 0.053 .064 .20 .04
uh stroke 0.051 .039 .017 .20
as stroke 0.044 .039 .15 .04
PRP-VBP phrase 0.044 .12 .017 .08

Table 4: The top ten features by information gain

speaker, then lexical and higher-order linguistic cues are ir-
relevant to gesture classification.

7.2 Domain generality
All of the test and training data in this corpus is drawn

from an experiment within a single domain: engineering
mechanical devices. Another experiment could help deter-
mine whether the language model learned here is general be-
yond that domain. The absence of obviously domain-specific
terms in the set of more informative features described in
the previous section is encouraging.

7.3 Recognized speech and gesture boundaries
The current evaluation is performed using transcriptions,

rather than automatically recognized speech. Thus, this sys-
tem does not have to deal with word errors. In the future,
we hope to demonstrate that this classifier is still accurate,
even when presented with errorful speech. In addition, we
would like to segment gestures automatically, possibly with
the aid of prosodic cues as in [10].

7.4 Feature fusion
The classification system as implemented uses classes of

features varying on several dimensions: gesture phrase win-
dow versus stroke window; word versus part of speech tag;
n-gram size. Currently, all features are combined into a sin-
gle vector and sent to a classifier. A more sophisticated
approach might be to interpolate between multiple classi-
fiers and use backoff models to combine the different size
n-grams.

8. CONCLUSIONS
Natural, communicative gesture is well described by ges-

ture classes that are fundamentally multimodal in nature,
pertaining to both the hand motion and the role played
by the gesture in the surrounding linguistic context. Hu-
mans rely on auditory as well as visual cues to classify ges-
tures; without auditory cues, performance decreases signif-
icantly. This suggests that automatic classification of ges-
tures should make use of both hand movement trajectories
and linguistic cues. We have developed a gesture classifier
that uses only linguistic features and achieves 66% accuracy
on a corpus of unconstrained, communicative gestures.

Acknowledgements
We thank Aaron Adler, Christine Alvarado, Sonya Cates,
Tracy Hammond, Michael Oltmans, Sharon Oviatt, Metin
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Appendix: Instructions for Raters
In this study you will be asked to identify gestures as be-
longing to one of three classes: deictic, action, or other.

DEICTIC gestures involve pointing at, tracing the out-
line of, or otherwise indicating a specific object or region of
space. For example, a speaker might point at a book and
say, “this is the book I read last week.” Drag the mouse over
the squares below to see short video clips of deictic gestures.

ACTION gestures reenact a physical interaction, trajec-
tory of motion, or some other event. For example, a speaker
might describe a bouncing pinball by tracing a path of mo-
tion with the hand while saying, “the ball bounces all over
the place.” Drag the mouse over the square below to see a
short video clip of an action gesture.

OTHER gestures include the gesticulation that typically
accompanies speech (e.g., creating visual “beats” to empha-
size important speaking points) as well as any other gesture
that cannot easily be classified in either of the above two
categories. Drag the mouse over the square below to see a
short video clip of an “other” gesture.

First, you will be presented with a video, and a user-
interface window that allows you to play specific clips from
the video. Each clip includes a single gesture, which you
will be asked to classify using the above framework. You
will be presented with four such videos; at times, the audio
may be muted, or the video itself may be hidden. Based
on whatever information is available, please make your best
effort to correctly classify each gesture. Even if you feel that
you do not have enough information to correctly classify a
gesture, please make your best guess.

Next, you will be presented with a set of textual tran-
scriptions of the speech surrounding each gesture. Based on
this text, please make your best effort to correctly classify
each gesture.


