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Now: People Accommodate Robots

Courtesy: Kinova Robotics
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VWhere We Need to Be

Take me to the
room across from the
cafeteria

Move the pallet
to receiving

Inspect the
second room on
the right

5 Matthew Walter




Natural Language Understanding for Robots

arg max p (7;|A = “Put the tire pallet on the truck”)
- Knowledge-based map to formal logic [ |-4] it

- Explort structure of language
- Fixed action space
- Limited learning

“the tire
pallet”

- Statistical-based “Symbol Grounding”
- Parse language into formal action specifications [6-8]
- Ground language in physical referents (objects, places, paths, events) [9]
- Parser and groundings are learned

[ITWinograd 1971 [4] Dzifcak et al,, 2009 [/] Chen et al, 201 |
[2] MacMahon et al.,, 2006 [6] Matuszek et al., 2010 [8] Matuszek et al., 2012
[3] Kress-Gazit et al., 2008 [5] Shimizu & Hass, 2009 [9] Tellex et al., 201 |
@ 6 Matthew Walter




NLU as Probabllistic Inference

robot actions locations command

PO

arg max p(Yo; Yas ¥rs VplS, )

o

objects relations  semantic map
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. Introduction

ll. Learning Semantic Maps from Natural Language Dialogue

Il. Following Directions Without in Unknown Environments

V. Future Directions & Conclusions

8 Matthew Walter



Rich Cognitive Models of Space

« Formulate human-centric models of the environment

» Models should express:

Regional decomposition of space T e
Metric pose (relative or absolute) /obbzgen—o/
Connectivity

Regions’ (room) types

Regions’ colloguial names /2 /

» Models often constructed by hand

9 Matthew Walter



State-of-the-Art In Semantic Mapping

» Spatial Semantic Hierarchy [ ]

» Augment SLAM map with topological and semantic layers
- Incorporate scene classification and object detection [2,3]
- Information flows up from the metric layer, not down

Scene hallway entrance
| > - Semantic
Classifier lobby kitchen

/ %_O / Topological

N\ & > / : R / Metric
// e

[ ] Kuipers, 2000
[2] Zender et al,, 2008

[3] Pronobis et al., 2010

|0 Matthew Walter



Limitations of Semantic Mapping Algorithms

* Rely upon pre-trained classifiers

 Limit generalizability beyond trained envs.

« Restrict to robot's iImmediate surround
 Require that robot visits each region

« Unable to infer certain properties:
- Colloquial names
- Unigue objects

Bl Matthew Walter




Building Semantic Maps with Natural Language

- Colloguial names
- Room type
- Spatial relations

"Observe’ beyond robot’s FOV

Fuse with robot's sensor stream
(1.e., hard & soft information)

People can efficiently convey information through speech

_earn semantic information from natural language descriptions:

The nurse’s station is
down the hall.

Matthew Walter



Building Semantic Maps with Natural Language

* Learn semantic cues and spatial relations from user’s descriptions

* Interpret free-form utterances

* Fully integrate linguistic information

cafeteria
info desk

lobby

hallway
Semantic

B

Topologic

[RSS 2013;ICRA 2014; JRR 2014 (submitted)]
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Challenges to Learning from Natural Language

» Language and sensor streams are uncertain he information dask
- Descriptions are ambiguous \ 's down the hal

- Sensor data Is noisy

» Language and sensor streams are disparate
- Language conveys abstract concepts
- Sensors provide metric observations

* Mapping requires fusing this information

| 4 Matthew Walter




Model: Posterior over Semantic Graphs

Sensor stream  Odometry  Language

N

(Gt,Xt, Lt|Z U )\t

s

Topology Gy = (V4, E) Semantic labels and type

Vertex poses

)

(‘CC? y’ Z)

[RSS 2013; ICRA 2014; |JRR 2014]
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Factoring the Posterior over Semantic Graphs

p(GthtaLt‘ztauta)‘t) b p(Lt‘Xta Gtaztauty )\t) p(Xt’Gtaztautv)\t) p(Gt‘Zt7ut7 )\t)

R ¢ S e ——

Vs Vs Us il

il _8

Space of topologies is combinatorially large

1l ‘ -1l

et o o9 « 4 >

[RSS 2013; ICRA 2014; |JRR 2014]

|6 Matthew Walter



Model: Posterior over Semantic Graphs

p(Gt7 Xt7 Lt‘zta uta )‘t) A

p(Lt‘Xta Gt7 Zt? ut7 )\t)

Dirichlet

p(X4|Gy, 2 u', ')

Gaussian
(information form)

p(Gt\zt, ul, )\t)

Sample-based
representation

(Xt]G A N =N

(Xt,Z 77775)

[RSS 2013; ICRA 2014; |JRR 2014]
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Model: Posterior over Semantic Graphs

p(GthtaLt‘Ztauta)‘t) b p(Lt‘Xta Gtaztauty )\t) p(Xt’Gtaztautv)\t) p(Gt‘zt7ut7 )\t)

P = {6, %, LV, wV |

7315 a {Pt(l)vpt(Q)v' ok 7Pt(n)}

P9 S dEP e ol |

<

P = {6, X, 1, uf")

[RSS 2013; ICRA 2014; |JRR 2014]
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Rao-Blackwellized Particle Filter

|nput: P11 = {Pt(i)la Pt(z)la O ’Pt(ib)l} where Pt(i)l = {Ggl, Xt(i)]_j Lii_)lg wt(z_)l}

for each particle i

|) Proposal: Modify the topology based on metric and semantic maps
2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return: P, = {Pt(l),Pt@), o2 ,Pt(")} where P! = {Gf),Xt(i),Lf),wf)}

[RSS 2013; ICRA 2014; |JRR 2014]
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Rao-Blackwellized Particle Filter

|nput: P11 = {Pt(i)la Pt(z)la O ’Pt(?—%)l} where Pt(i)l = {Ggl, Xt(i)lj Lgi_)l, wt(z_)l}

for each particle i

|) Proposal: Modify the topology based on metric and semantic maps

20 Matthew Walter




Proposal Distribution: Graph Augmentation

Semantic S|m|lar|ty

(Gt‘Gt 1y < u )\t

B

Odometry

Jacency

Propose two types of edges expressing collocation:
- Spatial-based edges
- Semantic-based edges

7| Matthew Walter



Proposal Distribution: Semantic Map-based

Edges to current node

v |
R ((En (e Gty ) — H p(G?|Gt_, At) Assume edges are independent
jiet; @B~

—dges

Multinomial
over labels

~ ]] Zp el Cmls 1 (C )

Jiet; EE~ I l_ v

Cosine similarity

Labels for node pair

22
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Rao-Blackwellized Particle Filter

|nput: P11 = {Pt(i)la Pt(z)la O ’Pt(?—%)l} where Pt(i)l = {Ggl, Xt(i)lj Lgi_)l, wt(z_)l}

for each particle i

2) Update: Perform Bayesian update of Gaussian

s Matthew Walter



Gaussian Update

24 Matthew Walter



Rao-Blackwellized Particle Filter

|nput: P11 = {Pt(i)la Pt(z)la O ’Pt(?—%)l} where Pt(i)l = {Ggl, Xt(i)lj Lgi_)l, wt(z_)l}

for each particle i

3) Update: Update Dirichlet over labels based on language

75 Matthew Walter




Updating the Dirichlet Distribution

“The kitchen I1s down the hallway”

26 Matthew Walter




Updating the Dirichlet Distribution

A+ = “The kitchen is down the hallway”

&

p(Ly \Xt(i), Ggi), N = H p(le.s |Xt(i), Ggi), e O\
i=1

ikelihood that language references region ¢

!

| A7 N e ) K joap—1
P(le,i[Aey le—1,1) = T(al 1)x...xT(al T +Aa)x...xT(ax) [1r=1 Lt i k
T

i Matthew Walter



Symbol Grounding Problem

Correct referents in the

BiclSHeEElementss —> -obots world mode

“Grounding”

The kitchen is

down the hall _ The kitchen is down the corridor.

: The kitchen is behind you.

Down the hall, you'll find the kitchen past the exit.

The galley is down the corridor to the left.

The Stata kitchen is on the right, past the tall filing cabinet.

The kitchen is through the double doors at the end of the
hall.

The Stata Center’s kitchen is behind you, just beyond the
doors to the elevator lobby.

28 Matthew Walter




Grounding Natural Language

“The kitchen I1s down the hallway”

Generalized Grounding Graph
lellex et al .

[AAAI 201 I; Al Magazine 201 | ]

7)) Matthew Walter




Language Grounding Ambiguity

» Descriptions are often ambiguous

* “The kitchen 1s down the hallway”
- Multiple hallways (known & unknown)
- Multiple regions “down’ hallways

» Robot’s role Is traditionally passive

—
-

-—

30 Matthew Walter




Resolving Ambigurty Through Dialogue

* Robot can explore to resolve uncertainty o
. . s the kitchen in

- Physical exploration front of me?
- Dialogue

» Dialogue: Robot asks questions that
disambiguate groundings

ejl Matthew Walter




Challenges to

Decide whether to ask a question

Decide which region to ask about

Deal with partially known environments

Pronie

Mode

e sufficient context to the user

frame-of-reference

Dialogue

s the kitchen in
front of me?

£y

Matthew Walter



Problem Formulation

» Model next state as tuple
- Previous semantic map
- Question
- Answer

« At each time ¢, robot selects from a set of actions:
- Follow the user
- Ask a question

» Define question asking actions @; for each language utterance

* Answers (states) are uncertain  ——— (Q)MDP

B Matthew Walter




Problem Formulation

* Per-particle state:

semantic map particle semantic map particle
\ \
1
St41 = {Pt( )Mtazf}
t
action
* Actions:

- Follow the user
- Stay In place

- Ask a question
* Transition function based on answer likelihood

» Reward reflects information gain and cost

34 Matthew Walter



Action Selection

Plan a one-step policy:

particle weight

}
ai =arg max ) p(S;)Q(S, ar)
¢ S,

where
value = function(information gain) cost = function(burden)
| |
Q(Styar) = > YV (Set1) X p(Se41|S:, ar) — C(ar)
S|

= YE(V(Si+1)) — Clar)

E5 Matthew Walter



Action Selection

« Cost of an action:

 [ime since last question

C(CLt) — F(f(at)) { » Time since last asking about grounding

* Number of questions asked

* Value of the next state:

V(Siy1) = Fl(ar))

* Information gain for (question, answer) pair: NLU figure (region) grounding

|
T 25 = dalllar g —Jal@rs i\ @ 2

36 Matthew Walter



Action Selection

Plan a one-step policy:

af =arg max ) p(Sp)Q(St, ar)

where

Q(St, at) = YE(V(St41)) — Clar)

V(Sty1)) Z}— (alzf)) x p(z]]St, a)

\ possible answers for question a

B Matthew Walter



Choosing Question Structure

» Consider binary (yes/no) questions: 2§ € {yes,no}

» Questions follow structured template:

<figure> <relation> <landmark>

“Is the kitchen in front of me?”

* Two types of landmarks
- Robot:  “ls the kitchen in front of me?”
- An environment region: “Is the kitchen across from the cafeteria?”

» Context: Choose landmark (and relation) that provides most information

* Assume robot's frame-of-reference

38 Matthew Walter



Experiment

» Gave narrated guided-tour of the MIT Stata Center

» Robotic wheelchair equipped with |
- Two LIDARs ¥ '\\ / |
- Three monocular cameras . K[ Cameras |{
» User provided 9 descriptions " | Microphone
: T N\§/ | (notshown)
- 6 egocentric S N N
- 3 allocentric "

Robot asked 5 questions

B Matthew Walter



Results

Grounding likelihood with (without) dialogue

Q3:"ls the lounge |

Bl Elevator lobby
Bl Office

m Lab

Bl Hallway

Bl Conference Room

B Kitchen
Lounge

Conference

behind me?” | | |
Bt - o
A3:"Yes * ‘w‘
.‘ |

J

Q2:"Is the lounge | L

on my right?” — [Q2] "'0" Room
r‘/ ~7 M N T T ~

A2:"No”

R £
S E ) -g'*—
0.00 (0.15)| y i
=2l 00 o @Y
N ; — —~ |
0.00 (024} 2 -~ _[0.00 (0.09)

LERL

QIl:"ls the lounge near
the conference room?”’

Al:"Yes”

40
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Results

Grounding likelihood with (without) dialogue

-~ [0.90(0.17)

The elevator Ioby

: 0.00 (0.41)

0.10 (0.20]|

A

0.00 (0.20)

Q1l:"ls the elevator lobby near me?”

Al:"No”

4| Matthew Walter




Results

Entropy Accuracy
Utterance Without With Without With No. of
Questions  Questions  Questions  Questions  Questions
“The lounge 1s down the hallway” 1.911 0.237 17.3% 90.6% 2
“The elevator lobby i1s down the hallway” 1.574 0.566 35.8% 70.9% 2
“The lounge 1s behind you” 0.403 0.095 87.2% 98.4% 1
“The lab is down the hall” 2.041 0.310 14.6% 91.6% 3
“The conference room i1s down the hallway”  2.061 0.664 6.5% 65.5% 8
“The lounge 1s in front of us” 1.053 0.107 20.6% 43.8% 2

4) Matthew Walter




Stata Center Third Floor Semantic Graph

W Office
" Lounge

M Hallway | Lounge is
M Elevator lobby : down the hall |
W Conference room : - / .
M Lab L

Kitchen

: | Conference .
% g » room l

43 Matthew Walter



Multi-Building Semantic Graph

M Office
" Lounge
Elevator ‘ l Hallway

lobby is M Elevator lobby
i M Conference room
down the = Lab

hallway Kitchen

Lab is through

Conference The office is )
the corridor

room down the hall

44 Matthew Walter




. Introduction

. Learning Semantic Maps from Natural Language Dialogue

lll. Following Directions Without in Unknown Environments

V. Future Directions & Conclusions

45 Matthew Walter



Language Understanding Without a Map

arg max p(Yo; Ya, Vrs VoS5 A)

&

Go to the hydrant
behind the cone

——

Natural Language
Understanding

Y
N

Objects

N~
World Model

Assumed known

46
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Language Conveys Iwo lypes of Information

! Go to the hydrant behind the cone)

[ISER 2014]

47 Matthew Walter




Joint Map & Behavior Inference

P
/

cone

«

Utterance:

= Ocone € O

= Ohydrant c O
ATback (Oconea Ohydra,nt) cER

o

=
s

—

“go to the hydrant behind the cone”

&
&

<

W A—

actual hydrant pose

action

- \ hydrant

l samples

F
| |

[ISER 2014]

48
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Joint Map & Behavior Inference

Robot trajectory

i

Sensor stream

Language

|

Odometry

i

arg max p (x(t)|A?, 2%, ut)

x(t)eR™

[ISER 2014]

25
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Joint Map & Behavior Inference

Semantic Graph

[ISER 2014]

50 Matthew Walter




Joint Map & Behavior Inference

% distribution
over maps

policy
Map
Inference

Language

[ISER 2014]

i Matthew Walter




-xtracting Facts About the World

p(S|A, z,u) = p(S|a, z, u)

DG [ 0]
o to the hydrant )
{behnd the cone

S Matthew Walter




Behavior Inference: Behaviors given Map Distribution

/I\/Iap \
@sﬁnaﬁon O\
s
_
B S =

Go to the hydrant
behind the cone E

\ [ISER 2014]

Sib Matthew Walter




Find Actions Consistent with Inferred Behavior

Action Set: One step destination

=
S

What is the next destination!? Policy 7T

[ISER 2014]

54 Matthew Walter




Find Actions Consistent with Inferred Behavior

t t

QMDP [Littman et al, 1995]
[ISER 2014]

5151 Matthew Walter




Find Actions Consistent with Inferred Behavior

N

—

o~

o

ol
“hi

t+3

QMDP [Littman et al., 1995]
\ [ISER 2014]

56 Matthew Walter




map view

Inferring Maps and Behaviors from Natural Language Instructions Duvallet et. al 2014
2x Real-Time

SV Matthew Walter




Following Route

Directions In Unknown

SIS,

58
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. Introduction

. Learning Semantic Maps from Natural Language Dialogue

Il. Following Directions Without in Unknown Environments

V. Future Directions & Conclusions

55 Matthew Walter



Semantic Map Learning

* Learn from addrtional semantic cues (e.g., objects, text)

* Learn from non-situated descriptions

* Information-gathering actions: | , | b

- Physical exploration
- Dialogue

60 Matthew Walter




Future VWork

Extend dialogue beyond user-referenced locations

Consider less-structured questions
- Open-ended answers
- Free-form questions

Account for figures that refer to unknown regions
Go beyond a hand-crafted measure of cost (burden)

Reason over frame-of-reference

ncorporate physical exploration

Move towards fully non-situated dialogue

61
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Conclusions

 Natural language understanding for robots requires cognitive models

* Argued that language is an effective means of sharing our cognitive models

 Described an algorithm that learns semantic environment models from natural-
anguage dialogue

 Described an algorithm for joint map and behavior inference

» Outlined ongoing and future work

Questions!

mwalten@ttic.edu

62 Matthew Walter
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lopological Map Representation

* Node v; denotes a distinct (semantically meaningful) region

» Edges €; represent connectivity

- Observed with robot’s sensors (e.g., scan-matching)
- Traversed (odometry)

- Inferred from description

* What defines a “region’”?

- Local, spatial consistency «————— Spectral clustering of laser scans
- Semantic attributes (e.g.,, room type)

63 Matthew Walter




Semantic Graph

{Gtv Xt7 Lt}

» Topological map:G; = (V;, E})
» Metric map: X = [331 5% ot

- Semantic map: Ly = {l1,la, ..., ln}

64
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Semantic Graph

{Gtv Xt7 Lt}

» Topological map: G = (V4, E)
* Metric map: X = [331 o

- Semantic map: Ly = {l1,la, ..., ln}

65
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Semantic Graph

{Gtv Xt7 Lt}
» Topological map: G = (V4, E)
> VISR ket Er— [:131 Ty v xn]T
» Semantic map: L; = {l1,ls,...,l,} [; = (colloquial name, region type)

66 Matthew Walter



Semantic Attributes via Scene Classification

» Jointly reason over semantic hierarchy: region type and colloquial name

* Infer region type from sensor data
- Improves allocentric language grounding

- Improves mapping efficiency region’s type (category)

Topology ’

Metric

6/ Matthew Walter




Proposal

Distribution: Odometry Annotation

p(Gt_ |Gt—17 Zt_la uta )‘t)

Odometry

68 Matthew Walter



Proposal Distribution: Metric Map-based Edges

Lt
U U (V) (V. ZJ
: : : A ETE  m)
Edges to current node
¢ .
N (E e i H p(GZ|Gy) Assume edges are independent
j:ethE_
Marginalize over the metric map = H / tJ|Xt , Gy u)p( Xy |GY)
.7 €tj %E_

. < ] / (G \dys, G pldes | GF)

.7 etg %E_

69 Matthew Walter



Proposal Distribution: Metric Map-based Edges

V1 V2 U3 V-1 V¢

. —

pa(thGt_vzt_lautﬁ)‘t) s H /d p(Gij dtijt_)p(dtj Gt_)

j:ethE_ tJ

Folded Gaussian

\4

p(GY |dij, Gy, 271, ut)

1

XX
2

/0 Matthew Walter



Proposal Distribution: Graph Augmentation

Elevator

[o]e]o L
y Entrance &

Elevator
[o]e]e)Y,

N
4
/

Entrance “x‘

e Matthew Walter



Iwo Forms of Natural Language

Egocentric

Allocentric

Descriptions

“This Is the kitchen” “The kitchen I1s down the hall”

%

Matthew Walter



Grounding Allocentric Language

“The kitchen i1s down the hall”

<figure> <relation> <landmark>

likelihood of the relation

!

p(¢k, =T} => p(¢h, = Tlv = R;, SRx)plyi = R;)
R;

1 1

ikelihood that language ikelihood that region R;
references region R; is the landmark
p(dR, =T)
p(n = Rj) = ]
7 Spdh, =T)

V4B Matthew Walter



Symbol Grounding Problem

Correct referents in the

BiclSHeEElementss —> -obots world mode

“Grounding”

The gym is

down the hall

The gym is down the corridor.

The workout center is behind you.

Down the hall, you’ll find the gym past the exit sign.
The fitness center is down the corridor to the left.

The Alumni gym is on the right, past the tall filing
cabinet.

The weight room is through the double doors at the
end of the hall.

The Stata Center’s gym is behind you, just beyond the
doors to the elevator lobby.

74 Matthew Walter



Grounding Natural Language Speech

(collaboration with S. Tellex, T. Kollar, S. Teller; & N. Roy)

arg max p{groundings|language)

groundings
arg 1max / I/‘\\
/g' SeR p (YA \

objects, actions, relations, places “The

0.8 <

745} Matthew Walter



Learning the Grounding Distributions

Training Set Spatial Features Learned Model
“Down the hall”
£, =43 p(y|Down the hall)
=l
PNET
Extract Optimize
features ‘ weights
_— — =
G alE
=1Ll
f3=8.3
v = (22, Y2, 22)

/6 Matthew Walter




Grounding Natural Language Speech

arg max;p{groundingstlanguage)
groundings / '\

arg mAX (V1, 72, Vs, A

objects, actions, relRtions, places Go to the gym down the hall”

Learn potentials/'
by training on
Corpus

O: Orvgede

RVSIEa thie oM S5 “down” “the hall”

[AAAI 201 |; Al Magazine 201 |]

VAT Matthew Walter




Grounding Natural Language Speech

“Visit to the gym down

arg mIa“X (Wla Y2, 73, 74|)\)

“the hall”

/8 Matthew Walter




Grounding Natural Language Speech

“Visit to the gym down the hall”

arg mIa“X (,717 Y2, 73, 74|>\)

“visit” ' | “the hall”

749) Matthew Walter




Grounding Natural Language Speech

“Visit to down the hall”

arg mIa“X (Wla Y2, 73, 74|)\)

80 Matthew Walter




Grounding Natural Language Speech

to the gym down the hall”

arg mIa“X (/717 Y2573 74|)\)

“the hall”

81 Matthew Walter




Rao-Blackwellized Particle Filter

|nput: P11 = {Pt(i)la Pt(z)la O ’Pt(?—%)l} where Pt(i)l = {Ggl, Xt(i)lj Lgi_)l, wt(z_)l}

for each particle i

4) Reweight: Update weights based on metric observations

S Matthew Walter




Updating Particle Weights with Sensor Data

® Target distribution p(Ggi) e, ) ()
e (Lo

~ Proposal distribution p(Ggi)]G@ 2ttt At

B = p(z|GP, 2871wt AL - wl?,
i

G et e oty — / (S préitant) of HDAR seans x |G =1 4t \1ygx,
X

P(l) {Gz(gl),Xt(l),Lgl), (1)} P(Q) {GgQ),Xt@),L?), (2)} P(n) {G§n),Xt(n),L§n), (n)}

83 Matthew Walter



Transrtion Function

E(V(St41)) = ) _V(Ses1) X p(Sr41|5t, ar)

St

_ZV Xp a’St,CLt)

\4

p(z;'b'Stvat) o Zp(zglstaRivat) X p(R’L’Ak)
R;

p(Z?‘St7Ri7at) e Z p(zg‘staRiaataqS) ><p(¢’St7Ri7at)
pe{F,T}

84 Matthew Walter



Narrated-tour Results

Matthew Walter

85




Narrated-tour Results: Baseline

86 Matthew Walter




Narrated-tour Results: Semantic Graph

Ground-truth topology:
Receives 93.5% probability mass
/ Consistent w/ top 5 particles

e

T 5 Y

87
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Jlopological Accuracy

Environment Accuracy
Stata Floor 3 97.2%
Stata Floor 4 96.3%
Multi-building 96.2%

88 Matthew Walter




Region Segmentation Accuracy

Region Type Stata Floor 3 Multi-building
Conference room 80% 81.7%
Elevator lobby 59.7% 72.8%
Hallway 49.4% 55.7%
Lab 528% | 301% |
Lounge 42.9% 39.4% |
Office 62.5% 76.1%

|VR7, m VRtruth‘
|VR’L U VRtruth‘

Jaccard similarity Cluttered regions prone to over-segmentation

89 Matthew Walter




Region Semantic Accuracy

( The elevator

lobby isin
front of us
Region Type Stata Floor 3 Multi-building |
The elevator
Conference room 48.5% 58.7% lobby is down
thhaII
Elevator lobby 64.1% 46.4%
Hallway 44.4% 58%
- office
o) ©) . Lounge
Lab 14.2% 30.6% W owmge e
I Elevator lobby down the hall
Lounge 62% 405% B conference room
Office 98.6% 60.2%

90 Matthew Walter



Annotation Inference

Distributed Correspondence Graph| | ]:
Infer objects, locations, and relations from language

region
(cone,back)
behind
o (hydrant,cone) @ object
T | @ @ @ (cone)
et — S ¢ & object
- hydrant) @
VP 'O D1 NN IN D1 NN @
I I l | | |
» @ ® ® & &
go to the hydrant behind the come
[ISER 2014]
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Go to the hydrant
behind the cone

Map Inference

Annotation
Inference

distribution
) 4
. | over maps
i emahtlc :
Mapping
J \_ J

[ISER 2014]

i
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Behavior Inference: Behaviors given Map Distribution

Gap 1

04

((

gt )

MO] Howard et al. 2014

region(o,,back)

S
goal(o;) 0,
@Qﬁg o,
@@/ @@
@ action
@ navigate)
o (2) Gs) Gs)
. DCG [10] 4 | | )
' Go to the hydrant | ———p Action: Navigate
| behind the cone Goal: O3
& Y,
[ISER 2014]
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