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Robots as Automated Agents

• Advances in: 
- Actuation
- Planning
- Control

• Focus: 
- Accuracy
- Robustness
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• Advances in: 
- Estimation
- Navigation
- Planning under uncertainty

• Focus: 
- Accuracy
- Robustness
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Robots as Our Surrogates
Introduction Persistent Visual Memories Semantic Mapping Future Directions Conclusion

RMS Titanic [IJRR 2006]

[JFR 2008]
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Robots as Our Partners
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Now: People Accommodating Robots
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Courtesy: US Army

Courtesy: AeroVironment
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Where We Need to Be
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Representational Divide

• Objects

• Places

• Actions

• People

• Events

A robot’s view of the world is very different from our own

People Robots
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Wheel torques Joint angles

Laser scans

Images
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Vision: Shared Situational Awareness

• Objects: Identity, properties, relations, actions

• Places: Function, identity, connectivity

• People: Locations, behavior, gestures

• Actions: Means of interacting with the world

Spatially extended, temporally persistent 
model of the robot’s surround
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Vision: Learning Shared Representations

• Reason over shared knowledge representations

• Acquire situational awareness as they interact with the world

• Learn opportunistically from humans
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I. Importance of Situational Awareness

II. Persistent Object Awareness with Vision

III. Semantic Map Learning from Natural Language Descriptions

IV. Future Directions

V. Conclusions
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Assistive Mobile Manipulation

• Material handling in unstructured environments 

• Assisted living for the elderly & disabled
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Challenges for Mobile Manipulation

• Unprepared, dynamic environments
- Coarse localization
- Uneven terrain
- Uncontrolled lighting

• Objects unknown a priori

• People everywhere

• Intuitive, human-centered control

12

Introduction Persistent Visual Memories Semantic Mapping Future Directions Conclusion

Tuesday, February 5, 13



Matthew Walter

Shared Autonomy
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Efficient Manipulation via Object Awareness

Put the pipes 
on the truck
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Please pick up 
my keys

Courtesy: Kinova Robotics

Tuesday, February 5, 13



Matthew Walter

Object Recognition is Hard!

15

• Usability requirements:
- Persistent, reliable detection
- Efficient object learning

• Challenges:
- Variable lighting (outdoors)
- Variable viewpoints
- Unobserved object relocation
- Coarse localization
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Object Instance Recognition
Introduction Persistent Visual Memories Semantic Mapping Future Directions Conclusion

Object category 
detection [1] Visual tracking [2] This work [3]

Train from one example ✓ ✓
Train online ✓ ✓

Persistence (hours/days) ✓
Category recognition ✓
Instance recognition ✓ ✓

Real-time performance ✓ ✓
[1] Nistér’06, Hoiem’07, Savarese’07
[2] Collins’05, Grabner’08, Kalal’09

[3] CVPRW’10, ISER’10, IJRR’12
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One-shot Appearance Learning

17

• Key ideas for usable object reacquisition
- Detect instances of the objects used in practice
- Take advantage of the robot’s mobility for learning
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One-shot Appearance Learning
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• Key ideas for usable object reacquisition
- Detect instances of the objects used in practice
- Take advantage of the robot’s mobility for learning
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One-shot Appearance Learning

• User provides a single example of the object’s identity (name & segmentation)

• System bootstraps on user’s example to build an appearance model online

• System takes advantage of robot’s motion to opportunistically capture 
appearance variations

These are 
“pipes”.

[ISER 2010; IJRR 2012]
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One-shot Appearance Learning

Aspect RelocationIllumination Scale

• User provides a single example of the object’s identity (name & segmentation)

• System bootstraps on user’s example to build an appearance model online

• System takes advantage of robot’s motion to opportunistically capture 
appearance variations

[ISER 2010; IJRR 2012]
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Object Reacquisition
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Object Reacquisition
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Model Instantiation

Robot’s forward-facing camera image

User circles object in tablet image
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Model Instantiation

SIFT features extracted from initial image
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Model Instantiation

SIFT features extracted from initial image

View 0 (user gesture)

Initialize model M
to contain single 

view V

Image&Feature&
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Single4View&
Matching&

Mul.ple4View&
Reasoning&

video stream 

robot 

&Model&
Construc.on&

tablet interface 

user 
gestures 

virtual gestures 

detections 

feature 
constellations 

Visual&
Models&initial 

views 
new 

views 

Planning&and&
Servoing&

navigation, 
manipulation, 
task controls 

onboard 

wireless 

LIDAR scans 

Figure 3: Block diagram of the reacquisition process.

uses neither pose information nor data from non-camera sensors for object recognition. The specific
guided tour scenario, however, relies upon the ability to determine the robot’s absolute position
and heading to within 3m–5m and 20 degrees, respectively. These requirements result from the
LIDAR-based pallet detection and servoing capabilities, which are most e↵ective when the robot
is within this region about the pallet.

3 Visual Appearance for Object Reacquisition

Our algorithm for maintaining persistent identity of user-designated objects in the scene is based
on creating and updating appearance models that evolve over time. We define a model Mi as the
visual representation of a particular object i, which consists of a collection of views, Mi = {vij}.
We define a view vij as the appearance of a given object at a single viewpoint and time instant j
(i.e., as observed by a camera with a particular pose at a particular moment).

The method constructs object appearance models and their constituent views from 2D constel-
lations of keypoints, where each keypoint consists of an image pixel position and a descriptor that
characterizes the local intensity pattern. Our algorithm searches new camera images for each model
and produces a list of visibility hypotheses based on visual similarity and geometric consistency of
keypoint constellations. New views are automatically added over time as the robot moves; thus
the collection of views opportunistically captures variations in object appearance due to changes
in viewpoint and illumination.

3.1 Model Initiation

The algorithm processes each image as it is acquired to detect a set F of keypoint locations and
scale invariant descriptors. We use Lowe’s SIFT algorithm for moderate robustness to viewpoint
and lighting changes [Lowe, 2004], but any stable image features may be used. In our application,
the user initiates the generation of the first appearance model with a gesture that segments its
location in a particular image. Our system creates a new model Mi for each indicated object. The
set of SIFT keypoints that fall within the gesture in that particular frame form the new model’s

7

first view vi1.
In addition to a feature constellation, each view contains the timestamp of its corresponding

image, a unique identifier for the camera that acquired the image, the user’s 2D gesture polygon,
and the 6-DOF inertial pose estimate of the robot body.

Algorithm 1 Single-View Matching
Input: A model view vij and camera frame It
Output: Dijt =

⇣
H?

ij , c
?
ij

⌘

1: Ft = {(xp, fp)} SIFT(It);
2: Cijt = {(sp, sq)} FeatureMatch(Ft,Fij) sp 2 Ft, sq 2 Fij ;
3: 8xp 2 Cijt, xp  UnDistort(xp);
4: H?

ijt = {H?
ijt, d

?
ijt, C̃?

ijt} {};
5: for n = 1 to N do
6: Randomly select Ĉijt 2 Cijt, |Ĉijt| = 4;
7: Compute homography Ĥ from (xp, xq) in Ĉijt;
8: P  {}, d̂ 0;
9: for (xp, xq) 2 Cijt do

10: x̂p  Ĥxp;
11: x̂p  Distort(x̂p);
12: if dpq = |xq � x̂p|  td then
13: P  P + (xp, xq);

14: d̂ d̂+ dpq;

15: if d̂ < d?ij then

16: H?
ijt  {Ĥ, d̂,P};

17: c?ijt = |C̃?
ijt|/(|vij |min(↵|C̃?

ijt|, 1)
18: if c?ijt � tc then

19: Dijt  
⇣
H?

ijt, c
?
ijt

⌘

20: else
21: Dijt  ()

3.2 Single-View Matching

Single-view matching forms the basis of determining which, if any, models are visible in a given
image. Outlined in Algorithm 1, the process searches for instances of each view by matching its
feature constellation to those in the image. For a particular view vij from a particular object model
Mi, the goal of single-view matching is to produce visibility hypotheses and associated likelihoods
of that view’s presence and location in a particular image.

As mentioned above, we first extract a set of SIFT features Ft from the image captured at
time index t. For each view vij , our algorithm matches the view’s set of descriptors Fij with
those in the image Ft to produce a set of point-pair correspondence candidates Cijt. We evaluate
the similarity spq between a pair of features p and q as the normalized inner product between
their descriptor vectors fp and fq, where spq =

P
k(fpkfqk)/kdpkkdqk. We exhaustively compute

all similarity scores and collect in Cijt at most one pair per feature in Fij , subject to a minimum
threshold. Appendix A lists this and the other specific parameter settings that were used to evaluate
the algorithm in Section 4.
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Single-View Matching

SIFT features extracted from new image

Extract features and 
match against 

all views

View 0 (user gesture)

22
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SIFT features extracted from new image

View 0 (user gesture)

Single-View Matching

23

1. Sample a subset of pairs

2. Estimate corresponding image-
to-image transformation 
(plane-projective homography)

3. Check consistency with other 
pairs

4. Repeat if inconsistent

RANSAC
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SIFT features extracted from new image

View 0 (user gesture)

Single-View Matching

23

1. Sample a subset of pairs

2. Estimate corresponding image-
to-image transformation 
(plane-projective homography)

3. Check consistency with other 
pairs
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RANSAC
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Model Augmentation

SIFT features extracted from new image

View 0 (user gesture) View 1

24

Generate 
segmentation and 

add new view
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SIFT features extracted from new image

View 0 (user gesture) View 1

Repeat as object 
appearance changes

Model Augmentation

25
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SIFT features extracted from new image

View 0 (user gesture) View 1

Repeat as object 
appearance changes

View 2

Model Augmentation

26
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One-shot Appearance Learning

View 0 (user gesture)

Models opportunistically capture rich appearance variations

27
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One-shot Appearance Learning

View 0 (user gesture) View 1 View 2 View 3 View 4 View 5

View 0 (user gesture) View 1 View 2 View 3 View 4 View 5

Model 1

Model 2

Models opportunistically capture rich appearance variations

27

Introduction Persistent Visual Memories Semantic Mapping Future Directions Conclusion

Tuesday, February 5, 13



Matthew Walter

Visual Memory Results

• Active, outdoor military warehouse

• Tour and reacquisition separated by hours/days

• Training and detection with different cameras

• Varying conditions

28
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2x

Scenario Train Test Delta T Precision Recall
1 Afternoon Afternoon 5 min 94% 54%
2 Evening Evening 5 min 100% 95%
3 Morning Evening 14 hours 100% 93%
4 Morning Evening 10 hours 100% 94%
5 Noon Evening 7 hours 100% 94%

Visual Memory Results
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Coupled Perception and Motion Planning for
Mobile Manipulation
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Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.

argmax

groundings
p (groundings|language) (1)

recall =
TP

TP + FN
(2)

precision =

TP
TP + FP

(3)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,
we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
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Visual Memory Results

• Severe saturation

• Motion blur

• Unobserved viewpoints

Training example Saturation
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Visual Memory Results

• Severe saturation

• Motion blur

• Unobserved viewpoints

Training example Saturation New viewpoint New viewpoint
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Visual Memory Results
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Symbol Grounding Problem

32

Place	  the	  lifted	  tyre	  pallet,	  next	  to	  another	  tyre	  pallet	  
on	  the	  trolley.
Lift	  the	  tire	  pallet	  in	  the	  air,	  then	  proceed	  to	  deposit	  
it	  to	  the	  right	  of	  the	  tire	  pallet	  already	  on	  the	  table	  
right	  in	  front	  of	  you.
Place	  the	  pallet	  of	  tires	  on	  the	  left	  side	  of	  the	  trailer.
Please	  lift	  the	  set	  of	  six	  tires	  up	  and	  set	  them	  on	  the	  
trailer,	  to	  the	  right	  of	  the	  set	  of	  tires	  already	  on	  it.
lift	  the	  tire	  pallet	  you	  are	  carrying	  and	  set	  it	  on	  the	  
truck	  in	  front	  of	  you
Place	  the	  pallet	  of	  tires	  that	  is	  on	  the	  forklift	  next	  to	  
the	  pallet	  of	  tires	  that	  is	  already	  loaded	  on	  the	  trailer.
Lift	  tire	  pallet.	  Move	  to	  unoccupied	  location	  on	  truck.	  
Lower	  tire	  pallet.	  Reverse	  to	  starting	  location.	  Lower	  
forks.	  End.

Put the tire pallet 
on the truck
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forks.	  End.

Put the tire pallet 
on the truck

Linguistic elements
“Grounding”

Correct referents in the 
robot’s world model
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Symbol Grounding Problem

33

“Put the tire pallet on the truck”

• Objects
• Spatial relations
• Actions
• Places

• Object library
• Transformations, relative positions
• Paths, motion primitives, torques
• Positions, orientations
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Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.
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groundings
p (groundings|language) (1)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike

objects, actions, relations, places “Drive to the tire pallet”
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“To the tire pallet”

(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.
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groundings
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I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
edge
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
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(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
edge
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Beyond Objects to Spaces

41

• Going beyond metric maps

• Human-centric representations of space
- Spatial relations
- Semantic attributes (names, use, etc.)
- Connectivity
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State-of-the-Art in Semantic Mapping

42

• Spatial Semantic Hierarchy (Kuipers 2000)

• Augment SLAM metric/topological SLAM maps with semantic layers

• Infer semantic properties from multiple modalities:
- Object recognition (Zender et al. 2008; Pronobis et al. 2020)
- Spoken descriptions and other supervised labels                         

(Diosi et al. 2005; Zender et al. 2008; Pronobis et al. 2020)
- Place classification (Zender et al. 2008; Pronobis et al. 2020)
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Fig. 7. Our multi-layered map, ranging from sensor-based maps to a conceptual abstraction.

Fig. 8. The navigation map overlayed on the metric map.
The navigation map is visually represented by the stars.
Di↵erent colors represent di↵erent areas separated by doors,
which are marked by bigger red stars.

map gives a rather sparse description of the envi-
ronment, not su�cient to fully support navigation
actions. In comparison to an occupancy grid repre-
sentation [35], the line based map does not provide
a description of the free space but only the part of
the space that can be described by lines. Moreover,
since the global co-ordinate system of the metric
map is purely internal to the robot and since humans
are not able to easily (i.e. without additional tools)
evaluate quantitative spatial descriptions, the met-
ric map alone does not provide a suitable common
ground for human-robot dialogues.

5.2. Navigation Graph

The next layer of our representation is composed
of a navigation graph, which establishes a model
of free space and its connectivity, i.e. reachability.
It is based on the notion of a roadmap of virtual
free-space markers as described in [36,37]. As the
robot navigates through the environment, a marker
or navigation node is dropped whenever the robot
has traveled a certain distance from the closest ex-
isting node. Nodes are connected following the order
in which they were generated. This order is given by

the trajectory that the robot follows during the map
acquisition process (see Figure 8). The final graph
serves for planning and autonomous navigation in
the already visited part of the environment.

It is also in the navigation graph that the robot’s
spatial representation is augmented with semantic
environment information. This is encoded by assign-
ing navigation nodes one of three classes which can
be considered to be present in every indoor environ-
ment. The classes are room, corridor, and doorway.

The approach presented in Section 4.2 for seman-
tic classification assigns a label (corridor or room) to
each pose of the robot during a trajectory. However,
we are interested in classifying navigation nodes,
which are dropped only when the robot has moved
a certain distance (1 meter in our case). Classifying
only the exact location of the node into one class
will ignore previous information about the labels of
the poses leading to the mark. To use this informa-
tion, we store the classification of the last N poses
of the robot in a short term memory. This label his-
tory will be used to classify the node using a major-
ity vote approach. In our experiments we obtained
a significant improvement when using this approach
for node classification.

Objects detected by the computer vision compo-
nent are also stored on this level of the map. They
are associated with the navigation node that is clos-
est to their estimated metric position.

5.3. Topological Map

The topological map divides the set of nodes in
the navigation graph into areas. An area consists of
a set of interconnected nodes which are separated
by a node classified as a doorway. In Figure 8, the
topological segmentation is represented by the col-

7

Courtesy: Zender et al. 2008
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• Learn knowledge representation from 
narrated tour

• Challenges:
- People convey high-level concepts 

but robot perception is low-level
- Spoken descriptions are ambiguous
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Building Semantic Maps with Natural Language
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• Solution:
- Joint metric, topologic, & semantic model 

supports information fusion
- Efficient inference strategy
- Enable layers to influence one another

Introduction Persistent Visual Memories Semantic Mapping Future Directions Conclusion

Building Semantic Maps with Natural Language
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G
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) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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the environment.
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, as well
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over their labels parametized with a vector of probabilities,
L

i

t
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laser range scans), ut
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). The space of possible graphs
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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fined in Equation (1) to reflect robot motion, new metric
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Figure 2: An example of a semantic graph.
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, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

f1 = 4.3 (24a)
f2 = 10.1 (24b)
f3 = 2.3 (24c)
f1 = 2.5 (24d)
f2 = 1.1 (24e)
f3 = 8.3 (24f)

(x, y, z) T

j
i (25)
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Figure 2: An example of a semantic graph.
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Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
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),
and the semantic map (L
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
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bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
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parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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This factorization leads to separate components in the
model for the metric map (X
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), the topological map (G
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),
and the semantic map (L
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this
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that we
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Ranganathan
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it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
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Specifically, we maintain a Dirichlet distribution that mod-
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Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t
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t

|zt, ut
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) = p(L
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|zt, ut
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t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G
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= (V
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, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t
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t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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). We represent the posterior over the
node poses p(X
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t
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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is the analytic distributions over labels; and w
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
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Distribution over Semantic Graphs
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conditioned upon the history of odometry, ut, sensor data,
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is the history of metric exteroceptive sensor data (in our case,
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odometry measurements, and �

t is the history of linguistic
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L
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t

is the analytic distributions over labels; and w

(i)
t
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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This factorization leads to separate components in the
model for the metric map (X
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), the topological map (G
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
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that we
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should say so
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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pression for the conditional posterior along with the sample-
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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the environment.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
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nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
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The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
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Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
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pression for the conditional posterior along with the sample-
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subset of topologies while the likelihood associated with the
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pression for the conditional posterior along with the sample-
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Figure 2: An example of a semantic graph.
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In order to overcome this complexity, we make the assump-
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subset of topologies while the likelihood associated with the
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
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nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
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Algorithm 1 outlines the process by which our algorithm
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the ambiguity in the semantic map, in subsequent steps, the
algorithm correctly identifies the valid edge (in green) and
rejects the invalid loop closures (in black). Note that some
particles may add invalid edges, but the algorithm will reduce
their weights when subsequent measurements are inconsistent
with the hypothesis.

D. Updating the Metric Map Based on New Edges

The proposal step results in the addition of a new node to
each particle that denotes the current robot pose with an edge
that represents the temporal constraint with the previous node.
Importantly, the step also hypothesizes additional loop-closure
edges. Next, the algorithm incorporates these relative pose
constraints into the Gaussian representation for the marginal
distribution over the map

p(Xt|Gt, z
t
, u

t
,�

t) = N�1(Xt;⌃
�1
t , ⌘t), (8)

where ⌃�1
t and ⌘t are the information (inverse covariance)

matrix and information vector, respectively, that parametrize
the canonical form of the Gaussian. We utilize the iSAM
algorithm [18] to update the canonical form by iteratively
solving for the QR factorization of the information matrix.

E. Updating the Semantic Map Based on Natural Language

In the next step of the algorithm, we update each particle’s
analytic distribution over the set of labels associated with
the nodes Lt = {lt,1, lt,2, . . . , lt,t}. This update reflects label
information conveyed by spoken descriptions as well as that
suggested by the addition of edges to the graph. In maintaining
the distribution, we make the assumption that the labels are
conditionally independent

p(Lt|Xt, Gt, z
t
, u

t
,�

t) =
t
Y

i=1

p(lt,i|Xt, Gt, z
t
, u

t
,�

t). (9)

We model each node’s label distribution as a Dirichlet distri-
bution of the form

p(lt,i|�1 . . .�t) = Dir(lt,i;↵1 . . .↵K)

=
�(

PK
1 ↵i)

�(↵1)⇥ . . .⇥ �(↵K)

K
Y

k=1

l

↵k�1
t,i,k (10)

We initialize the parameters ↵1 to ↵K to 0.2 in absence of any
linguistic input, which corresponds to a uniform prior over the
labels. The algorithm increments the parameters as new label
observations arrive.

The base form of linguistic input consists of labeling sen-
tences that specify semantic properties of the current location,
such as “This is the gym.” We consider input of this form
�t = (k, i) to specify the label index k that assigns label lk to
the current node in the graph vt. We then update the semantic
distribution associated with this node according to

p(lt,i|�t = (k, i), lt�1,i) =

�(
PK

1 ↵t�1
i +�↵)

�(↵t�1
1 )⇥...⇥�(↵t�1

k +�↵)⇥...⇥�(↵K)

K
Y

k=1

l

↵k�1
t,i,k

(11)

where �↵ = 1 in the case of basic descriptions.
A contribution of our work is the ability to incorporate

information conveyed by more complicated natural language
descriptions. These expressions are challenging because the
places referred to by the user may not be obvious. Consider
the statement “the kitchen is down the hall.” One can no
longer assume that the user is referring to the current location
as the referent (i.e., “kitchen”) or that the location of the
landmark (i.e., “hall”) is known. We interpret this expression
by formulating a distribution over the nodes in the topology
that expresses their likelihood as being the referent for the
“kitchen.” We arrive at this distribution using the G3 frame-
work [2] to infer groundings for the different parts of the
natural language description. In the case of this example,
the framework uses the multinomial distributions over labels
to find a node corresponding to “the hall” and induces a
probability distribution over kitchens based on the nodes that
are “down the hall” from the identified landmark nodes. We
use this distribution to update each node’s label distribution as
above with �↵ equal to the grounding likelihood from G3.

In addition to input language, we also update the label
distribution for a node when the proposal step adds an edge
that denotes a spatial relation with another node in the graph.
These edges may correspond to temporal constraints that exist
between consecutive nodes, or they may denote loop-closures
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which allows us to utilize conditional measurement model. In
the experiments presented in the next section, we compute the
conditional likelihood by matching the scans between poses.

We periodically follow the importance weight step with
resampling in which we replace poorly-weighted particles with
those with higher weights according to the algorithm described
by Doucet et al. [6].
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Figure 2: An example of a semantic graph.
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the environment.

X

t

Vector of landmark poses.

z
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Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
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ment, �t. The distribution includes the topology, G
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, as well
as places, including their locations, X
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over their labels parametized with a vector of probabilities,
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, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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where G
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is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
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t is the history of linguistic
data. Table 1 outlines our notation.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut
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t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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). We represent the posterior over the
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
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bution over graphs with analytic representations for the
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
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Figure 2: An example of a semantic graph.
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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We first model the effects of the robot’s motion by adding
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Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs
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where we have omitted the history of language observations
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t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.
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where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.
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p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution

p(d

ij

; ⌫,�) =

d

ij

�

2
exp

 

�(d

2
ij

+ ⌫

2
)

2�

2

!

I0

✓

d

ij

⌫

�

2

◆

(8)

where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
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current graph and observed odometry, sensor data, and in-
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We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.
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do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D
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where we have omitted the history of language observations
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t, metric measurements zt�1, and odometry u
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In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.
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where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.
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where I
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(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Rao-Blackwellized Particle Filter

Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t
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, L
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|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
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, . . . , P

(m)
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}. (3)

Each particle P

(i)
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, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Input:Input:Input:

for each particle ifor each particle ifor each particle i

1 Propose modifications to topology based on 
metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: Return: Return: 

Algorithm 1: Semantic Mapping Algorithm
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for i = 1 to n do
1) Employ proposal distribution
p(G
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|G(i)
t�1, z

t�1
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) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L
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|zt, ut
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t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G
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) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs
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where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj
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likelihood of adding an edge between v
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the spatial location of the nodes. We represent the distribu-
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where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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) to propagate the graph
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t�1 according to odometry u
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t�1 and positions
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2) Update the Gaussian distribution over the node
poses X(i)
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according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)
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according to the parsed
language �
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4) Compute the new particle weight w(i)
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based
upon the previous weight w(i)

t�1 and the metric data
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.
end

propagate each sample G(i)
t�1, which represents the posterior
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) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G
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). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �
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, if available. Finally, we update the
weight w(i)
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of each particle according to the likelihood of
new metric measurements z
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. Repeating these steps for each
particle yields the particle set representation P
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of the new
posterior distribution at time t, p(G
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Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:
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We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D
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between
node pairs
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where we have omitted the history of language observations
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t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.
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where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Input:Input:Input:

for each particle ifor each particle ifor each particle i

1 Propose modifications to topology based on 
metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: Return: Return: 

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution
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; ⌫,�) =
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p
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, |G
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t�1
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,�

t

)

=

Z

Dt
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, |D
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, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t
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) / 1
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. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d
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) with a Rice distribution
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Input:Input:Input:

for each particle ifor each particle ifor each particle i

1 Propose modifications to topology based on 
metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: Return: Return: 

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o
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, z
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t

)

Output: P
t

=

n
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(i)
t
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(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.
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Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.
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work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v
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, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
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quires that we marginalize over the distances D
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In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
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and work out
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right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.
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candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
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sures.
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“the gym” “is down” “the hall”

Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))
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= the truck,m)

(c) Factorization

Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward
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(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.
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Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward
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two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
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guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.
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Mechanical Turk watched a video of a simulated forklift per-
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they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
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- Data-driven models
- Transfer learning
- Limited supervision via human intervention
- Efficient retrieval and matching

• New sources of information
- Objects (e.g., co-occurrence)
- Vision-based scene classification
- Higher-level concepts
- Building topology databases

• Exploration-based natural language grounding
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• Robots must formulate representation based on 
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• Showed that human-robot collaboration requires intuitive control

• Argued that the key missing capability is situational awareness

• Perception is critical to enabling awareness

• Demonstrated algorithms that opportunistically learn rich models of 
objects and space from human-provided cues
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The Platform

Microphones Cameras
Laser range-finders
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Shared Autonomy

• Hierarchical task-level autonomy
- Reduce tasks into simpler sub-tasks

• Shared situational awareness

• Robot can request help when 
needed
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Command via Shared World Model

• Hand-held tablet interface
- Robot’s eye view with annotated images
- Onboard speech recognition
- Interprets pen-based gestures

• Microphones pick up external speech
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Coupled Perception and Motion Planning for
Mobile Manipulation

Matthew Walter,⇤ Matthew Antone,† Yuan Wei,⇤ Seth Teller,⇤ Nicholas Roy⇤

⇤Computer Science and Artificial Intelligence Laboratory †BAE Systems
Massachusetts Institute of Technology Burlington, MA, USA

Cambridge, MA, USA matthew.antone@baesystems.com
{mwalter, weiy, teller, nickroy}@mit.edu

Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.

argmax

groundings
p (groundings|language) (1)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike

objects, actions, relations, places “Drive to the tire pallet”
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“To the tire pallet”

(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Spatial Features
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
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l = OBJ4(f = the truck)))

(a) SDC tree

λr
1

“The gym”

γ1

φ1

λr
3

“is down”

γ3

φ3

λf
4

“the hall”

γ4

φ4

(b) Induced Model

p(Φ|Γ,SDCs,m) = p(φ1|γ1, γ2, γ3,λ
r
1 = Put,m)×

p(φ2|γ2,λ
f
2
= the pallet,m)× p(φ3|γ3, γ4,λ

r
3 = on,m)×

p(φ4|γ4,λ
f
4
= the truck,m)

(c) Factorization

Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward
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of the authors created the corpus by drawing a sequence of
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itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
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