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Robots That Work With People
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Time

Blade cluster
(40 cores) 8 cores

• Robots are moving into human environments
- Homes
- Hospitals
- Workplaces

• Interactions must be intuitive and safe



Now: People Accommodating Robots
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Where We Need to Be
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Take the 
pallet behind the 

warehouse

Please take me to 
the nurse’s station

Courtesy: Kinova Robotics



Representational Divide

• Objects

• Places

• Actions

• People

• Events

A robot’s view of the world is very different from our own

People Robots
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Wheel torques Joint angles

Laser scans

Images
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• Human-centric representations of space
- Spatial relations
- Semantic attributes (e.g., names, use)
- Connectivity

• Learn knowledge representation from 
narrated tour

• Challenges:
- People convey high-level concepts but 

robot perception is low-level
- Spoken descriptions are ambiguous

Learning Semantic Maps from Natural Language

[RSS’13 (to appear)]

The kitchen is 
down the hall
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• Solution:
- Joint metric, topologic, & semantic model 

supports information fusion
- Efficient inference strategy
- Enable layers to influence one another
- Utilize natural language grounding 

framework

Building Semantic Maps with Natural Language

lobby

hallway

kitchen

entrance

[RSS’13 (to appear)]
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G
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t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Model: Posterior over Semantic Graphs

[RSS’13 (to appear)]
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Figure 2: An example of a semantic graph.
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Set of sensor readings made up to time
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where G
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
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et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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where G
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denotes a particular sample from the space
of graphs; X
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is the analytic distribution over lcoations;
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is the analytic distributions over labels; and w
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fined in Equation (1) to reflect robot motion, new metric
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

f1 = 4.3 (24a)
f2 = 10.1 (24b)
f3 = 2.3 (24c)
f1 = 2.5 (24d)
f2 = 1.1 (24e)
f3 = 8.3 (24f)
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description
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Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut
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t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L
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t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
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(m)
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}. (3)

Each particle P
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, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z
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, u
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,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
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= {P (1)
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}. (3)
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Vertex poses
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description
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Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.
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Set of labels l
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associated with each
place.
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Parsed natural language description of
the environment.

X
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Vector of landmark poses.
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t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
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t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut
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t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L
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). We represent the posterior over the
node poses p(X
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, |G
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, z
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, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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denotes a particular sample from the space
of graphs; X
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t

is the analytic distribution over lcoations;
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is the analytic distributions over labels; and w
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Vertex poses

Semantic labels

f1 = 4.3 (24a)
f2 = 10.1 (24b)
f3 = 2.3 (24c)
f1 = 2.5 (24d)
f2 = 1.1 (24e)
f3 = 8.3 (24f)
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Figure 2: An example of a semantic graph.
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the environment.
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Set of sensor readings made up to time
t by sensors onboard the robot.
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t Set of odometry readings up to time t.

Distribution over Semantic Graphs
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conditioned upon the history of odometry, ut, sensor data,
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t, as well as natural language descriptions of the environ-
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, as well
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is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut
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} is the history of
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data. Table 1 outlines our notation.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G

(i)
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denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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f2 = 10.1 (24b)
f3 = 2.3 (24c)
f1 = 2.5 (24d)
f2 = 1.1 (24e)
f3 = 8.3 (24f)
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Figure 2: An example of a semantic graph.
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Distribution over Semantic Graphs
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This factorization leads to separate components in the
model for the metric map (X
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), the topological map (G
t

),
and the semantic map (L
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
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Specifically, we maintain a Dirichlet distribution that mod-
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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denotes a particular sample from the space
of graphs; X

(i)
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is the analytic distribution over lcoations;
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t

is the analytic distributions over labels; and w

(i)
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is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P
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Figure 2: An example of a semantic graph.

Table 1: Notation
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Distribution over Semantic Graphs
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), the topological map (G
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
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it too? If it
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should say so
explicitly; if
not, we should
cite them.
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subset of topologies while the likelihood associated with the
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ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
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Figure 2: An example of a semantic graph.
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This factorization leads to separate components in the
model for the metric map (X
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), the topological map (G
t

),
and the semantic map (L
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). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
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parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Distribution over Semantic Graphs
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, and a distribution
over their labels parametized with a vector of probabilities,
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ested in maintaining the posterior distribution over this tuple
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where G
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
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bution over graphs with analytic representations for the
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Underlying our algorithm is a formulation of a Rao-
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pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
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conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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Algorithm 1 outlines the process by which our algorithm
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where G
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is the history of metric exteroceptive sensor data (in our case,
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
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conditioned upon the history of odometry, ut, sensor data,
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ment, �t. The distribution includes the topology, G
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, as well
as places, including their locations, X
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, and a distribution
over their labels parametized with a vector of probabilities,
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, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
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where G
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is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
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gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
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�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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). We represent the posterior over the
node poses p(X
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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denotes a particular sample from the space
of graphs; X
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is the analytic distribution over lcoations;
L
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is the analytic distributions over labels; and w
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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bution over graphs with analytic representations for the
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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ment, �t. The distribution includes the topology, G
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where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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ested in maintaining the posterior distribution over this tuple
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where G
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is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
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gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
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the ambiguity in the semantic map, in subsequent steps, the
algorithm correctly identifies the valid edge (in green) and
rejects the invalid loop closures (in black). Note that some
particles may add invalid edges, but the algorithm will reduce
their weights when subsequent measurements are inconsistent
with the hypothesis.

D. Updating the Metric Map Based on New Edges

The proposal step results in the addition of a new node to
each particle that denotes the current robot pose with an edge
that represents the temporal constraint with the previous node.
Importantly, the step also hypothesizes additional loop-closure
edges. Next, the algorithm incorporates these relative pose
constraints into the Gaussian representation for the marginal
distribution over the map

p(Xt|Gt, z
t
, u

t
,�

t) = N�1(Xt;⌃
�1
t , ⌘t), (8)

where ⌃�1
t and ⌘t are the information (inverse covariance)

matrix and information vector, respectively, that parametrize
the canonical form of the Gaussian. We utilize the iSAM
algorithm [18] to update the canonical form by iteratively
solving for the QR factorization of the information matrix.

E. Updating the Semantic Map Based on Natural Language

In the next step of the algorithm, we update each particle’s
analytic distribution over the set of labels associated with
the nodes Lt = {lt,1, lt,2, . . . , lt,t}. This update reflects label
information conveyed by spoken descriptions as well as that
suggested by the addition of edges to the graph. In maintaining
the distribution, we make the assumption that the labels are
conditionally independent

p(Lt|Xt, Gt, z
t
, u

t
,�

t) =
t
Y

i=1

p(lt,i|Xt, Gt, z
t
, u

t
,�

t). (9)

We model each node’s label distribution as a Dirichlet distri-
bution of the form

p(lt,i|�1 . . .�t) = Dir(lt,i;↵1 . . .↵K)

=
�(

PK
1 ↵i)

�(↵1)⇥ . . .⇥ �(↵K)

K
Y

k=1

l

↵k�1
t,i,k (10)

We initialize the parameters ↵1 to ↵K to 0.2 in absence of any
linguistic input, which corresponds to a uniform prior over the
labels. The algorithm increments the parameters as new label
observations arrive.

The base form of linguistic input consists of labeling sen-
tences that specify semantic properties of the current location,
such as “This is the gym.” We consider input of this form
�t = (k, i) to specify the label index k that assigns label lk to
the current node in the graph vt. We then update the semantic
distribution associated with this node according to

p(lt,i|�t = (k, i), lt�1,i) =

�(
PK

1 ↵t�1
i +�↵)

�(↵t�1
1 )⇥...⇥�(↵t�1

k +�↵)⇥...⇥�(↵K)

K
Y

k=1

l

↵k�1
t,i,k

(11)

where �↵ = 1 in the case of basic descriptions.
A contribution of our work is the ability to incorporate

information conveyed by more complicated natural language
descriptions. These expressions are challenging because the
places referred to by the user may not be obvious. Consider
the statement “the kitchen is down the hall.” One can no
longer assume that the user is referring to the current location
as the referent (i.e., “kitchen”) or that the location of the
landmark (i.e., “hall”) is known. We interpret this expression
by formulating a distribution over the nodes in the topology
that expresses their likelihood as being the referent for the
“kitchen.” We arrive at this distribution using the G3 frame-
work [2] to infer groundings for the different parts of the
natural language description. In the case of this example,
the framework uses the multinomial distributions over labels
to find a node corresponding to “the hall” and induces a
probability distribution over kitchens based on the nodes that
are “down the hall” from the identified landmark nodes. We
use this distribution to update each node’s label distribution as
above with �↵ equal to the grounding likelihood from G3.

In addition to input language, we also update the label
distribution for a node when the proposal step adds an edge
that denotes a spatial relation with another node in the graph.
These edges may correspond to temporal constraints that exist
between consecutive nodes, or they may denote loop-closures
based upon the spatial distance between nodes that we infer
from the metric map. Upon adding an edge to a node for which
we have previously incorporated a direct language observation
of the form above, we propagate the observed label to the
newly connected node using a value of �↵ = 0.5.

F. Updating the Particle Weights

Having proposed a new set of graphs, {G(i)
t } and updated

the analytic distributions over the metric and semantic maps
for each particle, we update their weights. The new weight
follows from the ratio between the target distribution over the
graph and the proposal distribution, which can be shown to
have the form

w̃

(i)
t = p(zt|G(i)

t , z

t�1
, u

t
,�

t) · w(i)
t�1, (12)

where w

(i)
t�1 is the weight of particle i at time t� 1, and w̃

(i)
t

denotes the weight at time t. We evaluate the measurement
likelihood by marginalizing over the node poses

p(zt|G(i)
t , z

t�1
, u

t
,�

t) =

Z

Xt

p(zt|X(i)
t , G

(i)
t , z

t�1
, u

t
,�

t)

⇥ p(X(i)
t |G(i)

t , z

t�1
, u

t
,�

t)dXt, (13)

which allows us to utilize conditional measurement model. In
the experiments presented in the next section, we compute the
conditional likelihood by matching the scans between poses.

We periodically follow the importance weight step with
resampling in which we replace poorly-weighted particles with
those with higher weights according to the algorithm described
by Doucet et al. [6].

[RSS’13 (to appear)]
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut
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t

) = p(L

t

|X
t

, G
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⇥ p(X

t
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t

, z
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|zt, ut
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t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set
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(i)
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=

n
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t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
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gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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robot exploration). The assumption fails, however, with re-
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
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The assumption that the distribution is peaked around
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
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because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Sample-based
representation

Model: Posterior over Semantic Graphs

Gaussian
(information form)Dirichlet

[RSS’13 (to appear)]
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Input:Input:Input:

for each particle ifor each particle ifor each particle i

1 Propose modifications to topology based on 
metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: Return: Return: 

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution

p(d

ij

; ⌫,�) =

d

ij

�

2
exp

 

�(d

2
ij

+ ⌫

2
)

2�

2

!

I0

✓

d

ij

⌫

�

2

◆

(8)

where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution

p(d
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d
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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ticle by incorporating the constraints induced by the new
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. Repeating these steps for each
particle yields the particle set representation P
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Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G
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by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:
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We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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In the first of the two filtering steps, we compute the prior
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current graph and observed odometry, sensor data, and in-
formation from language:
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We first model the effects of the robot’s motion by adding
a node v
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to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.
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Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v
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, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
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(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
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and x
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.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.
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kinds of edges,
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the system is
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Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:
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) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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). We represent the posterior over the
node poses p(X
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L
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t

is the analytic distributions over labels; and w
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weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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edges according to the current metric and label distributions.
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the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
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, if available. Finally, we update the
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new metric measurements z
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. Repeating these steps for each
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Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:
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We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
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work handles
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do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D
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node pairs
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where we have omitted the history of language observations
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t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.
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where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.
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where I
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(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
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and x
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.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.
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p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution

p(d

ij

; ⌫,�) =

d

ij

�

2
exp

 

�(d

2
ij

+ ⌫

2
)

2�

2

!

I0

✓

d

ij

⌫

�

2

◆

(8)

where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) = p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

)

⇥ p(X

t

|G
t

, z

t

, u

t

,�

t

)⇥ p(G

t

|zt, ut

,�

t

). (2)

This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
p(G

t

|zt, ut

,�

t

). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
p(L

t

|X
t

, G

t

, z

t

, u

t

,�

t

). We represent the posterior over the
node poses p(X

t

, |G
t

, z

t

, u

t

,�

t

) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

Input:Input:Input:

for each particle ifor each particle ifor each particle i

1 Propose modifications to topology based on 
metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: Return: Return: 

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
ij

. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d

tj

|G
t�1, z

t�1
, u

t

) with a Rice distribution

p(d

ij

; ⌫,�) =

d

ij

�

2
exp

 

�(d

2
ij

+ ⌫

2
)
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2

!
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✓

d

ij
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(8)

where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar

Algorithm 1: Semantic Mapping Algorithm

Input: P
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1w

(i)
t�1

o

and
(u

t

, z

t

,�

t

)

Output: P
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

for i = 1 to n do
1) Employ proposal distribution
p(G

t

|G(i)
t�1, z

t�1
, u

t

,�

t

) to propagate the graph
sample G

(i)
t�1 according to odometry u

t

and current
distribution over node labels L(i)

t�1 and positions
X

(i)
t�1 .

2) Update the Gaussian distribution over the node
poses X(i)

t

according to the constraints induced by
the newly-added graph edges.
3) Update the Dirichlet distribution over the current
and adjacent nodes L(i)

t

according to the parsed
language �

t

.

4) Compute the new particle weight w(i)
t

based
upon the previous weight w(i)

t�1 and the metric data
z

t

.
end

propagate each sample G(i)
t�1, which represents the posterior

p(G

t�1|zt�1
, u

t�1
,�

t�1
) at time t�1, by adding a node for

the robot’s new pose and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time
t, p(G

t

|zt�1
, u

t�1
,�

t�1
). In the second step, we update

the Gaussian distribution over the node poses for each par-
ticle by incorporating the constraints induced by the new
loop-closure edges. We then proceed to update the Dirich-
let distributions associated with each particle based upon
the parsed language �

t

, if available. Finally, we update the
weight w(i)

t

of each particle according to the likelihood of
new metric measurements z

t

. Repeating these steps for each
particle yields the particle set representation P

t

of the new
posterior distribution at time t, p(G

t

, X

t

, L

t

|zt, ut

,�

t

).

Augmenting the Graph using the Proposal
Distribution
In the first of the two filtering steps, we compute the prior
distribution over G

t

by sampling from a proposal distribu-
tion that is the predictive prior of the next graph given the
current graph and observed odometry, sensor data, and in-
formation from language:

p(G

t

|G
t�1, z

t�1
, u

t

,�

t

) (5)

We first model the effects of the robot’s motion by adding
a node v

t

to the graph that denotes the robot’s current loca-
tion. An edge connects this node to the previous vertex to
signify the temporal constraint between the two poses.

We then define a space of possible edges to add to the
graph, each with an associated likelihood. The system sam-
ples a single edge from this space and modifies the graph ac-
cordingly. The system considers adding two kinds of edges:
first, the addition of loop closure constraints based upon the
spatial distribution of the nodes. And second, it considers
modifying the graph through the addition of edges accord-
ing to natural language descriptions of the environment.

[ST] Is this
how previous
work handles
loop closures?
What did Ran-
ganathan11
do?

Loop Closure Constraints We propose the addition of
edges between a new node added to the graph, v

t

, that de-
notes the robot’s current location, and other vertices in the
graph to capture loop closure constraints. The algorithm
samples loop closure edges with a bias towards vertices that
are spatially closer to the most recent node. Doing so re-
quires that we marginalize over the distances D

t

between
node pairs

p

a

(G

t

, |G
t�1, z

t�1
, u

t

,�

t

)

=

Z

Dt

p(G

t

, |D
t

, G

t�1)p(Dt

|G
t�1) (6a)

⇡
Y

j

Z

dtj

p(G

tj

t

, |d
tj

, G

t�1)p(dtj |Gt�1) (6b)

where we have omitted the history of language observations
�

t, metric measurements zt�1, and odometry u

t for clarity.
In the second line, we make the approximation that the indi-
vidual edge likelihoods are conditionally independent.

The conditional p(Gtj

t

, |d
tj

, G

t�1, z
t�1

, u

t

) expresses the
likelihood of adding an edge between v

t

and v

j

based upon
the spatial location of the nodes. We represent the distribu-
tion for a particular edge between vertices v

i

and v

j

with
distance d

ij

= |x
i

� x

j

|2 as

p(G

ij

t

|d
ij

, G

t�1, z
t�1

, u

t

) / 1

1 + ↵d

2
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. (7)

where ↵ specifies the bias against distant nodes. For the
evaluations in this paper, we use ↵ = 0.2.

We approximate the conditional prior over distances
p(d
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) with a Rice distribution
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where I

o

(x) is a modified Bessel function of the first kind
and ⌫ and � are approximated based upon a linearized model
for the distance between the normally distributed positions
x

i

and x

j

.
This method results in the assignment of likelihoods to

candidate edges that we then sample from to propose the
addition of new loop closure edges to the graph. Before
incorporating these edges, the algorithm employs a simple
scanmatching test to check to rule out erroneous loop clo-
sures.

[ST] Need to
add equation
and work out
math for the
right way to
sample these
kinds of edges,
deriving from
the high-level
proposal
distribution.
The text here
describes what
the system is
doing now.

Semantic Map Constraints Next, the proposal distribu-
tion samples from edges induced by the semantic map. The
system proposes edges that connect locations with similar

Yellow = Hall
Purple = Elevator lobby
Orange = Gym

“the gym is down the hall”



Yellow = Hall
Purple = Elevator lobby
Orange = Gym

Hall

Elevator lobby

11

Incorporating Natural Language Descriptions

“the gym is down the hall”



Yellow = Hall
Purple = Elevator lobby
Orange = Gym

Hall

Elevator lobby

arg max

a
f (Language, a) (16)

p(�1, �2, �3 (17)

p(L

(i)
t |L(i)

t�1, G
(i)
t , X

(i)
t ,�t) =

X

�

p(L

(i)
t |�, L(i)

t�1,�t)⇥ p(�|L(i)
t�1, G

(i)
t , X

(i)
t ,�t)
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Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))
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Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward
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(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))
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Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward

Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))

(a) SDC tree
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(b) Induced Model

p(Φ|Γ,SDCs,m) = p(φ1|γ1, γ2, γ3,λ
r
1 = Put,m)×

p(φ2|γ2,λ
f
2
= the pallet,m)× p(φ3|γ3, γ4,λ

r
3 = on,m)×
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(c) Factorization

Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
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mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
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Incorporating Natural Language Descriptions

“the gym is down the hall”



Yellow = Hall
Purple = Elevator lobby
Orange = Gym

Hall

Elevator lobby

Yellow = Hall
Purple = Elevator lobby
Orange = Gym
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Elevator
lobby

Cafeteria

Entrance

Elevator
lobby

Cafeteria

Entrance

Elevator lobby

Gym
Amphitheater

Entrance

Entrance

Entrance

Courtyard

Entrance

Maps without Language Constraints
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Autonomous Narrated Tour
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