Robot Assistance at Home

Seth Teller & Matthew Walter CS & AI Lab, MIT

May 10, 2013

Robots That Work With People

- Robots are moving into human environments
 - Homes
 - Hospitals
 - Workplaces
- Interactions must be intuitive and safe

8 cores

Time

Blade cluster

(40 cores)

Now: People Accommodating Robots

Courtesy: AeroVironment

Courtesy: US Army

Where We Need to Be

Courtesy: Kinova Robotics

Representational Divide

A robot's view of the world is very different from our own

Objects

People

- Places
- Actions
- People
- Events

Learning Semantic Maps from Natural Language

- Human-centric representations of space
 - Spatial relations
 - Semantic attributes (e.g., names, use)
 - Connectivity
- Learn knowledge representation from
 narrated tour
- Challenges:
 - People convey high-level concepts but robot perception is low-level
 - Spoken descriptions are ambiguous

Building Semantic Maps with Natural Language

- Solution:
 - Joint metric, topologic, & semantic model supports information fusion
 - Efficient inference strategy
 - Enable layers to influence one another
 - Utilize natural language grounding framework

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t)$

$$p(G_t, X_t, L_t | z^t, u^t, \lambda^t)$$
 Topology $G_t = (V_t, E_t)$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \ p(X_t | G_t, z^t, u^t, \lambda^t) \ p(G_t | z^t, u^t, \lambda^t)$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) p(X_t | G_t, z^t, u^t, \lambda^t) p(G_t | z^t, u^t, \lambda^t)$

Gaussian (information form) representation

Sample-based

 $p(X_t|G_t, z^t, u^t, \lambda^t) = \mathcal{N}^{-1}(X_t; \Sigma_t^{-1}, \eta_t)$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = \begin{bmatrix} p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \\ p(X_t | G_t, z^t, u^t, \lambda^t) & p(G_t | z^t, u^t, \lambda^t) \end{bmatrix}$ Dirichlet $\begin{bmatrix} Dirichlet \\ (information form) & representation \end{bmatrix}$

 $p(G_t, X_t, L_t | z^t, u^t, \lambda^t) = p(L_t | X_t, G_t, z^t, u^t, \lambda^t) \ p(X_t | G_t, z^t, u^t, \lambda^t) \ p(G_t | z^t, u^t, \lambda^t)$

Dirichlet Gaussian Sample-based (information form) representation

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- I Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

Propose modifications to topology based on metric and semantic maps

2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

Input:
$$P_{t-1} = \left\{ G_{t-1}^{(i)}, X_{t-1}^{(i)}, L_{t-1}^{(i)} w_{t-1}^{(i)} \right\} \quad (u_t, z_t, \lambda_t)$$

for each particle i

- Propose modifications to topology based on metric and semantic maps
- 2 Perform Bayesian update of Gaussian

3 Update Dirichlet over labels based on language

4 Update weights based on metric observations

Return: $P_t^{(i)} = \left\{ G_t^{(i)}, X_t^{(i)}, L_t^{(i)} w_t^{(i)} \right\}$

"the gym is down the hall"

Incorporating Natural Language Descriptions

"the gym is down the hall"

Incorporating Natural Language Descriptions

"the gym is down the hall"

 $p(L_t^{(i)}|L_{t-1}^{(i)}, G_t^{(i)}, X_t^{(i)}, \lambda_t) = \sum_{\gamma} p(L_t^{(i)}|\gamma, L_{t-1}^{(i)}, \lambda_t) \times p(\gamma|L_{t-1}^{(i)}, G_t^{(i)}, X_t^{(i)}, \lambda_t)$

||

Incorporating Natural Language Descriptions

"the gym is down the hall"

Autonomous Narrated Tour

Autonomous Narrated Tour

35 1 Tourguide initializes the Tour

