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Abstract. Natural language speech and text provides a flexible, intu-
itive means to issue commands to robots. A robot’s ability to interpret
these natural language directives is becoming critical as robots work
alongside people in our homes, hospitals, and workplaces. One class of
solutions frame the language understanding problem as one of inferring
the robot actions and objects and locations in the environment that are
associated with a given free-form instruction. These approaches, how-
ever, require that this world model representation of the environment
is fully known. This paper proposes a probabilistic framework that en-
ables robots to successfully follow natural language commands without
any prior knowledge of its operating environment. The novelty lies in
exploiting environment knowledge implicit in the instruction to predict
a world model upon which we can estimate the states and actions most
consistent with the command. Specifically, the algorithm learns a distri-
bution over the metric and semantic properties of the environment based
upon annotations inferred from the command. It uses this distribution to
then infer a distribution over the corresponding behaviors and executes
a policy that yields the most likely action under this distribution. We
demonstrate the algorithms ability to follow natural language navigation
commands within a priori unknown environments.

1 Introduction

Robots are increasingly performing collaborative tasks with people at home,
in the workplace, and outdoors, and with this comes a need for efficient com-
munication between human and robot teammates. Owing to its flexibility and
intuitiveness, natural language has proven to be an effective means for people to
command and control robots, as demonstrated by recent work that allows robots
to follow a user’s spoken instructions that command navigation [1–8] and object
manipulation [8, 9].

A common approach to natural language understanding for robots is to per-
form what Harnad [10] refers to as the symbol grounding problem in which
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linguistic elements from free-form commands are mapped to their correspond-
ing manifestation in the external world. Most existing solutions assume to have
access to an a priori known world model that expresses the space of objects,
locations, and actions available to the robot that may serve as referents for the
command. The problem of natural language understanding is then one of infer-
ring the elements from this world model that are most likely associated with a
given utterance [5, 9]. However, there are many scenarios in which the robot will
have limited to no prior knowledge of the environment, and the task of requiring
a user to manually provide a sufficiently complete world model may be overly
burdensome or impossible. Oftentimes, the command itself provides information
about the environment that can be used to hypothesize suitable world model
upon which the relevant actions of the robot can be grounded. For example,
suppose that a user instructs a robot to “Navigate to the car behind the build-
ing,” where the car and location are outside the robot’s field-of-view and their
location unknown. This instruction conveys the knowledge that there is likely
one or more buildings and cars in the environment, with at least one car being
“behind” one of the buildings. The robot should be able to reason about the
car’s possible location and refine its hypothesis as it carries out the command
(e.g., when it observes a building).

This paper proposes a method that enables robots to interpret and execute
natural language commands that refer to unknown regions and objects in the
robot’s environment. We address the problem by exploiting the existence of an-
notations implicit in the user’s command to simultaneously learn an environment
model from the natural language, and then solve for the policy that is consistent
with the command under this world model. The robot updates its internal rep-
resentation of the world as it gathers metric information, such as the location
of perceived landmarks. Specifically, we propose a probabilistic framework that
infers a distribution over a semantic model of the environment and the grounded
behavior given a natural-language command and observations captured by the
robot’s sensor streams. The framework then uses this distribution over the world
model and behaviors to solve for a policy that yields actions with the highest
likelihood of being consistent with the command. By reasoning and planning
in the space of beliefs over landmark and object locations, we are able to rea-
son about elements that are not initially observed, and robustly follow natural
language instructions given by a human operator. We evaluate our algorithm
through a series of simulation-based and physical experiments that demonstrate
its effectiveness at carrying out navigation commands, as well as the conditions
under which it fails.

2 Related Work

Commanding robots using natural language has proven to be effective for robots
performing simple tasks such as following route directions [1–3, 5–8] and ma-
nipulating objects [8, 9]. With the exception of the work by [2] and [7], existing
approaches require an a priori known environment model that captures the ge-
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“go to the hydrant behind the cone”
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(a) First, we receive a verbal instruction
from the operator.

∃ ocone ∈ O
∃ ohydrant ∈ O
∃ rback (ocone, ohydrant) ∈ R

annotation

@I hydrant
samples

(b) Next, we learn the map distribution
from the utterance and prior observations.

action
@I

(c) We then take one action (green line),
using the map distribution and the most
likely cost functions from the command.

actual hydrant pose

@R

(d) This process is repeated, and the
robot incorporates new observations. As
the map distribution is refined, the robot
moves to wards the goal.

Fig. 1. Visualization of one run for the command “go to the hydrant behind the cone,”
showing the evolution of our beliefs (the possible locations of the hydrant) over time.
For clarity, we have left out the covariance ellipses of the hypothesized landmarks.

ometry, location, type, and label of objects and regions within the environment.
While our approach is able to incorporate a prior distribution over the world
model, it is specifically designed to function with no previous knowledge of the
environment. Instead, we infer annotations present in the free-form command
and exploit these annotations to learn a distribution over the world model that
we then opportunistically refine as the robot carries out the resulting behavior.

Some approaches are able to follow natural language directions through un-
known environments by using a parser to map language to actions [6, 7, 2]. How-
ever, these approaches do not reason directly about the environment, and as such
cannot reason about mistakes if the environment does not match the command.
We instead leverage the available information in the command to generate a
prior over the possible locations of landmarks, act within this distribution, and
refine our estimate as we gain more information about the environment.

Duvallet et. al. [11] trains a policy to follow directions through unknown
environments, reasoning about uncertainty and backtracking when the policy
makes a mistake. However, the information contained in the utterance about the
unobserved parts of the environments is not used directly, and they do not reason
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about landmarks that have not yet been detected. Our work treats language as
a sensor that can be used to generate maps.

Williams et. al. [12] use a cognitive architecture to add unvisited locations to
a map. However, they only reason about topological relationships between un-
known places, only operate indoors, and do not reason about multiple landmarks
of the same type. Our approach reasons both topologically and metrically, and
can deal with ambiguous environments.

Our work also draws from related work in exploration strategies for Simul-
taneous Localization and Mapping (SLAM), where we must gather information
to improve our model of the environment [13]. However, our goal is to follow the
direction correctly (not reduce the uncertainty in the map or robot pose), and
thus we explore only as much as necessary to complete the task.

As we are reasoning in the space of distributions over possible environments,
we draw from strategies in the belief-space planning literature. Most importantly,
we represent our belief using samples from the distribution, similar to work by
Platt et. al. [14]. Instead of solving the complete Partially-Observable Markov
Decision Process (POMDP), we instead seek efficient approximate solutions [15,
16].

3 Technical Approach

Our goal is to infer the most likely robot trajectory x (t) given the history of
natural language utterances Λt, sensor observations zt, and odometry ut,

arg max
x(t)∈<n

p
(
x (t) |Λt, zt, ut

)
. (1)

Inferring the maximum a posteriori trajectory (1) for a given natural language
utterance is challenging without knowledge of the environment for all but trivial
applications. To overcome this challenge, we introduce a latent random variable
St that represents the world model as a semantic map that encodes the location,
geometry, and type of the objects within the environment. This allows us to
factor the distribution as

arg max
x(t)∈<n

∫
St

p(x(t)|St, Λt, zt, ut) p(St|Λt, zt, ut) dSt. (2)

As we maintain the distribution in the form of samples, this simplifies to,

arg max
x(t)∈<n

∑
i

p(x(t)|S(i)
t , Λt, zt, ut) p(S

(i)
t |Λt, zt, ut) (3)

Our algorithm learns these distributions online based upon the robot’s sensor
and odometry streams and the user’s natural language input. We do so through
a filtering process whereby we first infer the distribution over the world model
St based upon annotations identified from the utterance (second term in the
integral in (2)), upon which we then infer the constraints on the robot’s action
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Fig. 2. Framework outline.

that are most consistent with the command given the initial map. At this point,
the algorithm solves for the most likely policy under the learned distribution over
trajectories (first term in the integral in (2)). During execution, we continuously
update the semantic map St as sensor data arrives and refine the optimal policy
according to the re-grounded language.

We use the Distributed Correspondence Graph (DCG) model [8] to efficiently
convert unstructured natural language to symbols that represent the spaces of
annotations and behaviors. The DCG model is a probabilistic graphical model
composed of random variables that represent language λ, groundings γ, and
correspondences between language and groundings φ and factors that are repre-
sented by log-linear models. The parameters in each log-linear model is trained
from a parallel corpus of labeled examples for annotations and behaviors in the
context of a world model Υ . In each, we search for the unknown correspondence
variables that maximize the product of factors:

arg max
φ∈φ

∏
i

∏
j

fij

(
φij , γij , γcij , λi, Υ

)
. (4)

An illustration of the graphical model used to represent Equation 4 is shown
in Figure 3. In Figure 3 the black squares, white circles, and gray circles represent
factors, unknown random variables, and known random variables respectively. It
is important to note that each phrase can have a different number of vertically
aligned factors if the symbols used to ground particular phrases differ.

Figure 2 illustrates the architecture of the integrated system that we con-
sider for evaluation. First, the natural language understanding module infers a
distribution over annotations conveyed by the utterance. The semantic graph
then uses this information in conjunction with the prior utterances and sensor
measurements to build a probabilistic model of objects and their relationships
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(a) DCG model for “go to the hydrant behind the cone”

Fig. 3. An illustration of two individual DCG models used to infer annotations and
behaviors from the instruction “go to the hydrant behind the cone”. Each model is
trained from separate parallel corpora of examples and is constructed from different
sets of symbol groundings.

in the environment. We then formulate a distribution over robot behaviors using
the utterance and the semantic graph distribution. Next, the planner computes
a policy from this distribution over behaviors and maps. As the robot makes
more observations or receives additional human input, we repeat the last three
steps to continuously update our understanding of the most recent utterance.

3.1 Annotation Inference

The space of symbols used to represent the meaning of phrases in map inference
is composed of objects, regions, and relations. Since no world model is assumed
when interpreting the utterance for linguistic observations, the space of objects is
equal to the number of possible object types that could exist in the scene. Regions
are some portion of state-space that is typically associated with a relationship
to some object. Relations are a particular type of association between a pair of
objects or regions (e.g. front, back, near, far). Since any set of objects, regions,
and relations may be inferred as part of the symbol grounding, the size of the
space of groundings for map inference grows as the power set of the sum of these
symbols. For the experiments discussed later in Section 4 we assume that the
space of groundings for every phrase is represented by 8 objects, 54 regions, and
432 relations. We use a DCG model trained from a parallel corpus of utterances
and annotations to infer a distribution of hypothetical observations that the
semantic mapping process will fuse with information from other sensors.
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3.2 Semantic Mapping

We treat the annotations as noisy observations zat that specify the existence
and relative pose of labeled objects in the robot’s environment. We use these
observations along with those from the robot’s onboard sensors zot to learn the
distribution over the semantic map, St = {Gt, Xt}

p(St|Λt, {zo}t, ut) ≈ p(St|{za}t, {zo}t, ut) (5a)

= p(Gt, Xt|{za}t, {zo}t, ut) (5b)

= p(Xt|Gt, {za}t, {zo}t, ut)p(Gt|{za}t, {zo}t, ut), (5c)

where the first line follows from the assumption that there is a single annotation
zat for a given utterance λt. The last line expresses the factorization into a dis-
tribution over the topology and a conditional distribution over the metric map.
Owing to the combinatorial number of candidate topologies [17], we employ a
sample-based approximation to this distribution and model the conditional pos-
terior over poses with a Gaussian, parametrized in the canonical form. In this

manner, each particle S
(i)
t = {G(i)

t , X
(i)
t , w

(i)
t } consists of a sampled topology

G
(i)
t , a Gaussian distribution over the poses X

(i)
t , and a weight w

(i)
t . We note

that this model is similar to that of Walter et al. [17], though we don’t treat the
labels as being uncertain.

We use a Rao-Blackwellized particle filter [18] to efficiently maintain this
distribution over time, as the robot receives new observations while executing
the inferred behavior. At a high level, this process involves proposing updates
to each sampled topology that express observed objects as well as spatial re-
lations between hypothesized objects based language-based annotations. Next,
the algorithm uses the proposed topologies to perform a Bayesian update to the
Gaussian distribution over the node (object) poses. The algorithm then updates
the particle’s weight so as to approximate the target distribution. We perform

this process for each particle S
(i)
t and repeat these steps at each time instance.

The following describes each operation in more detail.
During the proposal step, we first augment each sample topology with an

additional node and edge that model the robot’s motion, resulting in a new

topology S
(i)−
t . We then sample modifications to the graph ∆S

(i)
t based upon

the most recent annotations and sensor observations zat and zot .

p(S
(i)
t |S

(i)
t−1, z

a
t , z

o
t , ut) = p(∆S

(i)
t |S

(i)−
t , zat ) p(∆S

(i)
t |S

(i)−
t , zot ) p(S

(i)−
t |S(i)

t−1, u
t)

The updates can include the addition of new nodes to the graph that represent
newly hypothesized or observed objects. They also may include the addition
of edges to existing nodes that express spatial relations based on the robot’s
observation of an object already in the map.

For each language annotation zat(j), the graph modifications are sampled from

the proposal (6) in a multi-stage process.

p(∆S
(i)
t |S

(i)−
t , zat ) =

∏
j

p(∆S
(i)
t |S

(i)−
t , zat(j)) (6)
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Firstly, a grounding is sampled from existing valid landmark and figure pairs
based on the likelihood of the spatial relation (for the given pair) using a Dirich-
let process prior (where the count is the likelihood of the spatial relation). If
this results in an ungrounded relation, the second stage of sampling samples
a landmark and figure object using a Dirichlet process prior (with each object
of the same type having a count of 1). If the landmark and/or the figure are
sampled as new objects, we create these objects in the world model and create
an edge between the two objects. We also sample the constraint for this edge
based on the spatial relation (using a likelihood function for the spatial relation
and rejection sampling).

When the robot observes objects using its sensors, a similar process is em-
ployed (7). For each observation, a grounding is sampled from the existing model
of the world. If this results in a valid grounding, we add a new constraint to this
object, while if this results in a new object, we create this object in the map and
add the constraint.

p(∆S
(i)
t |S

(i)−
t , zt) =

∏
j

p(∆S
(i)
t |S

(i)−
t , zt(j)) (7)

After each particle has been modified, we also update its weight. The up-
date (8) takes in to account the likelihood of generating language annotations,
as well as positive and negative observations of objects, given each particle at
the previous timestep. For language groundings, this is the grounding likelihood
for natural language utterances before the map was updated. For object obser-
vations, this is the likelihood of the given map generating observations (or not)
given the current position of the robot and the robot’s field-of-view. This would
down-weight particles that have objects within the field-of-view when the robot
did not observe an object as well as when the robot observed an object (but the
particle did not have an object near that location).

w
(i)
t = p(zt, z

a
t |St−1)w

(i)
t−1 = p(zat |St−1) p(zt|St−1)w

(i)
t−1 (8)

Once the weights are normalized, particles are resampled if needed.

3.3 Behavior Inference

The space of symbols used to represent the meaning of phrases in behavior
inference is composed of objects, regions, actions, modes, constraints, and goals.
Objects and regions are defined in the same manner as map inference though the
presence of objects is a function of the inferred map. Actions, modes, constraints,
and goals are a specification to a planner that dictates how the robot should
perform a behavior. Since any set of actions, modes, constraints, and goals can
be expressed to the planner, the space of groundings for behavior inference also
grows as the power set of the sum of these symbols. For the experiments discussed
later in Section 4 we assume 3 types of actions, 3 types of modes, and a number
of objects, regions, goals, and constraints that are proportional to the number of
objects in the hypothesized environment. We use a DCG model trained form a
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parallel corpus of utterances and behaviors to infer a distribution of behaviors for
each particle that we receive from the semantic graph and pass this information
to the planner.

3.4 Planner

Since it is difficult to both represent and search the continuum for a trajectory
that best reflects the entire instruction in the context of the Semantic Graph, we
instead learn a policy that predicts a single action which maximizes the one-step
expected value of taking the action a from the robot’s current pose x(t). This
process is repeated until the policy declares it is done following the direction
using a separate action astop.

As the robot moves in the environment, it builds up and updates a graph of
locations it has previously visited, as well as frontiers which lie at the edge of
explored space. This graph is used to generate a candidate action set consisting
of all frontier nodes F as well as previously-visited nodes V in the graph,

Ax = F ∪ V ∪ {astop} (9)

Each action represents a node in the planner’s topology that the robot can travel
to next.

Each action is evaluated under the policy, which maximizes the value of that
action under our current distribution of maps:

π (x(t), Φ) = argmax
a∈Ax

V (S, a, Φ) . (10)

Solving the complete POMDP would scale poorly with the number of hy-
pothesizes, which would be incongruent with a fast replanning cycle. We instead
use the QMDP algorithm, which is an efficient approximate POMDP algorithm
and approximates the POMDP belief value function by assuming (falsely) that
the belief state will become fully observable after one step [19]. This enables us
to approximate the value function as an expectation over MDP value functions
as

V (S, a) ≈
∑
s∈S

p(s)V (s, a). (11)

The value of a single sampled world V (s, a, Φ) is inferred from the natural
language expression and the Semantic Graph

V (s, a) = γd(a,gs), (12)

where γ is the MDP discount factor and d is the Euclidean distance between the
action endpoint (where the robot would be after completing the action) and the
goal position (given by the annotations Φ).

Our belief space policy π seeks to pick the action which maximizes the value
from the current position x(t)

π (x(t), Φ) = argmax
a∈Ax

∑
s∈S

p(s)V (s, a). (13)
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(a) (b)

Fig. 4. A visualization of the value function evolving over time. (a) The cones are
initially visible and the robot has inferred the location of the hydrant in two regions.
The robot first travels to the left-most region and when the map is updated to reflect
the absence of the hydrant, the value function peaks around the region to the right.
(c) The robot observes the cone, which concentrates the value.

While this approach is inherently greedy, we believe it has several advantages
that make it well suited for our approach. Since it is fast to replan in the presence
of new information, we can use of the fact that the world likelihoods p(s) will
change and that particles will be resampled in new locations as the robot moves
and observes new areas. This will change the value function, which will in turn
alter the behavior of the robot. This is shown in Figure 4, where the value
function evolves as the robot moves in an environment containing two cones and
one hydrant. Using a more sophisticated POMDP solver is part of our future
work, and would enable us to take purely information-gathering actions.

4 Results

We demonstrate the utility of our approach in practice using experiments run
on two different mobile robot platforms. We also evaluate the effect of a priori
knowledge and different environments on our approach by performing a large
number of simulation experiments. These simulations provide a better statistical
analysis of the algorithm for various environment conditions.

4.1 Natural Language Understanding

To evaluate the ability of the natural language understanding component of our
framework we measured the accuracy and computational complexity of proba-
bilistic inference using holdout validation. In each experiment the corpus was
randomly divided into a set of examples that was used to train a model and a
set of examples that were used to evaluate if the model could recover the cor-
rect groundings from only the utterance and the world model. Each model used
13,716 features that checked for the presence of words, properties of ground-
ings and correspondence variables, and relationships between current and child
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(a) Operator viewpoint. (b) Robot viewpoint.

Fig. 5. Difference in viewpoints between the robot and operator. To understand the ut-
terance “go to the hydrant behind the cone”, the robot must reason about the possible
locations for the hydrant even though it cannot be detected.

groundings. We conducted 8 experiments for each type of model using a corpus
of 36 labeled examples of instructions and groundings. Statistics for the aver-
age accuracy, training time, and inference time for the annotation and behavior
models are illustrated in Table 1.

Table 1. Statistics for average accuracy, training time, and inference time for the
annotation and behavior models from the natural language understanding experiments.

Model Accuracy (%) Training Time (sec) Inference Time (sec)

Annotation 60.42 127.411 0.42
Behavior 57.29 16.062 0.05

The training time and inference time for the annotation model is as expected
much more significant because the vastly larger number of groundings for phrases
in the model. This is acceptable for our framework since the annotation model
is only used once to infer a set of observations while the behavior model is
continuously processing updated map distributions.

4.2 Physical Experiments

We applied our approach two mobile robots, a Husky A200 mobile robot and
an autonomous robotic wheelchair [20]. The use of both platforms shows the
robustness of our approach to different vehicle configurations, underlying motion
planners, and camera fields of view. The robots are commanded by sending a list
of waypoints to their respective motion planners. Perception of landmarks is done
using the AprilTag fiducial system for object detection and localization [21], but
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we have the ability to integrate a semantic perception system that uses camera
images and 3D point clouds in a future version of the system.

In the experiments, a human operator instructs the robot to “drive to the
hydrant behind the cone.” The object of the sentence is clearly visible from
the viewpoint of the operator, however the hydrant is out of the sensing range,
and occluded by the orange cone. To vary the difficulty of the task, we ran the
same command on both a simple environment and a complex one. In the simple
environment, only one landmark of each type was present. Figure 5 shows an
example of the simple environment. In the complex environment, two cones were
present, but only one hydrant.

We measure the success rate of each trial (whether or not the robot ends
within N meters of the goal), as well as the distance traveled by the robot to reach
its destination. As abaseline for the experiments, we compare the performance
of the system to one that operates with full knowledge of the environment. This
knowledge is acquired by manually driving the robot around the test environment
while the semantic graph builds a map from camera observations. This provides
the robot with full knowledge of the location of all landmarks.

These mobile robot experiments provide insights into the ability of our ap-
proach to infer missing information by using the utterance, reason about the
uncertainty in the landmark locations, and handle ambiguous landmarks in the
case where the environment contains several landmarks of the same type.

Simple Environment We performed 12 experiments in which we gave the
robot natural language instructions that involved a spatial relation between a
pair of objects (e.g., “go to the hydrant behind the cone”). Of these commands,
half were given with the map known a priori and the other half with an unknown
map. The language models used to infer the observations and behaviors were
trained from a more general corpus of 22 different annotated utterances. The
results, illustrated below in Table 2, show that our approach executes the desired
behavior at a rate of 83.3% compared to the full-knowledge case, even though the
object that determines the destination is not initially visible nor is it known in
advance. As we expected, the time required for execution was greater in the case
that the map was unknown due to the exploratory behavior that is performed.
The robot executed the intended action at a cost that is about 28% more than
that of the fully known map. Illustrations of one run in an unknown map with
the utterance “go to the hydrant behind the cone” at various periods of the test
are shown in Figure 1.

Table 2. Mean time and distance with 95% confidence intervals over 12 runs (6 per
experimental condition) and success rates for the different scenarios.

Algorithm Time (sec) Distance (m) Success (%)

Known Map 26.4 ± 4.2 8.4 ± 1.3 100.0
Unknown Map 34.0 ± 18.6 8.1 ± 0.6 83.3
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Table 3. Wheelchair Experimental Results

Scenario Algorithm # Runs Success (%) Distance (m)

1 Known Map 5 100.00 8.01 ± 1.09
1 Unknown Map 100 100.00 14.95 ± 9.89
1 Coverage ? ? ? ± ?
2 Known Map 5 100.00 9.17 ± 0.15
2 Unknown Map 89 81.82 34.57 ± 37.90
2 Coverage ? ? ? ± ?

Table 4. Monte Carlo Simulation Results

Scenario Algorithm # Runs Success (%) Distance (m)

1 Known Map 5 100.00 8.01 ± 1.09
1 Unknown Map 100 100.00 14.95 ± 9.89
1 Coverage ? ? ? ± ?
2 Known Map 5 100.00 9.17 ± 0.15
2 Unknown Map 89 81.82 34.57 ± 37.90
2 Coverage ? ? ? ± ?

5 Conclusions

Enabling robots to reason about parts of the environment that have not yet been
visited solely from a natural language description serves as one step towards
effective and natural collaboration in human-robot teams. By using language as
a sensor, we are able to paint a rough picture of what the unvisited parts of the
environment could look like, which we utilize during planning and update with
actual sensor information during task execution.

Our approach exploits the information implicitly contained in the language to
infer the relationship between objects that may not be initially observable, with-
out having to consider those annotations as a separate utterance. By learning a
distribution over the map, we generate a useful prior that enables the robot to
sample possible hypotheses, representing different environment possibilities that
are consistent with both the language and the available sensor data. Learning
a policy which reasons in the belief space of these samples achieves a level of
performance that approaches full knowledge of the world ahead of time.

These evaluations provide a preliminary validation of our framework. Future
work will test the algorithm’s ability to handle utterances that present complex
relations (e.g., “go to the cone near the tree by the wall”) and behaviors that
are more detailed (e.g., “go to the cone near the barrel and stay to the right
of the car”) than those considered above. An additional direction for following
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work is to explicitly reason over exploratory behaviors that take information
gathering actions to resolve uncertainty in the map. Currently, any exploration
on the part of the algorithm is opportunistic. We expect this to be necessary in
more challenging scenarios. Furthermore, or utterances that contain ambiguous
information or are difficult to parse, we may be able to use a dialogue system
to resolve the ambiguity. For example, the utterance “go to the cone” may not
contain enough information when there are several cones present, but “the one
nearest to the tree” may provide the missing piece of information to follow the
direction correctly.
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