

H4.2: Human Annotation for Natural Language Understanding

Matthew Walter, Thomas Howard, Nicholas Roy, & Seth Teller Massachusetts Institute of Technology

Objective:

Benefit:

Enable robots to formulate rich models of space from user-provided natural language descriptions

Efficiently learn spatial, topological, and semantic properties of the environment, without a priori knowledge or a domain expert

Impact:

Estimate world models that are more accurate than the previous state-of-the-art by exploiting human-conveyed knowledge

Approach:

Rao-blackwellized particle filter For each particle $P_{t-1}^{(i)}$ **Proposal**: Modify topology based on metric & semantic maps

Perform Bayesian update of Gaussian 2 Update: **3 Update**: Update Dirichlet over labels per language 4 Reweight: Update weights based on sensor data

Grounding natural language descriptions

"the gym" "is down" "the hall"

Future Work:

Linkages

Natural language understanding without a world model: Joint inference over maps and behaviors

Model and learn from additional semantic cues, including object cooccurrence and text

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

H4.2: Human Annotation for Natural Language Understanding

Matthew Walter, Thomas Howard, Nicholas Roy, & Seth Teller Massachusetts Institute of Technology

Objective: Benefit:

Scientific Foundation: Impact:

Investigators:

Approach

Results

The Path Forward

Linkages:

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.