Acquiring Rich Models of Objects and Space Through Vision and Natural Language

Matthew Walter CS & AI Lab, MIT

School of Computer Science University of Massachusetts, Amherst

February 6, 2013

Tuesday, February 5, 13

Robots as Automated Agents

- Advances in:
 - Actuation
 - Planning
 - Control
- Focus:
 - Accuracy
 - Robustness

Courtesy: ABB

Robots as Our Surrogates

- Advances in:
 - Estimation
 - Navigation
 - Planning under uncertainty
- Focus:
 - Accuracy
 - Robustness

[JFR 2008]

Robots as Our Partners

Conclusion

Now: People Accommodating Robots

Courtesy: AeroVironment

Courtesy: US Army

Where We Need to Be

Where We Need to Be

People

Representational Divide

A robot's view of the world is very different from our own

Objects

- Places
- Actions
- People
- Events

JOINT 3

Vision: Shared Situational Awareness

Spatially extended, temporally persistent model of the robot's surround

- Objects: Identity, properties, relations, actions
- Places: Function, identity, connectivity
- People: Locations, behavior, gestures
- Actions: Means of interacting with the world

Vision: Learning Shared Representations

- Reason over shared knowledge representations
- Acquire situational awareness as they interact with the world
- Learn opportunistically from humans

I. Importance of Situational Awareness

II. Persistent Object Awareness with Vision

III. Semantic Map Learning from Natural Language Descriptions

IV. Future Directions

V. Conclusions

Assistive Mobile Manipulation

Courtesy: University of Pittsburgh

- Material handling in unstructured environments
- Assisted living for the elderly & disabled

Challenges for Mobile Manipulation

- Unprepared, dynamic environments
 - Coarse localization
 - Uneven terrain
 - Uncontrolled lighting
- Objects unknown a priori
- People everywhere
- Intuitive, human-centered control

Shared Autonomy

Efficient Manipulation via Object Awareness

Courtesy: Kinova Robotics

Object Recognition is Hard!

- Usability requirements:
 - Persistent, reliable detection
 - Efficient object learning
- Challenges:
 - Variable lighting (outdoors)
 - Variable viewpoints
 - Unobserved object relocation
 - Coarse localization

Object Recognition is Hard!

- Usability requirements:
 - Persistent, reliable detection
 - Efficient object learning
- Challenges:
 - Variable lighting (outdoors)
 - Variable viewpoints
 - Unobserved object relocation
 - Coarse localization

Object Recognition is Hard!

- Usability requirements:
 - Persistent, reliable detection
 - Efficient object learning
- Challenges:
 - Variable lighting (outdoors)
 - Variable viewpoints
 - Unobserved object relocation
 - Coarse localization

Object Instance Recognition

	Object category detection [1]	Visual tracking [2]	This work [3]
Train from one example		\checkmark	\checkmark
Train online		\checkmark	\checkmark
Persistence (hours/days)			\checkmark
Category recognition	\checkmark		
Instance recognition		\checkmark	\checkmark
Real-time performance		\checkmark	\checkmark

[1] Nistér'06, Hoiem'07, Savarese'07[2] Collins'05, Grabner'08, Kalal'09

[3] CVPRW'10, ISER'10, IJRR'12

Uit

- Key ideas for usable object reacquisition
 - Detect instances of the objects used in practice
 - Take advantage of the robot's mobility for learning

- Key ideas for usable object reacquisition
 - Detect instances of the objects used in practice
 - Take advantage of the robot's mobility for learning

- User provides a single example of the object's identity (name & segmentation)
- System bootstraps on user's example to build an appearance model online
- System takes advantage of robot's motion to opportunistically capture appearance variations

- User provides a single example of the object's identity (name & segmentation)
- System bootstraps on user's example to build an appearance model online
- System takes advantage of robot's motion to opportunistically capture appearance variations

Object Reacquisition

Object Reacquisition

Model Instantiation

User circles object in tablet image

Robot's forward-facing camera image

Model Instantiation

SIFT features extracted from initial image

Model Instantiation

View 0 (user gesture)

SIFT features extracted from initial image

Initialize model \mathcal{M}_i to contain single view v_{i1}

View 0 (user gesture)

SIFT features extracted from new image

Extract features and match against all views

SIFT features extracted from new image

Extract features and match against all views

View 0 (user gestur

SIFT features extracted from new image

RANSAC

- I. Sample a subset of pairs
- Estimate corresponding imageto-image transformation (plane-projective homography)
- 3. Check consistency with other pairs
- 4. Repeat if inconsistent

View 0 (user gesture)

SIFT features extracted from new image

RANSAC

- I. Sample a subset of pairs
- Estimate corresponding imageto-image transformation (plane-projective homography)
- 3. Check consistency with other pairs
- 4. Repeat if inconsistent

Model Augmentation

View 0 (user gesture)

View I

SIFT features extracted from new image

Generate segmentation and add new view

Model Augmentation

View 0 (user gesture)

SIFT features extracted from new image

Repeat as object appearance changes

Model Augmentation

View 0 (user gesture)

View I

View 2

SIFT features extracted from new image

Repeat as object appearance changes

Models opportunistically capture rich appearance variations

View 0 (user gesture)

One-shot Appearance Learning

Models opportunistically capture rich appearance variations

- Active, outdoor military warehouse
- Tour and reacquisition separated by hours/days
- Training and detection with different cameras
- Varying conditions

Scenario	Train	Test	DeltaT	Precision	Recall
I	Afternoon	Afternoon	5 min	94%	54%
2	Evening	Evening	5 min	100%	95%
3	Morning	Evening	14 hours	100%	93%
4	Morning	Evening	10 hours	100%	94%
5	Noon	Evening	7 hours	100%	94%

Matthew Walter

- Severe saturation
- Motion blur
- Unobserved viewpoints

Training example

Saturation

- Severe saturation
- Motion blur
- Unobserved viewpoints

Training example

Saturation

New viewpoint

- Severe saturation
- Motion blur
- Unobserved viewpoints

Training example

Saturation

New viewpoint

New viewpoint

Place the lifted tyre pallet, next to another tyre pallet on the trolley.

Lift the tire pallet in the air, then proceed to deposit it to the right of the tire pallet already on the table right in front of you.

Place the pallet of tires on the left side of the trailer.

Please lift the set of six tires up and set them on the trailer, to the right of the set of tires already on it.

lift the tire pallet you are carrying and set it on the truck in front of you

Place the pallet of tires that is on the forklift next to the pallet of tires that is already loaded on the trailer.

Lift tire pallet. Move to unoccupied location on truck. Lower tire pallet. Reverse to starting location. Lower forks. End.

Linguistic elements

Correct referents in the robot's world model

Place the lifted tyre pallet, next to another tyre pallet on the trolley.

Lift the tire pallet in the air, then proceed to deposit it to the right of the tire pallet already on the table right in front of you.

Place the pallet of tires on the left side of the trailer.

Please lift the set of six tires up and set them on the trailer, to the right of the set of tires already on it.

lift the tire pallet you are carrying and set it on the truck in front of you

Place the pallet of tires that is on the forklift next to the pallet of tires that is already loaded on the trailer.

Lift tire pallet. Move to unoccupied location on truck. Lower tire pallet. Reverse to starting location. Lower forks. End.

- Objects
- Spatial relations
- Actions
- Places

- Object library
- Transformations, relative positions
- Paths, motion primitives, torques
- Positions, orientations

- Objects
- Spatial relations
- Actions
- Places

- Object library
- Transformations, relative positions
- Paths, motion primitives, torques
- Positions, orientations

- Objects
- Spatial relations
- Actions
- Places

- Object library
- Transformations, relative positions
- Paths, motion primitives, torques
- Positions, orientations

- Objects
- Spatial relations
- Actions
- Places

- Object library
- Transformations, relative positions
 - Paths, motion primitives, torques
 - Positions, orientations

- Objects
- Spatial relations
- Actions
- Places

- Object library
- Transformations, relative positions
- Paths, motion primitives, torques
- Positions, orientations

- Objects
- Spatial relations
- Actions
- Places

- Transformations, relative positions
- Paths, motion primitives, torques
- Positions, orientations

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

 $\arg \max p (\text{groundings} | \text{language})$ groundings

objects, actions, relations, places "'Put the tire pallet on the truck"

[AAAI 2011; AI Magazine 2011]

$$\underset{\Gamma}{\operatorname{arg max}} (\gamma_1, \gamma_2, \gamma_3, \gamma_4 | \lambda)$$

$$\underset{\Gamma}{\operatorname{arg max}} (\gamma_1, \gamma_2, \gamma_3, \gamma_4 | \lambda)$$

$$\underset{\Gamma}{\operatorname{arg max}} (\gamma_1, \gamma_2, \gamma_3, \gamma_4 | \lambda)$$

$$\underset{\Gamma}{\operatorname{arg max}} (\gamma_1, \gamma_2, \gamma_3, \gamma_4 | \lambda)$$

$$\underset{\Gamma}{\operatorname{arg max}} (\gamma_1, \gamma_2, \gamma_3, \gamma_4 | \lambda)$$

I. Importance of Situational Awareness

II. Persistent Object Awareness with Vision

III. Semantic Map Learning from Natural Language Descriptions

IV. Future Directions

V. Conclusions

Beyond Objects to Spaces

- Going beyond metric maps
- Human-centric representations of space
 - Spatial relations
 - Semantic attributes (names, use, etc.)
 - Connectivity

State-of-the-Art in Semantic Mapping

- Spatial Semantic Hierarchy (Kuipers 2000)
- Augment SLAM metric/topological SLAM maps with semantic layers

Courtesy: Zender et al. 2008

- Infer semantic properties from multiple modalities:
 - Object recognition (Zender et al. 2008; Pronobis et al. 2020)
 - Spoken descriptions and other supervised labels (Diosi et al. 2005; Zender et al. 2008; Pronobis et al. 2020)
 - Place classification (Zender et al. 2008; Pronobis et al. 2020)

Building Semantic Maps with Natural Language

- Learn knowledge representation from
 narrated tour
- Challenges:
 - People convey high-level concepts but robot perception is low-level
 - Spoken descriptions are ambiguous

Building Semantic Maps with Natural Language

- Solution:
 - Joint metric, topologic, & semantic model supports information fusion
 - Efficient inference strategy
 - Enable layers to influence one another

Model: Posterior over Semantic Graphs

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t)$

Model: Posterior over Semantic Graphs

$$p(G_t, X_t, L_t | z^t, u^t, \lambda^t)$$
 Topology $G_t = (V_t, E_t)$

Model: Posterior over Semantic Graphs

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \ p(X_t | G_t, z^t, u^t, \lambda^t) \ p(G_t | z^t, u^t, \lambda^t)$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \ p(X_t | G_t, z^t, u^t, \lambda^t) \ p(G_t | z^t, u^t, \lambda^t)$

Sample-based representation

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) p(X_t | G_t, z^t, u^t, \lambda^t) p(G_t | z^t, u^t, \lambda^t)$

Gaussian (information form) representation

Sample-based

 $p(X_t|G_t, z^t, u^t, \lambda^t) = \mathcal{N}^{-1}(X_t; \Sigma_t^{-1}, \eta_t)$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = \begin{bmatrix} p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \\ p(X_t | G_t, z^t, u^t, \lambda^t) & p(G_t | z^t, u^t, \lambda^t) \end{bmatrix}$ Dirichlet Dirichlet $\begin{bmatrix} Gaussian & Sample-based \\ (information form) & representation \end{bmatrix}$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \ p(X_t | G_t, z^t, u^t, \lambda^t) \ p(G_t | z^t, u^t, \lambda^t)$

Dirichlet

Gaussian Sample-based (information form) representation

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- I Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian
- 3 Update Dirichlet over labels based on language
- 4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

Propose modifications to topology based on metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- I Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return:
$$P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$$

Incorporating Natural Language Descriptions

Incorporating Natural Language Descriptions

$$p(L_t^{(i)}|L_{t-1}^{(i)}, G_t^{(i)}, X_t^{(i)}, \lambda_t) = \sum_{\gamma} p(L_t^{(i)}|\gamma, L_{t-1}^{(i)}, \lambda_t) \times p(\gamma|L_{t-1}^{(i)}, G_t^{(i)}, X_t^{(i)}, \lambda_t)$$

Incorporating Natural Language Descriptions

With Language Constraints

With Language Constraints

Preliminary Results - With Language Constraints

26

Guide: Good afternoon, Please follow me Robot: Following

I. Importance of Situational Awareness

II. Persistent Object Awareness with Vision

III. Semantic Map Learning from Natural Language Descriptions

IV. Future Directions

V. Conclusions

Enhancing Models of Objects and Space

- Object category recognition
 - Data-driven models
 - Transfer learning
 - Limited supervision via human intervention
 - Efficient retrieval and matching
- New sources of information
 - Objects (e.g., co-occurrence)
 - Vision-based scene classification
 - Higher-level concepts
 - Building topology databases
- Exploration-based natural language grounding

Where are We Going?

<u>People</u>

- Objects
- Places
- Actions
- People
- Events

Where are We Going?

<u>People</u>

- Objects
- Places
- Actions
- People
- Events

- Low-level, object-specific actions don't scale
- Long-term planning & inference is intractable

Courtesy: Willow Garage

- Low-level, object-specific actions don't scale
- Long-term planning & inference is intractable

- Robots need higher-level representations
 - Structured state/action space
 - Affordance-based action model
 - Affordances are grounded in perception
- Human-provided information is critical to efficient learning
- Robots must formulate representation based on experience

- Robots need higher-level representations
 - Structured state/action space
 - Affordance-based action model
 - Affordances are grounded in perception
- Human-provided information is critical to efficient learning
- Robots must formulate representation based on experience

- Robots need higher-level representations
 - Structured state/action space
 - Affordance-based action model
 - Affordances are grounded in perception
- Human-provided information is critical to efficient learning
- Robots must formulate representation based on experience

Learning via Deliberate Actions

- Robots need higher-level representations
 - Structured state/action space
 - Affordance-based action model
 - Affordances are grounded in perception
- Human-provided information is critical to efficient learning
- Robots must formulate representation based on experience

I. Importance of Situational Awareness

II. Persistent Object Awareness with Vision

III. Semantic Map Learning from Natural Language Descriptions

IV. Future Directions

V. Conclusions

Contributions

- Showed that human-robot collaboration requires intuitive control
- Argued that the key missing capability is situational awareness
- Perception is critical to enabling awareness
- Demonstrated algorithms that opportunistically learn rich models of objects and space from human-provided cues

Contributions

Sachi Hemachandra

Stefanie Tellex

Bianca Homberg

Sudeep Pillai

Yuli Friedman

Matthew Antone

Seth Teller

Contributions

- Showed that human-robot collaboration requires intuitive control
- Argued that the key missing capability is situational awareness
- Perception is critical to enabling awareness
- Demonstrated algorithms that opportunistically learn rich models of objects and space from human-provided cues

Getting There

- Autonomous navigation
- Motion planning & control
- Planning under uncertainty
- Manipulation
- Localization & mapping
- Perception
- Efficient control
- Natural interaction
- Trusted autonomy

Navigation using uncalibrated cameras

RRT

Anytime RRT*: optimal planning

- I. Pick up objects off trucks or the ground
- 2. Transport items to storage locations
- 3. Load particular objects onto customer trucks or the ground

- I. Pick up objects off trucks or the ground
- 2. Transport items to storage locations
- 3. Load particular objects onto customer trucks or the ground

- I. Pick up objects off trucks or the ground
- 2. Transport items to storage locations
- 3. Load particular objects onto customer trucks or the ground

- I. Pick up objects off trucks or the ground
- 2. Transport items to storage locations
- 3. Load particular objects onto customer trucks or the ground

The Platform

Conclusion

Teleoperation?

Conclusion

Teleoperation?

Shared Autonomy

- Hierarchical task-level autonomy
 - Reduce tasks into simpler sub-tasks
- Shared situational awareness
- Robot can request help when needed

Command via Shared World Model

- Hand-held tablet interface
 - Robot's eye view with annotated images
 - Onboard speech recognition
 - Interprets pen-based gestures
- Microphones pick up external speech

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

(collaboration with S.Tellex, T. Kollar, S.Teller, & N. Roy)

"To the tire pallet"

Learning the Grounding Distributions

Learning the Grounding Distributions

71

Matthew Walter

Matthew Walter

Learning the Grounding Distributions

Learning the Grounding Distributions

