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Robots as Our Partners
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Now: People Accommodate Robots
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Where We Need to Be
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Natural Language Understanding for Robots

• Knowledge-based map to formal logic [1-4]
- Exploit structure of language
- Fixed action space
- Limited learning

• Statistical-based “Symbol Grounding”
- Parse language into formal action specifications [6-8]
- Ground language in physical referents (objects, places, paths, events) [9]
- Parser and groundings are learned

[4] Dzifcak et al., 2009

[5] Shimizu & Hass, 2009

[6] Matuszek et al., 2010[2] MacMahon et al., 2006

[3] Kress-Gazit et al., 2008

[1] Winograd 1971 [7] Chen et al., 2011

[8] Matuszek et al., 2012

[9] Tellex et al., 2011
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Rich Cognitive Models of Space

• Formulate human-centric models of the environment

• Models should express:
- Regional decomposition of space
- Metric pose (relative or absolute)
- Connectivity
- Regions’ (room) types
- Regions’ colloquial names

• Models often constructed by hand

Semantic Mapping!
!  Formulate human-centric models of the environment!
!  Existing solutions: Augment SLAM map with semantic layer!
!  Incorporate scene classification and object detection2,3!
!  Information flows up from the metric layer, not down!

3!
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State-of-the-Art in Semantic Mapping

• Spatial Semantic Hierarchy [1]

• Augment SLAM map with topological and semantic layers
- Incorporate scene classification and object detection [2,3]
- Information flows up from the metric layer, not down

Semantic Mapping!
!  Formulate human-centric models of the environment!
!  Existing solutions: Augment SLAM map with semantic layer!
!  Incorporate scene classification and object detection2,3!
!  Information flows up from the metric layer, not down!

3!

 Metric!

Topological!

Semantic!

2Zender et al. 2008; !  3Pronobis et al. 2010!

hallway

kitchen

entrance

lobby Semantic

Topological

Metric

Scene 
Classifier

[2] Zender et al., 2008

[3] Pronobis et al., 2010

[1] Kuipers, 2000
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• Rely upon pre-trained classifiers

• Limit generalizability beyond trained envs.

• Restrict to robot’s immediate surround

• Require that robot visits each region

• Unable to infer certain properties:
- Colloquial names
- Unique objects

Limitations of Semantic Mapping Algorithms
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• People can efficiently convey information through speech

• Learn semantic information from natural language descriptions:
- Colloquial names
- Room type
- Spatial relations

• “Observe” beyond robot’s FOV

• Fuse with robot’s sensor stream                                       
(i.e., hard & soft information)

Building Semantic Maps with Natural Language

The nurse’s station is 
down the hall.
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• Learn semantic cues and spatial relations from user’s descriptions

• Interpret free-form utterances

• Fully integrate linguistic information

Building Semantic Maps with Natural Language

lobby

cafeteria
info desk

hallway
Semantic

Topologic

Metric

[RSS 2013; ICRA 2014; IJRR 2014 (submitted)]
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• Language and sensor streams are uncertain
- Descriptions are ambiguous
- Sensor data is noisy

• Language and sensor streams are disparate
- Language conveys abstract concepts
- Sensors provide metric observations

• Mapping requires fusing this information

The information desk 
is down the hall

Challenges to Learning from Natural Language
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Figure 2: An example of a semantic graph.

Table 1: Notation
Symbol Description

G

t

= (V

t

, E

t

)

Graph representation of the topology
at time t that consists of a set of ver-
tices V = {v1, v2, . . . , vn} connected
by undirected edges E.

L

t

Set of labels l

i

associated with each
place.

�

t

Parsed natural language description of
the environment.

X

t

Vector of landmark poses.

z

t

Set of sensor readings made up to time
t by sensors onboard the robot.

u

t Set of odometry readings up to time t.

Distribution over Semantic Graphs

Formally, we maintain a distribution over the semantic graph
conditioned upon the history of odometry, ut, sensor data,
z

t, as well as natural language descriptions of the environ-
ment, �t. The distribution includes the topology, G

t

, as well
as places, including their locations, X

t

, and a distribution
over their labels parametized with a vector of probabilities,
L

i

t

, for each node in the topological map. We are then inter-
ested in maintaining the posterior distribution over this tuple
given the observations:

p(G

t

, X

t

, L

t

|zt, ut

,�

t

) (1)

where G

t

denotes the graph at time t, zt = {z1, z2, . . . , zt}
is the history of metric exteroceptive sensor data (in our case,
laser range scans), ut

= {u1, u2, . . . , ut

} is the history of
odometry measurements, and �

t is the history of linguistic
data. Table 1 outlines our notation.

We factor the joint posterior into a distribution over the
graphs and a conditional distribution over the positions and

labels of each place.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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ploy Rao-Blackwellization to model the factored formu-
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Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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Figure 2: An example of a semantic graph.
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is the history of metric exteroceptive sensor data (in our case,
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} is the history of
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data. Table 1 outlines our notation.
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This factorization leads to separate components in the
model for the metric map (X

t

), the topological map (G
t

),
and the semantic map (L

t

). The space of possible graphs
for a particular environment is spanned by the allocation of
edges between nodes, resulting in a combinatorial explosion
because the number of possible edges is polynomial in the
number of nodes. Hence, maintaining a distribution over [ST] Is this

a new thing
that we
noticed, or did
Ranganathan
et al notice
it too? If it
is new, we
should say so
explicitly; if
not, we should
cite them.

graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
nectivity (e.g., indoor, man-made environments) or in situ-
ations when the robot’s motion limits loop closures (e.g.,
robot exploration). The assumption fails, however, with re-
peated traversals within open environments.

The assumption that the distribution is peaked around
a limited set of topologies allows us to use particle-
based methods to represent the posterior over graphs
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). Inspired by the derivation of Ran-
ganathan and Dellaert [4] for topological SLAM, we em-
ploy Rao-Blackwellization to model the factored formu-
lation, whereby we accompany the sample-based distri-
bution over graphs with analytic representations for the
conditional posteriors over the node locations and labels.
Specifically, we maintain a Dirichlet distribution that mod-
els the posterior distribution over the set of node labels
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) by a Gaussian, which we
parametrize in the canonical form. We utilize the iSAM al-
gorithm proposed by Kaess et al. [3] to maintain this distri-
bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles
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where G
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t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we
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graphs is intractable for all but trivially small environments.
In order to overcome this complexity, we make the assump-
tion that the distribution over graphs is dominated by a small
subset of topologies while the likelihood associated with the
majority of topologies is nearly zero. This assumption holds
true in situations where the environment structure limits con-
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Underlying our algorithm is a formulation of a Rao-
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pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
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Model: Posterior over Semantic Graphs

Figure 2: An example of a semantic graph.
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pression for the conditional posterior along with the sample-
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graphs is intractable for all but trivially small environments.
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subset of topologies while the likelihood associated with the
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pression for the conditional posterior along with the sample-
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bution over time.

Underlying our algorithm is a formulation of a Rao-
Blackwellized particle filter that maintains the analytic ex-
pression for the conditional posterior along with the sample-
based representation for the marginal graph posterior. We
represent the joint distribution over the topology, node loca-
tions, and labels as a set of particles

P
t

= {P (1)
t

, P

(2)
t

, . . . , P

(m)
t

}. (3)

Each particle P

(i)
t

2 P
t

consists of the set

P

(i)
t

=

n

G

(i)
t

, X

(i)
t

, L

(i)
t

w

(i)
t

o

, (4)

where G

(i)
t

denotes a particular sample from the space
of graphs; X

(i)
t

is the analytic distribution over lcoations;
L

(i)
t

is the analytic distributions over labels; and w

(i)
t

is the
weight of particle i.

Algorithm 1 outlines the process by which our algorithm
recursively updates the distribution over semantic graphs de-
fined in Equation (1) to reflect robot motion, new metric
sensor data, and spoken utterances. In the first step, we

P (1)
t =

n

G(1)
t , X(1)

t , L(1)
t , w(1)

t

o

P (2)
t =
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P (n)
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t

o

· · ·

Pt =
n

P (1)
t , P (2)

t , . . . , P (n)
t

o

[RSS 2013; ICRA 2014; IJRR 2014]
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Rao-Blackwellized Particle Filter

Input:                                             where

for each particle i

1) Proposal: Modify the topology based on metric and semantic maps

2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return:                                         where
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P (1)
t , P (2)

t , . . . , P (n)
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o

P (i)
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G(i)
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t , w(i)

t

o

[RSS 2013; ICRA 2014; IJRR 2014]
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Rao-Blackwellized Particle Filter

Input:                                             where

for each particle i

1) Proposal: Modify the topology based on metric and semantic maps

2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return:                                         where
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Proposal Distribution: Graph Augmentation

based methods to represent the posterior over graphs,
p(Gt|zt

, u

t
, �

t
). Inspired by the derivation of Ranganathan

and Dellaert [39] for topological SLAM, we employ Rao-
Blackwellization to model the factored formulation (2),
whereby we accompany the sample-based distribution over
graphs with analytic representations for the conditional poste-
riors over the node locations and labels. Specifically, we rep-
resent the posterior over the node poses p(Xt|Gt, z

t
, u

t
, �

t
) by

a Gaussian, which we parametrize in the canonical form. We
maintain a Dirichlet distribution that models the posterior dis-
tribution over the set of node labels p(Lt|Xt, Gt, z

t
, u

t
, �

t
).

We represent the joint distribution over the topology, node
locations, and labels as a set of particles:

Pt = {P

(1)
t , P

(2)
t , . . . , P

(n)
t }. (3)

Each particle P

(i)
t 2 Pt consists of the set

P

(i)
t =

n

G

(i)
t , X

(i)
t , L

(i)
t , w

(i)
t

o

, (4)

where G

(i)
t denotes a sample from the space of graphs; X

(i)
t

is the analytic distribution over locations; L

(i)
t is the analytic

distribution over labels; and w

(i)
t is the weight of particle i.

4 Building Semantic Maps with Language

Algorithm 1 outlines the process by which we recursively up-
date the distribution over semantic graphs (2) to reflect the
latest robot motion, metric sensor data, and utterances. In
the first step, we propagate each sample G

(i)
t�1, which repre-

sents the posterior p(Gt�1|zt�1
, u

t�1
, �

t�1
) at time t � 1, by

adding a node for the robot’s new pose (connected by an edge
to the previous node) and proposing additional loop-closure
edges according to the current metric and label distributions.
This results in a sample-based estimate for the prior at time t,
p(Gt|zt�1

, u

t
, �

t
). Next, we update the Gaussian distribution

over the node poses by incorporating the constraints induced
by the new loop-closure edges. We then proceed to update the
Dirichlet distributions based upon the structure of the graph and
parsed language �t, if available. Finally, we update the weight
w

(i)
t according to the likelihood of new metric measurements zt

and resample if needed. We repeat these steps for each particle,
yielding the particle set representation Pt of the new posterior
distribution at time t, p(Gt, Xt, Lt|zt

, u

t
, �

t
). The following

sections explain each step in detail.

4.1 Graph Augmentation using the Proposal Distribution

Given the posterior distribution over the semantic graph at time
t � 1, we first compute the prior distribution over the graph Gt.
We do so by sampling from a proposal distribution that is the
predictive prior of the current graph given the previous graph
and sensor data, and the recent odometry and language:

p(Gt|Gt�1, z
t�1

, u

t
, �

t
) (5)

We formulate the proposal distribution by first augmenting the
graph to reflect the robot’s motion. Specifically, we add a node

Algorithm 1: Semantic Mapping Algorithm

Input: Pt�1 =

n

P

(i)
t�1

o

, and (ut, zt, �t), where

P

(i)
t�1 =

n

G

(i)
t�1, X

(i)
t�1, L

(i)
t�1, w

(i)
t�1

o

Output: Pt =

n

P

(i)
t

o

for i = 1 to n do
1. Propagate the graph sample G

(i)
t�1 using the

proposal distribution p(Gt|G(i)
t�1, z

t�1
, u

t
, �

t
),

using odometry ut and current distributions over
labels L

(i)
t�1 and poses X

(i)
t�1.

2. Update the Gaussian distribution over the node
poses X

(i)
t according to the constraints induced

by the newly-added graph edges.

3. Update the Dirichlet distribution over the current
and adjacent nodes L

(i)
t according to the language

�t.

4. Compute the new particle weight w

(i)
t based upon

the previous weight w

(i)
t�1 and the metric data zt.

end
Normalize weights and resample if needed.

vt to the graph that corresponds to the robot’s current pose with
an edge to the previous node vt�1 that represents the temporal
constraint between the two poses. We denote this intermediate
graph as G

�
t . Similarly, we add the new pose as predicted by

the robot’s motion model to the vector of poses X

�
t and the

node’s label to the label vector L

�
t according to the process

described in Subsection 4.3.3

We formulate the proposal distribution (5) in terms of the
likelihood of adding edges between nodes in this modified
graph G

�
t . The system considers two forms of additional edges:

first, those suggested by the spatial distribution of nodes and
second, by the semantic distribution for each node.

4.1.1 Spatial Distribution-based Constraints

We first propose connections between the robot’s current node
vt and others in the graph based upon their metric location.
We do so by sampling from a distance-based proposal distribu-
tion biased towards nodes that are spatially close. Doing so re-
quires marginalizing over the distances dt between node pairs,
as shown in equation (6), where we omit the history of language
observations �

t, metric measurements z

t�1, and odometry u

t

for brevity. Equation (6a) reflects the assumption that addi-
tional edges expressing constraints involving the current node
etj /2 E

� are conditionally independent. Equation (6c) ap-
proximates the marginal in terms of the distance between the

3The label update explains the presence of the latest language �t.

6

v1 v2 v3 vt�1 vt

Propose two types of edges expressing collocation:
- Spatial-based edges
- Semantic-based edges

Odometry

Adjacency

Semantic similarity
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v1 v2 v3 vt�1 vt

Multinomial 
over labels

two nodes associated with the additional edge.

pa(Gt|G�
t , z

t�1
, u

t
, �

t
) =

Y

j:etj /2E�

p(G

tj
t |G�

t ) (6a)

=

Y

j:etj /2E�

Z

X�
t

p(G

tj
t |X�

t , G

�
t , ut)p(X

�
t |G�

t ) (6b)

⇡
Y

j:etj /2E�

Z

dtj

p(G

tj
t |dtj , G

�
t )p(dtj |G�

t ), (6c)

The conditional distribution p(G

tj
t |dtj , G

�
t , z

t�1
, u

t
) ex-

presses the likelihood of adding an edge between nodes vt and
vj based upon their spatial location. We represent the distribu-
tion for a particular edge between vertices vi and vj a distance
dij = |xi � xj |2 apart as

p(G

ij
t |dij , G

�
t , z

t�1
, u

t
) / 1

1 + �d

2
ij

, (7)

where � specifies distance bias. For the evaluations in this
paper, we use � = 0.2. We approximate the distance prior
p(dtj |G�

t , z

t�1
, u

t
) with a folded Gaussian distribution,

p(dij ; µ, �) =

1

�

p
2⇡

exp

✓

� (�dij � µ)

2

2�

2

◆

+

1

�

p
2⇡

exp

✓

� (dij � µ)

2

2�

2

◆

(8)

where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.

quires marginalizing over the space of labels:

ps(Gt|G�
t , z

t�1
, u

t
, �

t
) =

Y

j:etj /2E�

p(G

tj
t |G�

t , �t) (9a)

=

Y

j:etj /2E�

X

L�
t

p(G

tj
t |L�

t , G

�
t , �t)p(L

�
t |G�

t ) (9b)

⇡
Y

j:etj /2E�

X

l�t ,l�j

p(G

tj
t |l�t , l

�
j , G

�
t )p(l

�
t , l

�
j |G�

t ), (9c)

where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G

tj
t |lt, lj) =

(

✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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Edges to current node

Assume edges are independent

two nodes associated with the additional edge.
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=
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t ), (6c)

The conditional distribution p(G

tj
t |dtj , G

�
t , z

t�1
, u

t
) ex-

presses the likelihood of adding an edge between nodes vt and
vj based upon their spatial location. We represent the distribu-
tion for a particular edge between vertices vi and vj a distance
dij = |xi � xj |2 apart as

p(G

ij
t |dij , G

�
t , z

t�1
, u

t
) / 1

1 + �d

2
ij

, (7)

where � specifies distance bias. For the evaluations in this
paper, we use � = 0.2. We approximate the distance prior
p(dtj |G�

t , z

t�1
, u
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) with a folded Gaussian distribution,

p(dij ; µ, �) =
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.

quires marginalizing over the space of labels:

ps(Gt|G�
t , z

t�1
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t
, �

t
) =
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where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G

tj
t |lt, lj) =

(

✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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Rao-Blackwellized Particle Filter

Input:                                             where

for each particle i

1) Proposal: Modify the topology based on metric and semantic maps

2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return:                                         where
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t , . . . , P (n)
t
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P (i)
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Gaussian Update

x1

x2

x3

xt�1

xt

x1

x2

x3

x4

x5

x1 x2 x3 x4 x5

Figure 5: The algorithm proposes new graph edges between
node pairs based on their label distributions, which are depicted
as pie charts for nodes whose distribution is not uniform. It
rejects invalid edges that result from ambiguous labels (black)
and adds the valid edge (green) to the graph.

the algorithm identifies candidate loop closures between differ-
ent “entrances” in the environment and accepts those (shown in
green) whose local laser scans are consistent. Note that some
particles may add invalid edges (e.g., due to perceptual alias-
ing), but their weights will decrease as subsequent measure-
ments become inconsistent with the hypothesis.

4.2 Updating the Metric Map Based on New Edges

The proposal step results in the addition, to each particle, of
a new node at the current robot pose, along with an edge rep-
resenting its temporal relationship to the previous node. The
proposal step also hypothesizes additional loop-closure edges.
Next, the algorithm incorporates these relative pose constraints
into the Gaussian representation for the marginal distribution
over the map

p(Xt|Gt, z
t
, u

t
, �

t
) = N�1

(Xt; ⌃
�1
t , ⌘t), (11)

where ⌃

�1
t and ⌘t are the information (inverse covariance) ma-

trix and information vector that parametrize the canonical form
of the Gaussian. We utilize the iSAM algorithm [19] to update
the canonical form by iteratively solving for the QR factoriza-
tion of the information matrix. We omit the details of the al-
gorithm for lack of space and refer the reader to Kaess et al.
[19] for more information. Figure 6 shows the resulting metric
poses and their uncertainties of a resulting particle.

4.3 Updating the Semantic Map Based on Natural Lan-
guage

Next, the algorithm updates the distribution over the current set
of labels Lt = {lt,1, lt,2, . . . , lt,t} associated with each parti-
cle. This update reflects information regarding labels and spa-
tial relations that spoken descriptions convey, as well as se-
mantic concepts that are suggested by the addition of edges to

Figure 6: The mean position and 1� uncertainty ellipse for each
node, along with the resulting occupancy grid map.

the graph. In maintaining the label distribution, we make the
assumption that the node labels are conditionally independent
given the topology and node poses:

p(Lt|Xt, Gt, z
t
, u

t
, �

t
) =

t
Y

i=1

p(lt,i|Xt, Gt, z
t
, u

t
, �

t
). (12)

This assumption ignores dependencies between labels associ-
ated with nearby nodes, but simplifies the form for the distribu-
tion over labels associated with a single node. We model each
node’s label distribution as a Dirichlet distribution of the form

p(lt,i|�1 . . . �t) = Dir(lt,i; ↵1 . . . ↵K)

=

�(

PK
1 ↵i)

�(↵1) ⇥ . . . ⇥ �(↵K)

K
Y

k=1

l

↵k�1
t,i,k , (13)

where lt,i,k for k 2 {1, . . . , K} is the k

th label associated with
node i at time t. We initialize the parameters ↵1 . . . ↵K to 0.2,
which results in a prior that is uniform over the different la-
bels. Given subsequent language, this favors distributions that
are peaked around a single label.

We consider user-provided expressions that use spatial rela-
tions to describe one or two locations in the environment. The
first form are egocentric utterances (e.g., “This is the gym”) that
assign labels to the robot’s current location. A contribution of
our work is the ability to incorporate information from allocen-
tric spatial language that express spatial relations between and
labels for potentially distant regions in the environment. By in-
terpreting these expressions such as “The kitchen is through the
cafeteria,” our framework enables robots to learn rich semantic
maps of their environment more efficiently.

Learning from allocentric expressions is challenging because
their groundings are ambiguous—the places to which the user
refers are often not obvious. Consider the scenario outlined in
Figure 7. The semantic map of includes an area with a high
likelihood of being a “lobby” and a second believed to be a
“hallway.” As the robot (triangle) continues to explore the en-
vironment, the user utters the description “The gym is down the
hall.” Descriptions like these are often ambiguous. For exam-
ple, there may be multiple “hall” regions in the map or it may

8
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Rao-Blackwellized Particle Filter

Input:                                             where

for each particle i

1) Proposal: Modify the topology based on metric and semantic maps

2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return:                                         where
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Updating the Dirichlet Distribution

“The kitchen is down the hallway”

Hallway

?

?

?
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?

?



Matthew Walter27

Updating the Dirichlet Distribution

p(Lt|X(i)
t , G(i)
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Symbol Grounding Problem

The	  kitchen	  is	  down	  the	  corridor.	  
The	  kitchen	  is	  behind	  you.	  
Down	  the	  hall,	  you’ll	  8ind	  the	  kitchen	  past	  the	  exit.	  
The	  galley	  is	  down	  the	  corridor	  to	  the	  left.	  
The	  Stata	  kitchen	  is	  on	  the	  right,	  past	  the	  tall	  8iling	  cabinet.	  
The	  kitchen	  is	  through	  the	  double	  doors	  at	  the	  end	  of	  the	  
hall.	  
The	  Stata	  Center’s	  kitchen	  is	  behind	  you,	  just	  beyond	  the	  
doors	  to	  the	  elevator	  lobby.

Linguistic elements
“Grounding”

Correct referents in the 
robot’s world model

The kitchen is 
down the hall
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Grounding Natural Language
“The kitchen is down the hallway”

Generalized Grounding Graph
(Tellex et al.)

Coupled Perception and Motion Planning for
Mobile Manipulation
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Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.

argmax

groundings
p (groundings|language) (1)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike

“the gym” “is down” “the hall”

Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))

(a) SDC tree

λr
1

“The gym”

γ1

φ1

λr
3

“is down”

γ3

φ3

λf
4

“the hall”

γ4

φ4

(b) Induced Model

p(Φ|Γ,SDCs,m) = p(φ1|γ1, γ2, γ3,λ
r
1 = Put,m)×

p(φ2|γ2,λ
f
2
= the pallet,m)× p(φ3|γ3, γ4,λ

r
3 = on,m)×

p(φ4|γ4,λ
f
4
= the truck,m)

(c) Factorization

Figure 5: In (a) is SDC tree for “Put the pallet on the truck.”
In (b) is the induced graphical model and in (c) is the factor-
ization.

with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward
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Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,
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with robot actions and environment state sequences. Exam-
ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.

The first corpus focuses on spatial prepositions describ-
ing paths, such as “across,” “to,” “toward,” and “along.”
Each example in the corpus consists of a trajectory, a land-
mark object, and a phrase such as “Go to the door” or “Go

across the conference room;” the corpus includes both pos-
itive and negative examples of each spatial relation. One
of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
shows maps for “to the truck,” “past the truck” and “toward

Go to the door.

(a) Spatial Relations.

With your back to the windows,
walk straight through the door
near the elevators. Continue to
walk straight, going through
one door until you come to an
intersection just past a white
board.

(b) Route Directions.

Lift the tire pallet in the air, then
proceed to deposit it to the right
of the tire pallet already on the
table right in front of you.

(c) Mobile Manipulation.

Figure 6: Commands paired with environments from corpora used in our experiments.
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ples from the corpora appear in Figure 6. We used one part
of these corpora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate the end-to-
end performance of the system at composing word meanings
in order to follow commands.
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of the authors created the corpus by drawing a sequence of
waypoints that corresponded to a phrase such as “down the
hallway.” Negative examples were created by treating pos-
itive examples of one spatial relation as negative examples
of another, with some exceptions such as “to” and “toward.”
This dataset provides a simple test bed to demonstrate the
model’s performance, as well as providing training exam-
ples for bootstrapping the model on this important class of
words. Figure 6a shows a sample prepositional phrase from
this corpus, paired with a path and landmark.

The second corpus consists of natural language route in-
structions. We collected a corpus of 150 natural language
route instructions from fifteen people, through one floor of
two adjoining office buildings. An example set of directions
from the corpus is shown in Figure 6b. Following these di-
rections is challenging because they consist of natural lan-
guage constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. This corpus provides a complex
sample of spatial language for a real-world task. To train the
model, we annotated each constituent in the corpus with a
corresponding path segment or landmark. We constructed
negative examples by randomizing these annotations. Fig-
ure 6b shows a sample command from the corpus.

The third corpus consists of mobile-manipulation com-
mands given to a robotic forklift. Annotators on Amazon
Mechanical Turk watched a video of a simulated forklift per-
forming an action, then wrote natural language commands
they would give to an expert human operator in order to
command them to carry out the actions in the video. This
corpus consists of a rich variety of mobile-manipulation
commands such as “Pick up the pallet of tires directly in
front of the forklift.” Figure 6c shows an example command
from this dataset.

3.1 Meanings For Words

Next, we trained models for each of the corpora and evalu-
ated their performance for specific words in a held-out test
set, using the same features for all models and annotated
parses. Table 1a shows the performance on words from the
spatial relations corpus. Not surprisingly, it learned good
models for the meanings of words in this simple corpus.
To illustrate the learned models for individual words, we
present the probability distribution as a heat map, where
red is high probability and blue is low probability. Figure 7
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• Descriptions are often ambiguous

• “The kitchen is down the hallway”
- Multiple hallways (known & unknown)
- Multiple regions “down” hallways

• Robot’s role is traditionally passive

Language Grounding Ambiguity

Hallway

Potential
kitchens
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• Robot can explore to resolve uncertainty
- Physical exploration
- Dialogue

• Dialogue: Robot asks questions that 
disambiguate groundings

Resolving Ambiguity Through Dialogue

The kitchen is down 
the hallway

Is the kitchen in 
front of me?

Yes
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• Decide whether to ask a question

• Decide which region to ask about

• Deal with partially known environments

• Provide sufficient context to the user

• Model frame-of-reference

Challenges to Dialogue

Is the kitchen in 
front of me?

Yes
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Problem Formulation

• Model next state as tuple
- Previous semantic map
- Question
- Answer

• At each time   , robot selects from a set of actions:
- Follow the user
- Ask a question

• Define question asking actions      for each language utterance

• Answers (states) are uncertain                      (Q)MDP

t

ai
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• Per-particle state:

• Actions:
- Follow the user
- Stay in place
- Ask a question

• Transition function based on answer likelihood

• Reward reflects information gain and cost

St+1 =
n

P (i)
t , at, zat

o

semantic map particle semantic map particle

action

Problem Formulation
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Plan a one-step policy:

where

is a function of the feature set of each action. We use a dis-
counting factor � = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max

at

X

St

p(St)Q(St, at), (7)

where p(St) is the particle weight w(i)
t .

Action Set
The action set consists of the “Follow Person” action AF ,
“Stay-In-Place” action AS , and the valid set of question ask-
ing actions. The “Follow Person” action AF is available at
all times except when the robot is waiting for an answer to
a question, when only AS is available for selection. We de-
rive our questions from a templated set for each grounding
entity in a natural language description. These templates can
be categorized into two basic types.

I The simple template takes a spatial relation from the set
of spatial relations (near, away, in front, behind, left of,
right of) and a grounding variable to create a question
of the type “Is the kitchen in front of me?”. For such
questions, the possible answers are “yes,” “no,” and “in-
valid” (for questions that do not make sense given a spa-
tial entity).

II The more complex template defines questions in terms
of spatial relations between non-local locations in the
environment. If the robot is highly confident of the se-
mantic label of a particular location, it could generate
a question about regions close to that entity to resolve
uncertainty. For example, when the robot is uncertain
about the location of the “lounge,” but thinks one pos-
sibility is the space in front of the “conference room,”
while several are not, it could ask “Is the lounge in front
of the conference room?”.

The robot can only use questions of the first type to ask
about spatial regions in its immediate vicinity. As such, the
ability to receive useful information is limited to instances
when the robot is near a potential hypothesized location.
Questions of the second type allow the robot to reduce its un-
certainty even when a hypothesized location is not within its
immediate vicinity. However, this may place a higher men-
tal burden on the user who must then reason about spatial
entities outside their immediate perception range.

Value Function
We define the value of the next state as a linear function of
the information gain for each action. We define the next state
St+1 as the question and answer pair. Each next state is as-
signed a value based on the information gain for the related
language grounding. Since there is a distribution over the set
of answers that could be received for a given question, we
evaluate the expected likelihood of transitioning to a partic-
ular state given a question. The likelihood of transitioning to
each state is the likelihood of receiving a particular answer
given the question.

Information Gain The information gain I(a, za) for ac-
tion a, as shown in Equation 8 is defined as the reduction in
entropy by taking action a and receiving observation za. In
our framework, the entropy is over a grounding variable �f
created for a natural language description provided by the
guide. Calculating the exact entropy is infeasible since the
map might not yet be complete, and also because it is ineffi-
cient to calculate the likelihood of some spatial regions that
are too far outside the local area. Therefore, we approximate
the distribution based on the spatial regions considered dur-
ing the language grounding step for the language descrip-
tion.

I(a, za) = H(�f |⇤)�H(�f |⇤, a, za) (8)
In this paper, we concentrate on questions that can result

in a discrete set of answers. This allows us to better model
the expected change in entropy given the answer to the ques-
tion (unlike an open ended answer which could be drawn
from a large space of possible answers). However, in gen-
eral, we can use the same approach for open ended ques-
tions as long as we can evaluate the expected information
gain from these questions.

Given the answer, we evaluate the change it has on the
distribution over the particular grounding variable. For most
spatial relations, we define a range over which a particular
question can be applied in a meaningful manner. For exam-
ple, we only consider regions within a 20 m distance when
evaluating a question. As such, we limit the entropy calcula-
tion to the regions for which the question is expected to be
meaningful.

p(�f = Ri|⇤, a, za) =
p(za|a,Ri)⇥ p(�f = Ri|⇤)
P

Ri

p(za|a)⇥ p(�f = Ri|⇤)
(9)

The expected value of the next state is based on the transition
function from the current state to the next state.

E(V (St+1)) =

X

za
j

F(I(a|zaj ))⇥ p(zaj |St, a) (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in
the language groundings based on spatial exploration. Thus,
the Q value for AF is only the cost of the action.

Transition Likelihood
The transition function is the likelihood of receiving each
answer given the state and the question asking action. We
arrive at this value by marginalizing out the grounding vari-
able. This results in a higher expected likelihood of receiv-
ing a particular answer if there were spatial regions that had
a high likelihood of being the grounding and also fit the spa-
tial relation in the question.

p(zaj |St, a) =
X

Ri

p(zaj |St, Ri, a)⇥ p(Ri|⇤) (11)

Cost Function Definition
We define a hand-crafted cost function that encodes the de-
sirability of asking a given question at each timestep. The

value = function(information gain) cost = function(burden)

Action Selection

way,” results in an SDC in which the figure is the “lounge,”
the spatial relation is “down from,” and the landmark is the
“hallway”. With egocentric descriptions, the landmark or
figure are implicitly the robot’s current position.1

Algorithm 1: Semantic Mapping Algorithm
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1) Update Particles with odometry and sensor data.
for i = 1 to n do

1. Employ proposal distribution to propagate the
graph sample based on ut, �t and at.

(a) Segment regions
(b) Sample region edges
(c) Merge newly connected regions

2. Update the Gaussian distribution over the node
poses X(i)

t conditioned on topology.
3. Reevaluate language groundings and answered

question and update the semantic layer Lt.
4. Update particle weights.

end
2.) Normalize weights and resample if needed.
3.) Evaluate action costs and carry out minimum cost
action.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to
the grounding based upon their semantic label likelihood.
We normalize these likelihoods to compute the landmark
grounding probability for each of these regions

p(�l = Rj) =
p(�l

Rj
= T)

P

Rj

p(�l
Rj

= T)
, (1)

where �l is the landmark region grounding and �l
Rj

denotes
the binary correspondence variable that specifies whether re-
gion Rj is the landmark. For each potential landmark region,
the algorithm then calculates the likelihood that each region
in the map corresponds to the figure based on a model for the
spatial relation SR. We arrive at the overall figure grounding
likelihood by marginalizing over the landmarks

p(�f
Ri

= T) =
X

Rj

p(�f
Ri

= T|�l = Rj , SR) p(�l = Rj),

(2)

1We make the assumption that the descriptions are provided
with respect to the robot’s reference frame and not the user’s.

where �f
Ri

is the correspondence variable for the figure. We
normalize these likelihoods for each potential figure region

p(�f = Ri) =
p(�f

Ri
= T)

P

Ri

p(�f
Ri

= T)
. (3)

This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.

Algorithm
Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t },

where P
(i)
t is particle i at time t, at is the action taken, and

zat is the resulting observation. For a single particle, we de-
fine the Q value as

Q(St, at) =
X

St+1

�V (St+1)⇥ p(St+1|St, at)� C(at)

=

X

St+1

�E(V (St+1))� C(at),
(4)

where the value of St+1

V (St+1) = F(I(at)) (5)
is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)
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being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
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visited and added to the map.
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formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
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In this section, we outline the action selection procedure em-
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with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
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being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.
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Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.
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• Cost of an action:

• Value of the next state:

• Information gain for (question, answer) pair :

Action Selection

way,” results in an SDC in which the figure is the “lounge,”
the spatial relation is “down from,” and the landmark is the
“hallway”. With egocentric descriptions, the landmark or
figure are implicitly the robot’s current position.1

Algorithm 1: Semantic Mapping Algorithm
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1) Update Particles with odometry and sensor data.
for i = 1 to n do

1. Employ proposal distribution to propagate the
graph sample based on ut, �t and at.

(a) Segment regions
(b) Sample region edges
(c) Merge newly connected regions

2. Update the Gaussian distribution over the node
poses X(i)

t conditioned on topology.
3. Reevaluate language groundings and answered

question and update the semantic layer Lt.
4. Update particle weights.

end
2.) Normalize weights and resample if needed.
3.) Evaluate action costs and carry out minimum cost
action.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to
the grounding based upon their semantic label likelihood.
We normalize these likelihoods to compute the landmark
grounding probability for each of these regions

p(�l = Rj) =
p(�l

Rj
= T)

P

Rj

p(�l
Rj

= T)
, (1)

where �l is the landmark region grounding and �l
Rj

denotes
the binary correspondence variable that specifies whether re-
gion Rj is the landmark. For each potential landmark region,
the algorithm then calculates the likelihood that each region
in the map corresponds to the figure based on a model for the
spatial relation SR. We arrive at the overall figure grounding
likelihood by marginalizing over the landmarks

p(�f
Ri

= T) =
X

Rj

p(�f
Ri

= T|�l = Rj , SR) p(�l = Rj),

(2)

1We make the assumption that the descriptions are provided
with respect to the robot’s reference frame and not the user’s.

where �f
Ri

is the correspondence variable for the figure. We
normalize these likelihoods for each potential figure region

p(�f = Ri) =
p(�f
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. (3)

This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.

Algorithm
Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t },

where P
(i)
t is particle i at time t, at is the action taken, and

zat is the resulting observation. For a single particle, we de-
fine the Q value as

Q(St, at) =
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St+1

�V (St+1)⇥ p(St+1|St, at)� C(at)

=

X

St+1

�E(V (St+1))� C(at),
(4)

where the value of St+1

V (St+1) = F(I(at)) (5)
is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)
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the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.
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the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.

Algorithm
Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.
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is a function of the feature set of each action. We use a dis-
counting factor � = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max

at

X

St

p(St)Q(St, at), (7)

where p(St) is the particle weight w(i)
t .

Action Set
The action set consists of the “Follow Person” action AF ,
“Stay-In-Place” action AS , and the valid set of question ask-
ing actions. The “Follow Person” action AF is available at
all times except when the robot is waiting for an answer to
a question, when only AS is available for selection. We de-
rive our questions from a templated set for each grounding
entity in a natural language description. These templates can
be categorized into two basic types.

I The simple template takes a spatial relation from the set
of spatial relations (near, away, in front, behind, left of,
right of) and a grounding variable to create a question
of the type “Is the kitchen in front of me?”. For such
questions, the possible answers are “yes,” “no,” and “in-
valid” (for questions that do not make sense given a spa-
tial entity).

II The more complex template defines questions in terms
of spatial relations between non-local locations in the
environment. If the robot is highly confident of the se-
mantic label of a particular location, it could generate
a question about regions close to that entity to resolve
uncertainty. For example, when the robot is uncertain
about the location of the “lounge,” but thinks one pos-
sibility is the space in front of the “conference room,”
while several are not, it could ask “Is the lounge in front
of the conference room?”.

The robot can only use questions of the first type to ask
about spatial regions in its immediate vicinity. As such, the
ability to receive useful information is limited to instances
when the robot is near a potential hypothesized location.
Questions of the second type allow the robot to reduce its un-
certainty even when a hypothesized location is not within its
immediate vicinity. However, this may place a higher men-
tal burden on the user who must then reason about spatial
entities outside their immediate perception range.

Value Function
We define the value of the next state as a linear function of
the information gain for each action. We define the next state
St+1 as the question and answer pair. Each next state is as-
signed a value based on the information gain for the related
language grounding. Since there is a distribution over the set
of answers that could be received for a given question, we
evaluate the expected likelihood of transitioning to a partic-
ular state given a question. The likelihood of transitioning to
each state is the likelihood of receiving a particular answer
given the question.

Information Gain The information gain I(a, za) for ac-
tion a, as shown in Equation 8 is defined as the reduction in
entropy by taking action a and receiving observation za. In
our framework, the entropy is over a grounding variable �f
created for a natural language description provided by the
guide. Calculating the exact entropy is infeasible since the
map might not yet be complete, and also because it is ineffi-
cient to calculate the likelihood of some spatial regions that
are too far outside the local area. Therefore, we approximate
the distribution based on the spatial regions considered dur-
ing the language grounding step for the language descrip-
tion.

I(a, za) = H(�f |⇤)�H(�f |⇤, a, za) (8)
In this paper, we concentrate on questions that can result

in a discrete set of answers. This allows us to better model
the expected change in entropy given the answer to the ques-
tion (unlike an open ended answer which could be drawn
from a large space of possible answers). However, in gen-
eral, we can use the same approach for open ended ques-
tions as long as we can evaluate the expected information
gain from these questions.

Given the answer, we evaluate the change it has on the
distribution over the particular grounding variable. For most
spatial relations, we define a range over which a particular
question can be applied in a meaningful manner. For exam-
ple, we only consider regions within a 20 m distance when
evaluating a question. As such, we limit the entropy calcula-
tion to the regions for which the question is expected to be
meaningful.

p(�f = Ri|⇤, a, za) =
p(za|a,Ri)⇥ p(�f = Ri|⇤)
P

Ri

p(za|a)⇥ p(�f = Ri|⇤)
(9)

The expected value of the next state is based on the transition
function from the current state to the next state.

E(V (St+1)) =

X

za
j

F(I(a|zaj ))⇥ p(zaj |St, a) (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in
the language groundings based on spatial exploration. Thus,
the Q value for AF is only the cost of the action.

Transition Likelihood
The transition function is the likelihood of receiving each
answer given the state and the question asking action. We
arrive at this value by marginalizing out the grounding vari-
able. This results in a higher expected likelihood of receiv-
ing a particular answer if there were spatial regions that had
a high likelihood of being the grounding and also fit the spa-
tial relation in the question.

p(zaj |St, a) =
X

Ri

p(zaj |St, Ri, a)⇥ p(Ri|⇤) (11)

Cost Function Definition
We define a hand-crafted cost function that encodes the de-
sirability of asking a given question at each timestep. The

NLU figure (region) grounding

• Time since last question
• Time since last asking about grounding
• Number of questions asked{
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Plan a one-step policy:

where

is a function of the feature set of each action. We use a dis-
counting factor � = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max
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of the type “Is the kitchen in front of me?”. For such
questions, the possible answers are “yes,” “no,” and “in-
valid” (for questions that do not make sense given a spa-
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while several are not, it could ask “Is the lounge in front
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when the robot is near a potential hypothesized location.
Questions of the second type allow the robot to reduce its un-
certainty even when a hypothesized location is not within its
immediate vicinity. However, this may place a higher men-
tal burden on the user who must then reason about spatial
entities outside their immediate perception range.

Value Function
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signed a value based on the information gain for the related
language grounding. Since there is a distribution over the set
of answers that could be received for a given question, we
evaluate the expected likelihood of transitioning to a partic-
ular state given a question. The likelihood of transitioning to
each state is the likelihood of receiving a particular answer
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Information Gain The information gain I(a, za) for ac-
tion a, as shown in Equation 8 is defined as the reduction in
entropy by taking action a and receiving observation za. In
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created for a natural language description provided by the
guide. Calculating the exact entropy is infeasible since the
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cient to calculate the likelihood of some spatial regions that
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the distribution based on the spatial regions considered dur-
ing the language grounding step for the language descrip-
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eral, we can use the same approach for open ended ques-
tions as long as we can evaluate the expected information
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ple, we only consider regions within a 20 m distance when
evaluating a question. As such, we limit the entropy calcula-
tion to the regions for which the question is expected to be
meaningful.

p(�f = Ri|⇤, a, za) =
p(za|a,Ri)⇥ p(�f = Ri|⇤)
P

Ri

p(za|a)⇥ p(�f = Ri|⇤)
(9)

The expected value of the next state is based on the transition
function from the current state to the next state.

E(V (St+1)) =

X

za
j

F(I(a|zaj ))⇥ p(zaj |St, a) (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in
the language groundings based on spatial exploration. Thus,
the Q value for AF is only the cost of the action.

Transition Likelihood
The transition function is the likelihood of receiving each
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way,” results in an SDC in which the figure is the “lounge,”
the spatial relation is “down from,” and the landmark is the
“hallway”. With egocentric descriptions, the landmark or
figure are implicitly the robot’s current position.1
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1) Update Particles with odometry and sensor data.
for i = 1 to n do

1. Employ proposal distribution to propagate the
graph sample based on ut, �t and at.

(a) Segment regions
(b) Sample region edges
(c) Merge newly connected regions

2. Update the Gaussian distribution over the node
poses X(i)

t conditioned on topology.
3. Reevaluate language groundings and answered

question and update the semantic layer Lt.
4. Update particle weights.

end
2.) Normalize weights and resample if needed.
3.) Evaluate action costs and carry out minimum cost
action.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to
the grounding based upon their semantic label likelihood.
We normalize these likelihoods to compute the landmark
grounding probability for each of these regions

p(�l = Rj) =
p(�l

Rj
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, (1)

where �l is the landmark region grounding and �l
Rj

denotes
the binary correspondence variable that specifies whether re-
gion Rj is the landmark. For each potential landmark region,
the algorithm then calculates the likelihood that each region
in the map corresponds to the figure based on a model for the
spatial relation SR. We arrive at the overall figure grounding
likelihood by marginalizing over the landmarks

p(�f
Ri
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= T|�l = Rj , SR) p(�l = Rj),

(2)

1We make the assumption that the descriptions are provided
with respect to the robot’s reference frame and not the user’s.

where �f
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is the correspondence variable for the figure. We
normalize these likelihoods for each potential figure region
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This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
Hemachandra et al. 2014), we commit to a description once
the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.

Algorithm
Algorithm 1 outlines the process by which robot updates its
representation and decides on the optimal action. At each
time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z
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where P
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t is particle i at time t, at is the action taken, and

zat is the resulting observation. For a single particle, we de-
fine the Q value as
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being true for each figure region Rj in the factor graph in
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the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches (Walter et al. 2013;
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the likelihood of its grounding exceeds a threshold. We im-
prove upon this in this paper by continuously re-grounding
the language when relevant regions of the map change.
These changes can be in the form of updates to the metric
position of the figure or landmark regions (e.g., due to a loop
closure), or new potential landmark or figure regions being
visited and added to the map.
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time step, the system integrates the odometry and sensor in-
formation to update the distribution over the semantic graph.
This includes reevaluating the language descriptions and an-
swers to questions from the guide. Then, the algorithm eval-
uates the cost of each valid (possibly null) dialog action, and
executes the one with the highest expected Q value. The fol-
lowing section elaborates on our action selection procedure.

Action Selection
In this section, we outline the action selection procedure em-
ployed by the algorithm. We treat the guided tour as an MDP,
with associated costs for taking each action. These actions
include following the person, staying in place, and asking
a particular question. We define an additional set of ques-
tion asking actions dependent on the current number of al-
locentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t },

where P
(i)
t is particle i at time t, at is the action taken, and

zat is the resulting observation. For a single particle, we de-
fine the Q value as

Q(St, at) =
X

St+1

�V (St+1)⇥ p(St+1|St, at)� C(at)

=

X

St+1

�E(V (St+1))� C(at),
(4)

where the value of St+1

V (St+1) = F(I(at)) (5)
is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)

is a function of the feature set of each action. We use a dis-
counting factor � = 1.

At each time step, the robot takes the best action aBt from
the available set of actions using the QMDP heuristic.

aBt = arg max

at

X

St

p(St)Q(St, at), (7)

where p(St) is the particle weight w(i)
t .

Action Set
The action set consists of the “Follow Person” action AF ,
“Stay-In-Place” action AS , and the valid set of question ask-
ing actions. The “Follow Person” action AF is available at
all times except when the robot is waiting for an answer to
a question, when only AS is available for selection. We de-
rive our questions from a templated set for each grounding
entity in a natural language description. These templates can
be categorized into two basic types.

I The simple template takes a spatial relation from the set
of spatial relations (near, away, in front, behind, left of,
right of) and a grounding variable to create a question
of the type “Is the kitchen in front of me?”. For such
questions, the possible answers are “yes,” “no,” and “in-
valid” (for questions that do not make sense given a spa-
tial entity).

II The more complex template defines questions in terms
of spatial relations between non-local locations in the
environment. If the robot is highly confident of the se-
mantic label of a particular location, it could generate
a question about regions close to that entity to resolve
uncertainty. For example, when the robot is uncertain
about the location of the “lounge,” but thinks one pos-
sibility is the space in front of the “conference room,”
while several are not, it could ask “Is the lounge in front
of the conference room?”.

The robot can only use questions of the first type to ask
about spatial regions in its immediate vicinity. As such, the
ability to receive useful information is limited to instances
when the robot is near a potential hypothesized location.
Questions of the second type allow the robot to reduce its un-
certainty even when a hypothesized location is not within its
immediate vicinity. However, this may place a higher men-
tal burden on the user who must then reason about spatial
entities outside their immediate perception range.

Value Function
We define the value of the next state as a linear function of
the information gain for each action. We define the next state
St+1 as the question and answer pair. Each next state is as-
signed a value based on the information gain for the related
language grounding. Since there is a distribution over the set
of answers that could be received for a given question, we
evaluate the expected likelihood of transitioning to a partic-
ular state given a question. The likelihood of transitioning to
each state is the likelihood of receiving a particular answer
given the question.

Information Gain The information gain I(a, za) for ac-
tion a, as shown in Equation 8 is defined as the reduction in
entropy by taking action a and receiving observation za. In
our framework, the entropy is over a grounding variable �f
created for a natural language description provided by the
guide. Calculating the exact entropy is infeasible since the
map might not yet be complete, and also because it is ineffi-
cient to calculate the likelihood of some spatial regions that
are too far outside the local area. Therefore, we approximate
the distribution based on the spatial regions considered dur-
ing the language grounding step for the language descrip-
tion.

I(a, za) = H(�f |⇤)�H(�f |⇤, a, za) (8)
In this paper, we concentrate on questions that can result

in a discrete set of answers. This allows us to better model
the expected change in entropy given the answer to the ques-
tion (unlike an open ended answer which could be drawn
from a large space of possible answers). However, in gen-
eral, we can use the same approach for open ended ques-
tions as long as we can evaluate the expected information
gain from these questions.

Given the answer, we evaluate the change it has on the
distribution over the particular grounding variable. For most
spatial relations, we define a range over which a particular
question can be applied in a meaningful manner. For exam-
ple, we only consider regions within a 20 m distance when
evaluating a question. As such, we limit the entropy calcula-
tion to the regions for which the question is expected to be
meaningful.

p(�f = Ri|⇤, a, za) =
p(za|a,Ri)⇥ p(�f = Ri|⇤)
P

Ri

p(za|a)⇥ p(�f = Ri|⇤)
(9)

The expected value of the next state is based on the transition
function from the current state to the next state.

E(V (St+1)) =

X

za
j

F(I(a|zaj ))⇥ p(zaj |St, a) (10)

For the action AF , we assume that there is no change in
the entropy as we are not modeling the expected change in
the language groundings based on spatial exploration. Thus,
the Q value for AF is only the cost of the action.

Transition Likelihood
The transition function is the likelihood of receiving each
answer given the state and the question asking action. We
arrive at this value by marginalizing out the grounding vari-
able. This results in a higher expected likelihood of receiv-
ing a particular answer if there were spatial regions that had
a high likelihood of being the grounding and also fit the spa-
tial relation in the question.

p(zaj |St, a) =
X

Ri

p(zaj |St, Ri, a)⇥ p(Ri|⇤) (11)

Cost Function Definition
We define a hand-crafted cost function that encodes the de-
sirability of asking a given question at each timestep. The

possible answers for question a
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Choosing Question Structure

• Consider binary (yes/no) questions:

• Questions follow structured template:

• Two types of landmarks
- Robot:    “Is the kitchen in front of me?”
- An environment region:    “Is the kitchen across from the cafeteria?”

• Context: Choose landmark (and relation) that provides most information

• Assume robot’s frame-of-reference

<figure> <relation> <landmark>

“Is the kitchen in front of me?”

zaj 2 {yes, no}
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• Gave narrated guided-tour of the MIT Stata Center

• Robotic wheelchair equipped with
- Two LIDARs
- Three monocular cameras

• User provided 9 descriptions
- 6 egocentric
- 3 allocentric

• Robot asked 5 questions

Experiment

Speaker

LIDAR

LIDAR

Cameras

Microphone
(not shown)
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Results

cost of each question asking action is a function of several
relevant features. For this implementation, we have used the
following:

i Time since last question asked
ii Time since last question asked about grounding

iii Number of questions asked about entity
In our current implementation, we use a linear combina-

tion of these features to arrive at a reasonable cost function.
The weights have been set such that they result in negligible
burden on the user and do not impeded the conducting of
the tour. Ideally, these weights would be learned from user
preferences based upon human trials.

For the person following action AF , we assign a fixed
cost such that only a reasonably high expected information
gain will result in a question being asked. The value was set
empirically to achieve a reasonable level of questions.

Integrating Answers to the Representation
We couple each of the user’s answers with the original ques-
tion to arrive at an equivalent natural language description of
the environment. However, since the question is tied to a par-
ticular spatial entity, we treat the question and answer pair
together with the original description, according to Equa-
tion 9. As such, each new answer modifies the distribution
over that grounding variable, and any informative answer
improves the robot’s representation.

When new valid grounding regions are added, we reeval-
uate both the original description as well as the likelihood of
generating the received answer for each new region, and up-
date the language grounding. Figure 2 shows the grounding
likelihoods before and after asking three questions.

Results
We evaluate our algorithm on an indoor dataset in which a
human gives a robotic wheelchair (Fig. 1) (Hemachandra et
al. 2011) a narrated tour of MIT’s Stata Center building. For
this experiment, we inject three natural language descrip-
tions at locations where the descriptions are ambiguous. We
ran the algorithm on the dataset and a human provided an-
swers to the questions. We outline the resulting semantic
map and compare it with a semantic map that does not in-
tegrate language, and one that integrates language but does
not ask questions of the guide.

Overall, the dataset contains six descriptions of the robot’s
location that the algorithm grounds to the current region, and
three allocentric expressions that describe regions with rela-
tion to either landmarks in the environment (e.g., “the eleva-
tor lobby is down the hall”) or to the robot (e.g., “the lounge
is behind you”). The robot asked a total of five questions of
the guide, four of which were in relation to itself, and one in
relation to a landmark in the environment. In this experiment
we ran the algorithm with one particle.

As can be seen in Table 1, the semantic map that results
from integrating the answers received from the guide has
much less uncertainty (and lower entropy) over the figure
groundings. For all three descriptions, the robot was able to
significantly reduce the entropy over the figure groundings
by asking one to three questions each.

The lounge is down 
the hallway

0.76 (0.12)

Q1

Q2

Q3

0.00 (0.11)

0.00 (0.09)0.00 (0.24)

0.00 (0.15)

0.22 (0.09)

0.02 (0.11)

Conference
 Room

Elevator lobby
Office
Lab

Conference Room
Kitchen
Lounge

Hallway

Conference
Room

Figure 2: Language groundings for the expression “The
lounge is down the hall”. Grounding likelihood with ques-
tions is in black and without questions in red. Questions
asked (and answers), Q1: “Is the lounge near the conference
room?” (“Yes”); Q2: “Is the lounge on my right?” (“No”);
Q3: “Is the lounge behind me?” (“Yes”). The ground truth
region boundary is in red. Pie charts centered in each region
denote its type while path color denotes different regions.

Figure 3: Language groundings for the expression “The el-
evator lobby is down the hall”. Grounding likelihood with
questions is shown in black and without questions in red.
Question asked (and answer), Q1: “Is the elevator lobby near
me?” (“No”). The ground truth region is outlined in red.

Conclusion
We outlined a framework that enables robots to engage a
human in dialog in order to improve its learned semantic
map during a guided tour. We provided an initial demonstra-
tion of its ability to successfully reduce uncertainty over the
groundings for natural language descriptions.

Q1: “Is the lounge near 
the conference room?”

A1: “Yes”

Q2: “Is the lounge 
on my right?”

A2: “No”

Q3: “Is the lounge 
behind me?”

A3: “Yes”

Grounding likelihood with (without) dialogue
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cost of each question asking action is a function of several
relevant features. For this implementation, we have used the
following:

i Time since last question asked
ii Time since last question asked about grounding

iii Number of questions asked about entity
In our current implementation, we use a linear combina-

tion of these features to arrive at a reasonable cost function.
The weights have been set such that they result in negligible
burden on the user and do not impeded the conducting of
the tour. Ideally, these weights would be learned from user
preferences based upon human trials.

For the person following action AF , we assign a fixed
cost such that only a reasonably high expected information
gain will result in a question being asked. The value was set
empirically to achieve a reasonable level of questions.

Integrating Answers to the Representation
We couple each of the user’s answers with the original ques-
tion to arrive at an equivalent natural language description of
the environment. However, since the question is tied to a par-
ticular spatial entity, we treat the question and answer pair
together with the original description, according to Equa-
tion 9. As such, each new answer modifies the distribution
over that grounding variable, and any informative answer
improves the robot’s representation.

When new valid grounding regions are added, we reeval-
uate both the original description as well as the likelihood of
generating the received answer for each new region, and up-
date the language grounding. Figure 2 shows the grounding
likelihoods before and after asking three questions.

Results
We evaluate our algorithm on an indoor dataset in which a
human gives a robotic wheelchair (Fig. 1) (Hemachandra et
al. 2011) a narrated tour of MIT’s Stata Center building. For
this experiment, we inject three natural language descrip-
tions at locations where the descriptions are ambiguous. We
ran the algorithm on the dataset and a human provided an-
swers to the questions. We outline the resulting semantic
map and compare it with a semantic map that does not in-
tegrate language, and one that integrates language but does
not ask questions of the guide.

Overall, the dataset contains six descriptions of the robot’s
location that the algorithm grounds to the current region, and
three allocentric expressions that describe regions with rela-
tion to either landmarks in the environment (e.g., “the eleva-
tor lobby is down the hall”) or to the robot (e.g., “the lounge
is behind you”). The robot asked a total of five questions of
the guide, four of which were in relation to itself, and one in
relation to a landmark in the environment. In this experiment
we ran the algorithm with one particle.

As can be seen in Table 1, the semantic map that results
from integrating the answers received from the guide has
much less uncertainty (and lower entropy) over the figure
groundings. For all three descriptions, the robot was able to
significantly reduce the entropy over the figure groundings
by asking one to three questions each.

Figure 2: Language groundings for the expression “The
lounge is down the hall”. Grounding likelihood with ques-
tions is in black and without questions in red. Questions
asked (and answers), Q1: “Is the lounge near the conference
room?” (“Yes”); Q2: “Is the lounge on my right?” (“No”);
Q3: “Is the lounge behind me?” (“Yes”). The ground truth
region boundary is in red. Pie charts centered in each region
denote its type while path color denotes different regions.

The elevator lobby  
is down the hallway

0.90 (0.17)

Q1

0.00 (0.41)

0.10 (0.21)

Lab0.00 (0.20)

Figure 3: Language groundings for the expression “The el-
evator lobby is down the hall”. Grounding likelihood with
questions is shown in black and without questions in red.
Question asked (and answer), Q1: “Is the elevator lobby near
me?” (“No”). The ground truth region is outlined in red.

Conclusion
We outlined a framework that enables robots to engage a
human in dialog in order to improve its learned semantic
map during a guided tour. We provided an initial demonstra-
tion of its ability to successfully reduce uncertainty over the
groundings for natural language descriptions.

41

Results

Q1: “Is the elevator lobby near me?”

A1: “No”

Grounding likelihood with (without) dialogue
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Results
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Stata Center Third Floor Semantic Graph
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Multi-Building Semantic Graph
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I. Introduction

II. Learning Semantic Maps from Natural Language Dialogue

III. Following Directions Without in Unknown Environments

IV. Future Directions & Conclusions
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Language Understanding Without a Map

World Model

Objects Map

Natural Language 
Understanding

Go to the hydrant 
behind the cone

Assumed known

arg max
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[ISER 2014]

Language Conveys Two Types of Information

Go to the hydrant behind the cone

Explicit: Task
“Go to the hydrant”

Implicit:
Description of the world
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[ISER 2014]

Joint Map & Behavior Inference2 F. Duvallet et al.

“go to the hydrant behind the cone”

cone

�✓

Utterance:

(a) First, we receive a verbal instruction
from the operator.

9 o
cone

2 O

9 o
hydrant

2 O

9 r
back

(o
cone

, o
hydrant

) 2 R

annotation

@I hydrant

samples

(b) Next, we learn the map distribution
from the utterance and prior observations.

action

@I

(c) We then take an action (green), using
the map and behavior distributions.

actual hydrant pose

@R

(d) This process repeats as the robot ac-
quires new observations, refining its belief.

Fig. 1. Visualization of one run for the command “go to the hydrant behind the cone,”
showing the evolution of our beliefs (the possible locations of the hydrant) over time.

Oftentimes, the command itself provides information about the environment
that can be used to hypothesize suitable world models, which can then be used
to generate the correct robot actions. For example, suppose a first responder
instructs a robot to “navigate to the car behind the building,” where the car
and building are outside the robot’s field-of-view and their locations are not
known. While the robot has no a priori information about the environment,
the instruction conveys the knowledge that there is likely one or more buildings
and cars in the environment, with at least one car being “behind” one of the
buildings. The robot should be able to reason about the car’s possible location,
and refine its prior as it carries out the command (e.g., update the car’s possible
location when it observes a building).

This paper proposes a method that enables robots to interpret and execute
natural language commands that refer to unknown regions and objects in the
robot’s environment. We exploit the information implicit in the user’s command
to learn an environment model from the natural language instruction, and then
solve for the policy that is consistent with the command under this world model.
The robot updates its internal representation of the world as it makes new metric
observations (such as the location of perceived landmarks) and updates its policy
appropriately. By reasoning and planning in the space of beliefs over object
locations and groundings, we are able to reason about elements that are not
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Policy learning Semantic Mapping
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Annotations
(objects, relations)
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[ISER 2014]

Extracting Facts About the World

p(S|⇤, z, u) ⇡ p(S|↵, z, u)
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Behavior Inference: Behaviors given Map Distribution
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Find Actions Consistent with Inferred Behavior

\

What is the next destination? Policy ⇡

Si Si

Action Set: One step destination
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Find Actions Consistent with Inferred Behavior
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Find Actions Consistent with Inferred Behavior

\
QMDP [Littman et al., 1995]
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Following Route Directions in Unknown Envs.
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I. Introduction

II. Learning Semantic Maps from Natural Language Dialogue

III. Following Directions Without in Unknown Environments

IV. Future Directions & Conclusions
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• Learn from additional semantic cues (e.g., objects, text)

• Learn from non-situated descriptions

• Information-gathering actions:
- Physical exploration
- Dialogue

Semantic Map Learning
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Future Work

• Extend dialogue beyond user-referenced locations

• Consider less-structured questions
- Open-ended answers
- Free-form questions

• Account for figures that refer to unknown regions

• Go beyond a hand-crafted measure of cost (burden)

• Reason over frame-of-reference

• Incorporate physical exploration

• Move towards fully non-situated dialogue
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Conclusions

• Natural language understanding for robots requires cognitive models

• Argued that language is an effective means of sharing our cognitive models

• Described an algorithm that learns semantic environment models from natural-
language dialogue

• Described an algorithm for joint map and behavior inference

• Outlined ongoing and future work

Questions?

mwalter@ttic.edu

mailto:mwalter@ttic.edu
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• Node      denotes a distinct (semantically meaningful) region

• Edges      represent connectivity
- Observed with robot’s sensors (e.g., scan-matching)
- Traversed (odometry)
- Inferred from description

• What defines a “region”?
- Local, spatial consistency
- Semantic attributes (e.g., room type)

Topological Map Representation

vi

ei

v1
v2

Spectral clustering of laser scans
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• Topological map:

• Metric map:

• Semantic map:

Semantic Graph

{Gt, Xt, Lt}

Gt = (Vt, Et)

Xt =
⇥
x1 x2 · · · xn

⇤>

Lt = {l1, l2, . . . , ln}

v1

v2

v3 v4

v5 v6
e21 e32

e52

e43

e54

e65
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• Topological map:

• Metric map:

• Semantic map:
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{Gt, Xt, Lt}

Gt = (Vt, Et)

Xt =
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x1 x2 · · · xn

⇤>
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• Topological map:

• Metric map:

• Semantic map:

Semantic Graph

{Gt, Xt, Lt}

Gt = (Vt, Et)

Xt =
⇥
x1 x2 · · · xn

⇤>

Lt = {l1, l2, . . . , ln}
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• Jointly reason over semantic hierarchy: region type and colloquial name

• Infer region type from sensor data
- Improves allocentric language grounding
- Improves mapping efficiency

Semantic Attributes via Scene Classification
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Proposal Distribution: Odometry Annotation
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Proposal Distribution: Metric Map-based Edges

Edges to current node

Assume edges are independent
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.

quires marginalizing over the space of labels:
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where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G

tj
t |lt, lj) =

(

✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.
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where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G
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t |lt, lj) =

(

✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.
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where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G
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t |lt, lj) =

(

✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.

7

dtj = |xt � xj |2



Matthew Walter70

Proposal Distribution: Metric Map-based Edges

two nodes associated with the additional edge.
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.

quires marginalizing over the space of labels:

ps(Gt|G�
t , z

t�1
, u

t
, �

t
) =

Y

j:etj /2E�

p(G

tj
t |G�

t , �t) (9a)

=

Y

j:etj /2E�

X

L�
t

p(G

tj
t |L�

t , G

�
t , �t)p(L

�
t |G�

t ) (9b)

⇡
Y

j:etj /2E�

X

l�t ,l�j

p(G

tj
t |l�t , l

�
j , G

�
t )p(l

�
t , l

�
j |G�

t ), (9c)

where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:
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✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.
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where we have omitted the metric, odometry, and language in-
puts for clarity. The first line follows from the assumption that
additional edges that express constraints to the current node
etj /2 E

� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
the likelihood of edges between two nodes as non-zero for the
same label:

p(G

tj
t |lt, lj) =
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✓lt if lt = lj

0 if lt 6= lj
(10)

where ✓lt denotes the label-dependent likelihood that edges ex-
ist between nodes with the same label. In practice, we assume a
uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,

4Throughout the paper, we only visualize the semantic distribution for
nodes whose distribution is not uniform.
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where µ is the the mean and � is the standard deviation, approx-
imated based upon a linearized model for the distance between
the normally distributed positions xi and xj , and the probability
is 0 for dij < 0.

The algorithm samples from the proposal distribution (6) to
identify candidate edges. Before adding these to the graph,
we use laser scans to build local maps around each node and
compare the maps associated with the two nodes using scan-
matching. This matching allows the method to reject most in-
valid edges, however it may still yield false positives for areas
with ambiguous local geometry. In order to reduce the effects
of this perceptual aliasing, we evaluate the likelihood of the
scan-matched estimates of the inter-region transformations un-
der our distribution over the metric map. The algorithm retains
edges according to their Mahalanobis distance and adds edges
deemed to be valid along with their estimated transformations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the
semantic map to influence the metric and topological maps.
This capability results from the use of the label distributions to
perform place recognition. The algorithm identifies loop clo-
sures by sampling from a proposal distribution that expresses
the semantic similarity between nodes. In similar fashion to
the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes
the addition of new edges in the graph based upon the esti-
mated distance between nodes. Candidate edges are (a) rejected
(black) or (b) accepted (red) based upon scan matching.
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additional edges that express constraints to the current node
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� are conditionally independent. The second line rep-
resents the marginalization over the space of labels, while the
last line results from the assumption that the semantic edge like-
lihoods depend only on the labels for the vertex pair. We model
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uniform saliency prior for each label. Equation (9c) then mea-
sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9a) to hypothe-
size new semantic map-based edges. As with distance-based
edges, we validate proposed edges by building local maps
for each region and performing scan-matching between these
maps. In practice, we additionally introduce a bias that penal-
izes matches between frequently occurring regions like hall-
ways. A few particles may still incorporate invalid edges into
the graph, but their likelihoods subsequently decrease with the
weighting step. Figure 54 shows several different edges sam-
pled from the proposal distribution at one stage of a tour. Here,
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Proposal Distribution: Graph Augmentation
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Two Forms of Natural Language Descriptions

Egocentric

“This is the kitchen”

Lobby!

Hallway!

?

Allocentric

“The kitchen is down the hall”

Lobby!

Hallway!

? ?
?

?
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Grounding Allocentric Language

“The kitchen is down the hall”

Lobby!

Hallway!

? ?
?

?

<figure> <relation> <landmark>

likelihood that language 
references region

likelihood that region    
is the landmark

likelihood of the relation

“hallway”. With egocentric descriptions, the landmark is
implicitly the robot’s current position.1

Algorithm 1: Semantic Mapping and Action Selection

Input: Pt�1 =
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P
(i)
t�1

o

, and (ut, zt, at, z
a
t ,�t), where
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(i)
t�1 =
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Output:
n

at+1, Pt =

n

P
(i)
t

oo

1) Update Particles with odometry and sensor data.

for i = 1 to n do
1) Employ proposal distribution to propagate the

graph sample based on ut, �t and at.
a) Segment regions
b) Sample region edges
c) Merge newly connected regions

2) Update the Gaussian distribution over the node
poses X

(i)
t conditioned on the topology.

3) Reevaluate language groundings and answer zat
to question at and update the semantic layer Lt.

4) Update particle weights.
end

2.) Normalize weights and resample if needed.
3.) Evaluate action costs and select minimum cost
action at.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to the
grounding based upon their semantic label likelihood. We
normalize these likelihoods to compute the landmark ground-
ing probability for each of these regions

p(�l = Rj) =
p(�l

Rj
= T)

P

Rj

p(�l
Rj

= T)
, (1)

where �l is the landmark region grounding and �l
Rj

denotes
the binary correspondence variable that specifies whether
region Rj is the landmark. For each potential landmark
region, the algorithm then calculates the likelihood that each
region in the map corresponds to the figure based on a model
for the spatial relation SR. We arrive at the overall figure
grounding likelihood by marginalizing over the landmarks

p(�f
Ri

= T) =
X

Rj

p(�f
Ri

= T|�l = Rj , SRk) p(�l = Rj),

(2)
where �f

Ri
is the correspondence variable for the figure. We

normalize these likelihoods for each potential figure region

p(�f = Ri) =
p(�f

Ri
= T)

P

Ri

p(�f
Ri

= T)
. (3)

1We make the assumption that the descriptions are provided with respect
to the robot’s reference frame and not the user’s.

This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches [3, 4], we commit to a descrip-
tion once the likelihood of its grounding exceeds a threshold.
We improve upon this in this paper by continuously re-
grounding the language when relevant regions of the map
change. These changes can be in the form of updates to the
metric position of the figure or landmark regions (e.g., due
to a loop closure), or the addition of new potential landmark
or figure regions to the map as they are visited.

IV. ALGORITHM

Algorithm 1 outlines the process by which the robot
updates its representation and chooses the optimal action.
At each time step, the method integrates new odometry
and sensor information to update the distribution over the
semantic graph. This includes reevaluating the language
descriptions and the guide’s answers to questions. Then, the
algorithm evaluates the cost of each valid dialog action, and
executes the one with the highest expected Q value. The
following elaborates on our action selection procedure.

V. ACTION SELECTION

In this section, we outline the action selection procedure
employed by the algorithm. We treat the guided tour as an
MDP, with associated costs for taking each action. These
actions include following the person, staying in place, and
asking a particular question. We define an additional set of
question asking actions dependent on the current number of
allocentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z

a
t }, where

P
(i)
t is particle i at time t, at is the action taken, and zat is

the resulting observation. For a single particle, we define the
Q value as

Q(St, at) =
X

St+1

�V (St+1)⇥ p(St+1|St, at)� C(at)

=

X

St+1

�E(V (St+1))� C(at),
(4)

where the value of St+1

V (St+1) = F(I(at)) (5)

is a function of the information gain, and the cost of question
asking action at

C(at) = F(f(at)) (6)

is a function of the feature set of each action. We use a
discounting factor � = 1.
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t conditioned on the topology.

3) Reevaluate language groundings and answer zat
to question at and update the semantic layer Lt.

4) Update particle weights.
end

2.) Normalize weights and resample if needed.
3.) Evaluate action costs and select minimum cost
action at.

In order to ground each expression, the algorithm first
identifies regions in the map that may correspond to the
grounding based upon their semantic label likelihood. We
normalize these likelihoods to compute the landmark ground-
ing probability for each of these regions

p(�l = Rj) =
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where �l is the landmark region grounding and �l
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denotes
the binary correspondence variable that specifies whether
region Rj is the landmark. For each potential landmark
region, the algorithm then calculates the likelihood that each
region in the map corresponds to the figure based on a model
for the spatial relation SR. We arrive at the overall figure
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1We make the assumption that the descriptions are provided with respect
to the robot’s reference frame and not the user’s.

This expresses the likelihood of the correspondence variable
being true for each figure region Rj in the factor graph in
the semantic layer. However, when there is uncertainty over
the landmark or figure grounding, the likelihood of the label
associated with the figure region can become diluted.

In our previous approaches [3, 4], we commit to a descrip-
tion once the likelihood of its grounding exceeds a threshold.
We improve upon this in this paper by continuously re-
grounding the language when relevant regions of the map
change. These changes can be in the form of updates to the
metric position of the figure or landmark regions (e.g., due
to a loop closure), or the addition of new potential landmark
or figure regions to the map as they are visited.

IV. ALGORITHM

Algorithm 1 outlines the process by which the robot
updates its representation and chooses the optimal action.
At each time step, the method integrates new odometry
and sensor information to update the distribution over the
semantic graph. This includes reevaluating the language
descriptions and the guide’s answers to questions. Then, the
algorithm evaluates the cost of each valid dialog action, and
executes the one with the highest expected Q value. The
following elaborates on our action selection procedure.

V. ACTION SELECTION

In this section, we outline the action selection procedure
employed by the algorithm. We treat the guided tour as an
MDP, with associated costs for taking each action. These
actions include following the person, staying in place, and
asking a particular question. We define an additional set of
question asking actions dependent on the current number of
allocentric descriptions provided by the guide. We introduce
a cost function for these question asking actions based upon
the expected information gain for each question as well as a
measure of social burden.

We define the state St+1 as a tuple of {P (i)
t , at, z
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is a function of the feature set of each action. We use a
discounting factor � = 1.
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Symbol Grounding Problem

The	  gym	  is	  down	  the	  corridor.	  
The	  workout	  center	  is	  behind	  you.	  
Down	  the	  hall,	  you’ll	  8ind	  the	  gym	  past	  the	  exit	  sign.	  
The	  8itness	  center	  is	  down	  the	  corridor	  to	  the	  left.	  
The	  Alumni	  gym	  is	  on	  the	  right,	  past	  the	  tall	  8iling	  
cabinet.	  
The	  weight	  room	  is	  through	  the	  double	  doors	  at	  the	  
end	  of	  the	  hall.	  
The	  Stata	  Center’s	  gym	  is	  behind	  you,	  just	  beyond	  the	  
doors	  to	  the	  elevator	  lobby.

Linguistic elements
“Grounding”

Correct referents in the 
robot’s world model

The gym is 
down the hall
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Grounding Natural Language Speech

Coupled Perception and Motion Planning for
Mobile Manipulation

Matthew Walter,⇤ Matthew Antone,† Yuan Wei,⇤ Seth Teller,⇤ Nicholas Roy⇤

⇤Computer Science and Artificial Intelligence Laboratory †BAE Systems
Massachusetts Institute of Technology Burlington, MA, USA

Cambridge, MA, USA matthew.antone@baesystems.com
{mwalter, weiy, teller, nickroy}@mit.edu

Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.

argmax

groundings
p (groundings|language) (1)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike

objects, actions, relations, places “The

“Down the hall”

(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
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Learning the Grounding Distributions

Spatial Features

(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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(a) Before Language (b) After Language

Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Abstract— The autonomous manipulation of a priori unknown

objects within unstructured environments poses interesting chal-

lenges to developers of robotic platforms intended to operate in

real-world settings. We consider the specific problem of a robotic

lift truck that is tasked with lifting and transporting pallets

on which lie various loads. With little prior knowledge of the

pallet’s pose, or of the uncertainty in vehicle motion, we utilize a

coupled perception and planning strategy that explicitly accounts

for target estimation in choosing motion paths. We present a

LIDAR-based acquisition algorithm that incorporates a soft prior

on target location into an initial estimate for a pallet’s pose as

well as that of the pallet’s insert points. This estimate is used by

an RRT-based planner to modulate the sampling in a manner

that efficiently explores the state space to yield trajectories that

improve target estimation accuracy.

argmax

groundings
p (groundings|language) (1)

I. INTRODUCTION

As mobile robots operate in increasingly complex, unstruc-
tured and dynamic environments, the robots are increasingly
expected to interact with and manipulate the environment.
Although mobile manipulation has seen considerable growth
recently,1 a number of open research challenges remain. Most
mobile manipulators make strong assumptions about their
knowledge of the state space, specifically that the vehicle
has access to at least a low-resolution prior model of the
environment, and knows its own position in that model.
Secondly, most mobile manipulators make strong assumptions
about their knowledge of the geometry of the object to be
manipulated. Many grasp planning algorithms rely on models
of force closure that require a priori knowledge of the com-
plete geometry to generate manipulation strategies [?, ?]. A
consequence of both of these assumptions (perfect knowledge
of the environment, perfect knowledge of the object) is that
few mobile manipulation planners incorporate the inference
algorithms and sensing actions necessary to allow the manip-
ulator to acquire environmental models and the geometry of
unknown objects.

In many real-world problems, however, such geometric
inference and planned sensing is essential. In this paper,

1An exhaustive list would be extremely long, but some recent work includes
[?, ?, ?, ?, ?]

Figure 1. The prototype forklift that is the target platform for the coupled
pallet estimation and manipulation planning research presented in the paper.
The vehicle operates autonomously based upon high-level commands provided
by a human supervisor.

we consider the problem of a robotic forklift that operates
in a warehouse or military logistics bay. The forklift must
find, lift and transport cargo pallets from location to location
in an unstructured and dynamic environment. Given perfect
information, the pallet manipulation problem is extremely
easy. With a known location of the tine insertion slots on
the pallet, a basic manipulation plan is to align the forklift
tines with the pallet slots, drive the forklift forward until
the tines are inside the slot, and then raise the tines. The
challenge in forklift manipulation is exactly one of managing
the uncertainty of the pallet model and the tine insertion slot
locations.

For example, while certain features of cargo pallets are
constant across the pallets (roughly rectilinear, generally flat,
usually two insertion points designed for forklift tines), the
specific dense geometry of the pallets is highly variable. The
forklift must use onboard sensing to recover the geometry of
the pallet in order to correctly insert the lifting tines; unlike

objects, actions, relations, places “Go to the gym down the hall”

Learn potentials 
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“visit” “the gym” “down”
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
on ground truth map
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Fig. 9. Language loop closures: (a) Before language edge (b) After language
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Fig. 8. Maximum likelihood map (without language) and graph overlayed
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Rao-Blackwellized Particle Filter

Input:                                             where

for each particle i

1) Proposal: Modify the topology based on metric and semantic maps

2) Update: Perform Bayesian update of Gaussian

3) Update: Update Dirichlet over labels based on language

4) Reweight: Update weights based on metric observations

Return:                                         where
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Updating Particle Weights with Sensor Data
each particle, we update their weights. The update follows from
the ratio between the target distribution over the graph and the
proposal distribution, and can be shown to be
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where w

(i)
t�1 is the weight of particle i at time t�1 and w̃

(i)
t de-

notes the unnormalized weight at time t. We evaluate the mea-
surement likelihood (e.g., of LIDAR) by marginalizing over the
node poses
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which allows us to utilize the conditional measurement model.
In the experiments presented next, we model the measurement
as an observed transformation between poses, which we com-
pute via scan matching. We model this distribution (first term
in the integral) as Gaussian, which we have empirically found
to be accurate.

After calculating and normalizing the new importance
weights, we periodically perform resampling based upon the
effective number of particles, as proposed by Liu [27],

Neff =

1

n
P

i=0
w

2
i

. (23)

When the effective number of particles Neff falls below a
threshold N/2, where N is the number of particles, we resam-
ple using the algorithm described by Doucet et al. [7].

5 Results

We evaluate our algorithm through six experiments that involve
a human giving a robotic wheelchair (Fig. 1) [15] a narrated
tour of several buildings and courtyards on the MIT campus.
The robot was equipped with forward- and rearward-facing LI-
DARs, wheel encoders, and an IMU. Speech was recorded us-
ing a wireless microphone worn by the user. In the first two
experiments, the robot was manually driven while the user in-
terjected textual descriptions of the environment. In the third
experiment, the robot autonomously followed the human who
provided spoken descriptions. Speech recognition was per-
formed manually.

5.1 Indoor/Outdoor: Small Tour

The first experiment (Fig. 9) took place on the first floor of
the Stata Center at MIT, which includes lecture halls, eleva-
tor lobbies, a gym, and a cafeteria, as well as the adjacent
courtyard. Starting at one of the elevator lobbies, the user pro-
ceeded to visit the gym, exited the building and, after navigat-
ing the courtyard, returned to the gym and finished at the ele-
vator lobby. The user provided textual descriptions of the en-
vironment, twice each for the elevator lobby and gym regions.
We compare the performance of our method based upon differ-
ent forms of language input against a baseline algorithm that
emulates the current state-of-the-art in language-augmented se-
mantic mapping. In all cases, the algorithms were run with
10 particles to approximate the distribution over the space of
topologies. The final topology contained 137 nodes.

5.1.1 No Language

We consider a baseline approach that directly labels nodes
based upon egocentric language, but does not propose edges
based upon label distributions. It does, however, propose loop
closures based upon the distribution over the metric map (Sec-
tion 4.1.1). The baseline emulates typical solutions by aug-
menting a state-of-the-art iSAM metric map with a semantic
layer without allowing semantic information to influence lower
layers.

Figure 9(a) presents the resulting metric, topological, and se-
mantic maps that constitute the semantic graph for the highest-
weighted particle. The accumulation of odometry drift results
in significant errors in the estimate for the robot’s pose when re-
visiting the gym and elevator lobby. Without reasoning over the
semantic map, the algorithm is unable to detect loop closures.
This results in significant errors in the metric map as well as the
semantic map, which hallucinates two separate elevator lobbies
(purple) and gyms (orange).

5.1.2 Egocentric Language

We evaluate our algorithm when the user provides descriptions
in the form of egocentric language, in which case there is no
ambiguity in the landmark and figure that are implicitly the
robot’s current location.

Figure 9(b) presents the semantic graph corresponding to the
highest-weighted particle that our algorithm estimates. By con-
sidering the semantic map when proposing loop closures, the
algorithm recognizes that the second region that the user la-
beled as the gym is the same place that was labeled earlier
in the tour. At the time of receiving the second label, drift
in the odometry led to significant error in the gym’s location
much like the baseline result (Fig. 9(a)). The algorithm imme-
diately corrects this error in the semantic graph by using the la-
bel distribution to propose loop closures at the gym and elevator
lobby, which would otherwise require searching a combinato-
rially large space. The resulting maximum likelihood map is
topologically and semantically consistent throughout and met-
rically consistent for most of the environment. The exception is
the courtyard, where only odometry measurements were avail-
able, causing drift in the pose estimate. Attesting to the model’s
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each particle, we update their weights. The update follows from
the ratio between the target distribution over the graph and the
proposal distribution, and can be shown to be
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surement likelihood (e.g., of LIDAR) by marginalizing over the
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which allows us to utilize the conditional measurement model.
In the experiments presented next, we model the measurement
as an observed transformation between poses, which we com-
pute via scan matching. We model this distribution (first term
in the integral) as Gaussian, which we have empirically found
to be accurate.

After calculating and normalizing the new importance
weights, we periodically perform resampling based upon the
effective number of particles, as proposed by Liu [27],
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When the effective number of particles Neff falls below a
threshold N/2, where N is the number of particles, we resam-
ple using the algorithm described by Doucet et al. [7].
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DARs, wheel encoders, and an IMU. Speech was recorded us-
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experiment, the robot autonomously followed the human who
provided spoken descriptions. Speech recognition was per-
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ing the courtyard, returned to the gym and finished at the ele-
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vironment, twice each for the elevator lobby and gym regions.
We compare the performance of our method based upon differ-
ent forms of language input against a baseline algorithm that
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mantic mapping. In all cases, the algorithms were run with
10 particles to approximate the distribution over the space of
topologies. The final topology contained 137 nodes.

5.1.1 No Language

We consider a baseline approach that directly labels nodes
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based upon label distributions. It does, however, propose loop
closures based upon the distribution over the metric map (Sec-
tion 4.1.1). The baseline emulates typical solutions by aug-
menting a state-of-the-art iSAM metric map with a semantic
layer without allowing semantic information to influence lower
layers.

Figure 9(a) presents the resulting metric, topological, and se-
mantic maps that constitute the semantic graph for the highest-
weighted particle. The accumulation of odometry drift results
in significant errors in the estimate for the robot’s pose when re-
visiting the gym and elevator lobby. Without reasoning over the
semantic map, the algorithm is unable to detect loop closures.
This results in significant errors in the metric map as well as the
semantic map, which hallucinates two separate elevator lobbies
(purple) and gyms (orange).

5.1.2 Egocentric Language

We evaluate our algorithm when the user provides descriptions
in the form of egocentric language, in which case there is no
ambiguity in the landmark and figure that are implicitly the
robot’s current location.

Figure 9(b) presents the semantic graph corresponding to the
highest-weighted particle that our algorithm estimates. By con-
sidering the semantic map when proposing loop closures, the
algorithm recognizes that the second region that the user la-
beled as the gym is the same place that was labeled earlier
in the tour. At the time of receiving the second label, drift
in the odometry led to significant error in the gym’s location
much like the baseline result (Fig. 9(a)). The algorithm imme-
diately corrects this error in the semantic graph by using the la-
bel distribution to propose loop closures at the gym and elevator
lobby, which would otherwise require searching a combinato-
rially large space. The resulting maximum likelihood map is
topologically and semantically consistent throughout and met-
rically consistent for most of the environment. The exception is
the courtyard, where only odometry measurements were avail-
able, causing drift in the pose estimate. Attesting to the model’s
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which allows us to utilize the conditional measurement model.
In the experiments presented next, we model the measurement
as an observed transformation between poses, which we com-
pute via scan matching. We model this distribution (first term
in the integral) as Gaussian, which we have empirically found
to be accurate.
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weights, we periodically perform resampling based upon the
effective number of particles, as proposed by Liu [27],
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When the effective number of particles Neff falls below a
threshold N/2, where N is the number of particles, we resam-
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DARs, wheel encoders, and an IMU. Speech was recorded us-
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experiment, the robot autonomously followed the human who
provided spoken descriptions. Speech recognition was per-
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the Stata Center at MIT, which includes lecture halls, eleva-
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courtyard. Starting at one of the elevator lobbies, the user pro-
ceeded to visit the gym, exited the building and, after navigat-
ing the courtyard, returned to the gym and finished at the ele-
vator lobby. The user provided textual descriptions of the en-
vironment, twice each for the elevator lobby and gym regions.
We compare the performance of our method based upon differ-
ent forms of language input against a baseline algorithm that
emulates the current state-of-the-art in language-augmented se-
mantic mapping. In all cases, the algorithms were run with
10 particles to approximate the distribution over the space of
topologies. The final topology contained 137 nodes.

5.1.1 No Language

We consider a baseline approach that directly labels nodes
based upon egocentric language, but does not propose edges
based upon label distributions. It does, however, propose loop
closures based upon the distribution over the metric map (Sec-
tion 4.1.1). The baseline emulates typical solutions by aug-
menting a state-of-the-art iSAM metric map with a semantic
layer without allowing semantic information to influence lower
layers.

Figure 9(a) presents the resulting metric, topological, and se-
mantic maps that constitute the semantic graph for the highest-
weighted particle. The accumulation of odometry drift results
in significant errors in the estimate for the robot’s pose when re-
visiting the gym and elevator lobby. Without reasoning over the
semantic map, the algorithm is unable to detect loop closures.
This results in significant errors in the metric map as well as the
semantic map, which hallucinates two separate elevator lobbies
(purple) and gyms (orange).

5.1.2 Egocentric Language

We evaluate our algorithm when the user provides descriptions
in the form of egocentric language, in which case there is no
ambiguity in the landmark and figure that are implicitly the
robot’s current location.

Figure 9(b) presents the semantic graph corresponding to the
highest-weighted particle that our algorithm estimates. By con-
sidering the semantic map when proposing loop closures, the
algorithm recognizes that the second region that the user la-
beled as the gym is the same place that was labeled earlier
in the tour. At the time of receiving the second label, drift
in the odometry led to significant error in the gym’s location
much like the baseline result (Fig. 9(a)). The algorithm imme-
diately corrects this error in the semantic graph by using the la-
bel distribution to propose loop closures at the gym and elevator
lobby, which would otherwise require searching a combinato-
rially large space. The resulting maximum likelihood map is
topologically and semantically consistent throughout and met-
rically consistent for most of the environment. The exception is
the courtyard, where only odometry measurements were avail-
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Narrated-tour Results

20 m
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Narrated-tour Results: Baseline
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Narrated-tour Results: Semantic Graph

20 m

Loop 
closures

Ground-truth topology:
Receives 93.5% probability mass

Consistent w/ top 5 particles
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Topological Accuracy

Environment Accuracy

Stata Floor 3 97.2%

Stata Floor 4 96.3%

Multi-building 96.2%
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Region Type Stata Floor 3 Multi-building

Conference room 80% 81.7%

Elevator lobby 59.7% 72.8%

Hallway 49.4% 55.7%

Lab 52.8% 30.1%

Lounge 42.9% 39.4%

Office 62.5% 76.1%

Jaccard similarity
|VRi \ VRtruth |
|VRi [ VRtruth |

Cluttered regions prone to over-segmentation

Region Segmentation Accuracy
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Region Semantic Accuracy

Region Type Stata Floor 3 Multi-building

Conference room 48.5% 58.7%

Elevator lobby 64.1% 46.4%

Hallway 44.4% 58%

Lab 14.2% 30.6%

Lounge 62% 40.5%

Office 98.6% 60.2%

The lounge is 
down the hall
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Annotation Inference
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[1] Howard et al. 2014
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Map Inference

LIDAR

Semantic
Mapping

distribution
over maps
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Behavior Inference: Behaviors given Map Distribution
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