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Canonical Gaussian Parameterization for SLAM
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Information matrix is “relatively” sparse

II. BACKGROUND
Expanding the quadratic in the exponential of the Gaus-

sian random variable ξt ∼ N
(
µt,Σt

)
yields the canonical

parameterization ξt ∼ N−1
(
ηt,Λt

)
where ηt and Λt are the

information vector and information matrix, respectively [11].
Equation (1) shows how the two forms are mathematically
related while Table I expresses the dual relationship they have
with respect to marginalization and conditioning. For a general
discussion of the mechanics and properties of the ensuing
information filter the reader is referred to [4], [11].
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A. Controlling Feature-Based SLAM Sparsity
Most SLAM approaches are feature-based which assumes

that the robot can extract an abstract representation of features
in the environment from its sensor data and then use re-
observation of these features for localization [1]. In this ap-
proach a landmark map is explicitly built and maintained. The
process of concurrently performing localization and feature
map building are inherently coupled, therefore, the robot must
then represent a joint-distribution over landmarks and current
pose, i.e.,

p(ξt | zt,ut) = N
(
µt,Σt

)
= N−1

(
ηt,Λt

)
(2)

where ξt = [x"
t ,M"]" represents the current robot state

and landmark map respectively, zt are the measurements,
and ut the control inputs. In (2) we have explicitly modeled
this distribution as being jointly-Gaussian based upon additive
white noise models and first-order linearizations of our process
and observation models as described in [1], [4]. The key
behind scalable SLAM algorithms in the canonical-form is
based upon the insight that the information matrix Λt naturally
tends to exhibit strong and weak constraints as shown in Fig. 1.

What Thrun et al. [4] insightfully observed was that the
time-projection step is the cause for creating these weak
constraints, and furthermore that by bounding the number of
nonzero off-diagonal elements linking the robot to landmarks,
that they could eliminate the generation of many of these weak
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Fig. 1. A comparison of the structure of the covariance and information
matrices as is typically seen in feature-based SLAM implementations; darker
shades represent larger magnitudes. (left) The correlation matrix is dense and
requires quadratic storage. (right) The normalized information matrix exhibits
“natural” sparsity with a majority of the elements being orders of magnitude
smaller than the few dominant entries.

links and enforce exact sparsity in the information matrix.
Their concept was to partition the landmark map variable M
(i.e., M = {m+,m−}) into a set of active features m+ (i.e.,
those with a nonzero off-diagonal element linking them to the
robot xt) and a set of passive features m− (i.e., those with no
link to xt). They showed that by enforcing an upper bound
on the number of active features m+, that they could control
the resulting fill-in of the information matrix.
A simple explanation for the effectiveness of their strategy

comes from viewing motion prediction as a two-step process
of state augmentation of xt+1 followed by marginalization
over xt. Referring to Fig. 2(a) we see that filtering naturally
tends to fill-in the information matrix by creating new links
between all active features through elimination of xt (see
Table I for details of marginalization in the information form)
while passive features remain unaffected; for a more in depth
discussion of this phenomenon the reader is referred to [5],
[12]. Insightfully, as Fig. 2(b) shows, we can control the
active feature fill-in of the information matrix by bounding the
number of links connected to xt before marginalization occurs.
This key insight motivates the concept behind sparsification
which is the process of how we remove these links to satisfy
our active feature bound.
Before moving on to discuss how SEIFs actually enforce

the upper bound on the number of active features, it will
prove useful to first elucidate the conditional independence
relationship implied by active and passive features.

B. Implied Conditional Independence
A very useful property of the canonical-form is that the in-

formation matrix has the direct interpretation as a non-directed
Bayes Net [13] where: random variables are nodes, non-
zero off-diagonal elements are edges/constraints, and zero-
valued off-diagonal elements are missing edges implying avail-
able conditional independencies [8]. Applying this property
to SEIF’s partitioning of landmarks into active and passive
features, we see that Fig. 3 correctly illustrates the resulting
block information matrix and non-directed Bayes net for the
SEIF SLAM posterior over robot and features. In particular,
Fig. 3 clearly shows that there is a missing edge between the
robot xt and the passive features m− implying that the two
are conditionally independent given the active features m+.
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links and enforce exact sparsity in the information matrix.
Their concept was to partition the landmark map variable M
(i.e., M = {m+,m−}) into a set of active features m+ (i.e.,
those with a nonzero off-diagonal element linking them to the
robot xt) and a set of passive features m− (i.e., those with no
link to xt). They showed that by enforcing an upper bound
on the number of active features m+, that they could control
the resulting fill-in of the information matrix.
A simple explanation for the effectiveness of their strategy

comes from viewing motion prediction as a two-step process
of state augmentation of xt+1 followed by marginalization
over xt. Referring to Fig. 2(a) we see that filtering naturally
tends to fill-in the information matrix by creating new links
between all active features through elimination of xt (see
Table I for details of marginalization in the information form)
while passive features remain unaffected; for a more in depth
discussion of this phenomenon the reader is referred to [5],
[12]. Insightfully, as Fig. 2(b) shows, we can control the
active feature fill-in of the information matrix by bounding the
number of links connected to xt before marginalization occurs.
This key insight motivates the concept behind sparsification
which is the process of how we remove these links to satisfy
our active feature bound.
Before moving on to discuss how SEIFs actually enforce

the upper bound on the number of active features, it will
prove useful to first elucidate the conditional independence
relationship implied by active and passive features.

B. Implied Conditional Independence
A very useful property of the canonical-form is that the in-

formation matrix has the direct interpretation as a non-directed
Bayes Net [13] where: random variables are nodes, non-
zero off-diagonal elements are edges/constraints, and zero-
valued off-diagonal elements are missing edges implying avail-
able conditional independencies [8]. Applying this property
to SEIF’s partitioning of landmarks into active and passive
features, we see that Fig. 3 correctly illustrates the resulting
block information matrix and non-directed Bayes net for the
SEIF SLAM posterior over robot and features. In particular,
Fig. 3 clearly shows that there is a missing edge between the
robot xt and the passive features m− implying that the two
are conditionally independent given the active features m+.

ξt ∼ N
(

µt, Σt

)

∼ N−1
(

ηt, Λt

)

Λt = Σ−1
t

ηt = Λtµt

p (α, β) = N
(

[

µα
µβ

]

,
[

Σαα Σαβ

Σβα Σββ

]

)

= N−1
(

[

ηα
ηβ

]

,
[

Λαα Λαβ

Λβα Λββ

]

)

p (α) =

∫

p (α, β) dβ

p (α|β) =
p (α, β)

p (β)

µ′ = µα

Σ′ = Σαα

η′ = ηα − ΛαβΛ−1

ββηβ

Λ′ = Λαα − ΛαβΛ−1

ββΛβα

µ′ = µα + ΣαβΣ−1

ββ (β − µβ)

Σ′ = Σαα − ΣαβΣ−1

ββΣβα

η′ = ηα − Λαββ

Λ′ = Λαα

1

small but not zero!
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Fig. 2. A graphical explanation of SEIF’s methodology for controlling
sparsity in the information matrix. (a) A sequence of illustrations depicting
the evolution of the Bayes Net and corresponding information matrix resulting
from time projection when viewed as a two-step process of state augmentation
followed by marginalization. Gray shades imply magnitude with white being
exactly zero. From left to right we have: (1) the robot xt connected to four
active features, m1:3 and m5; (2) state augmentation of the time-propagated
robot pose xt+1; (3) marginalized distribution where the old pose, xt, has
been eliminated. (b) A sequence of illustrations highlighting the concept
behind sparsification. If feature m1 can first be made passive by eliminating
its link to the old pose, xt, then marginalization over xt will not link it to
any of the other active features. This implies that we can control fill-in of the
information matrix by bounding the number of currently active features.
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Mathematically, we can also easily prove this rela-
tionship by noting that conditional independence for a
Gaussian distribution implies that the conditional posterior
p(xt,m− | m+, zt,ut) must have a block-diagonal covari-
ance matrix. In the information form, conditioning on the

active features m+ corresponds to simply extracting the
{xt,m−} sub-block from the information matrix Λt (see
Table I). Referring again to Fig. 3, we note that extracting this
sub-block results in a block-diagonal conditional information
matrix over xt and m− whose inverse is a block-diagonal
covariance matrix, thus, conditional independence is proved.
As we show next, we can exploit this conditional indepen-

dence relationship to derive a sparsification rule which allows
us to bound the number of active features.

III. SPARSIFICATION
In feature-based SLAM, landmarks become active through
observation causing them to become linked to the robot
through a shared off-diagonal constraint — this constraint
decays over time if the landmark is not re-observed, but
will never become exactly zero (i.e., passive) unless it is
“sparsified”. Sparsification refers to the operation where these
weak robot-landmark constraints are pruned and features are
made passive. It is a useful approximation which allows
sparsity to be enforced in the information matrix by bounding
the number of active features as described in §II-A.
A. SEIF Sparsification Rule
Sparsification is required whenever the active feature thresh-

old is exceeded through landmark observation. SEIF’s strategy
for sparsification is based upon partitioning the landmark map
M into a union of three disjoint setsM = {m0 ∪ m+ ∪ m−}
where in a slight abuse of our previous notation: m− are
the currently passive features which will remain passive after
sparsifying, m+ are the currently active features which will
remain active after sparsifying, andm0 are the currently active
features which will become passive after sparsifying.
We begin our derivation of the SEIF sparsification approxi-

mation by factorizing the SLAM posterior over the robot and
map as:

p
(
xt,m

0,m+,m−)

= p
(
xt | m0,m+,m−)

p
(
m0,m+,m−)

(3a)
= p

(
xt | m0,m+,m− = α

)
p
(
m0,m+,m−)

(3b)
where for notational convenience we have omitted explicitly
writing out the conditioning on zt and ut. The above factoriza-
tion uses the available conditional independence discussed in
§II-B between the robot and passive features to arbitrarily as-
sign a value to the passive features in the conditional (3b) (i.e.,
m− = α) without influencing the conditional robot posterior
(i.e. p

(
xt | m0,m+,m−)

≡ p
(
xt | m0,m+

)
). Note that in

the derivation presented in [4] α is simply set to zero while
we leave it a free parameter for the purposes of exposition.
The SEIF sparsification approximation is derived from (3b)

by imposing thatm0 be passive via dropping it from the robot
posterior as

p̃SEIFs
(
xt,m

0,m+,m−)

= p
(
xt | m+,m− = α

)
p
(
m0,m+,m−)

(4a)

=
pB

(
xt,m+ | m− = α

)

pC

(
m+ | m− = α

) pD

(
m0,m+,m−)

(4b)
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Fig. 2. A graphical explanation of SEIF’s methodology for controlling
sparsity in the information matrix. (a) A sequence of illustrations depicting
the evolution of the Bayes Net and corresponding information matrix resulting
from time projection when viewed as a two-step process of state augmentation
followed by marginalization. Gray shades imply magnitude with white being
exactly zero. From left to right we have: (1) the robot xt connected to four
active features, m1:3 and m5; (2) state augmentation of the time-propagated
robot pose xt+1; (3) marginalized distribution where the old pose, xt, has
been eliminated. (b) A sequence of illustrations highlighting the concept
behind sparsification. If feature m1 can first be made passive by eliminating
its link to the old pose, xt, then marginalization over xt will not link it to
any of the other active features. This implies that we can control fill-in of the
information matrix by bounding the number of currently active features.
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white squares corresponds to exactly zero block elements. (right) The SEIFs
information matrix expressed as a non-directed Bayes-Net. The missing edge
between xt and m− implies available conditional independence.

Mathematically, we can also easily prove this rela-
tionship by noting that conditional independence for a
Gaussian distribution implies that the conditional posterior
p(xt,m− | m+, zt,ut) must have a block-diagonal covari-
ance matrix. In the information form, conditioning on the

active features m+ corresponds to simply extracting the
{xt,m−} sub-block from the information matrix Λt (see
Table I). Referring again to Fig. 3, we note that extracting this
sub-block results in a block-diagonal conditional information
matrix over xt and m− whose inverse is a block-diagonal
covariance matrix, thus, conditional independence is proved.
As we show next, we can exploit this conditional indepen-

dence relationship to derive a sparsification rule which allows
us to bound the number of active features.

III. SPARSIFICATION
In feature-based SLAM, landmarks become active through
observation causing them to become linked to the robot
through a shared off-diagonal constraint — this constraint
decays over time if the landmark is not re-observed, but
will never become exactly zero (i.e., passive) unless it is
“sparsified”. Sparsification refers to the operation where these
weak robot-landmark constraints are pruned and features are
made passive. It is a useful approximation which allows
sparsity to be enforced in the information matrix by bounding
the number of active features as described in §II-A.
A. SEIF Sparsification Rule
Sparsification is required whenever the active feature thresh-

old is exceeded through landmark observation. SEIF’s strategy
for sparsification is based upon partitioning the landmark map
M into a union of three disjoint setsM = {m0 ∪ m+ ∪ m−}
where in a slight abuse of our previous notation: m− are
the currently passive features which will remain passive after
sparsifying, m+ are the currently active features which will
remain active after sparsifying, andm0 are the currently active
features which will become passive after sparsifying.
We begin our derivation of the SEIF sparsification approxi-

mation by factorizing the SLAM posterior over the robot and
map as:

p
(
xt,m

0,m+,m−)

= p
(
xt | m0,m+,m−)

p
(
m0,m+,m−)

(3a)
= p

(
xt | m0,m+,m− = α

)
p
(
m0,m+,m−)

(3b)
where for notational convenience we have omitted explicitly
writing out the conditioning on zt and ut. The above factoriza-
tion uses the available conditional independence discussed in
§II-B between the robot and passive features to arbitrarily as-
sign a value to the passive features in the conditional (3b) (i.e.,
m− = α) without influencing the conditional robot posterior
(i.e. p

(
xt | m0,m+,m−)

≡ p
(
xt | m0,m+

)
). Note that in

the derivation presented in [4] α is simply set to zero while
we leave it a free parameter for the purposes of exposition.
The SEIF sparsification approximation is derived from (3b)

by imposing thatm0 be passive via dropping it from the robot
posterior as

p̃SEIFs
(
xt,m

0,m+,m−)

= p
(
xt | m+,m− = α

)
p
(
m0,m+,m−)

(4a)

=
pB

(
xt,m+ | m− = α

)

pC

(
m+ | m− = α

) pD

(
m0,m+,m−)

(4b)
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• Reformulation of SEIFs that avoids approximation to 
enforce sparseness

• Key idea: periodically marginalize out the vehicle pose 
and “relocate” the vehicle into the map

• This step occurs at most at the same frequency as 
sparsification in SEIFs  

• Compute a slightly modified posterior, using all of the 
feature measurements, and nearly all of the odometry 
information 

• Prevents “fill-in” of the inverse covariance matrix for 
terms relating active and in-active features



Instead of breaking “weak” links, we control  how active 
links are formed to maintain sparsity
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1) Posterior Update: A Bayesian update is performed on

the joint posterior, p(ξt|z
t−1,ut) = N−1

(

ξt; ηt, Λt

)

based

upon the zα measurements:

p(ξt|z
t−1,ut)

zα={z2,z3,z5}
−−−−−−−−−→ p1

(

ξt|{z
t−1, zα},u

t
)

where p1

(

ξt|{z
t−1, zα},ut

)

= N−1
(

ξt; η̄, Λ̄
)

follows

from the standard update process for the information filter.

Note that we can perform this step in constant-time with, in

the nonlinear case, access to the mean estimate for the robot

as well as m2, m3, and m5. The information matrix, Λ̄t, is

modified as depicted in Figure 3 with the strengthening of the

constraints between the vehicle and the active features, m2

and m5, and, importantly, the creation of shared information

with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a

new constraint between the robot and a map element results

in a violation of, Γa, the bound on the number of active

features. The ESEIF sparsification routine then proceeds by

first marginalizing out the vehicle pose

p2

(

Mt|{z
t−1, zα},u

t
)

=

∫

xt

p1

(

ξt|{z
t−1, zα},u

t
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process

presented in Table I, the canonical parameterization of the

marginal is calculated as

p2

(

Mt|{z
t−1, zα}u

t
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = S"
m

0,m+,m−Λ̄tSm
0,m+,m− − S"

m
0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
xt

Λ̄tSm
0,m+,m−

(5a)

η̌t = S"
m

0,m+,m− η̄tS
"
m

0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
xt

η̄t

(5b)

where S
m

0,m+,m− and Sxt
are projection matrices mapping

the state space to the
{

m0,m+,m−
}

and xt subspaces,

respectively.

The inverse term involves the block diagonal of the infor-

mation matrix corresponding to the vehicle pose, ST
xt

Λ̄tSxt
,

which is of fixed size. Meanwhile, the ST
m

0,m+,m− Λ̄tSxt

matrix corresponds to the shared information between the

map and the vehicle pose and, taken as an outer product

over the vehicle sub-block, yields a matrix having nonzero

values only for the active feature indices. It is a result of this

term that marginalization establishes the connectivity among

the active features shown in the right-hand side of Figure 3.

The computational complexity of this matrix outer product is

limited by the Γa and Γp bounds and the order of the matrix

inversion is fixed. Thus, the marginalization can be performed

in constant-time.

We complete sparsification in ESEIFs by relocalizing the

vehicle within the map using the remaining zβ measurements.

The new pose estimate is, in general, given by a nonlinear

function of measurement data and corresponding feature esti-

mates of the form in (6a) where wt ∼ N
(

wt;0, R
)

is white

Gaussian noise. Equation (6b) corresponds to the linearization

about the mean of the marginal distribution, N−1
(

Mt; η̌t, Λ
)

in (5). The Jacobian, G, is sparse as the only non-zero

columns are those corresponding to the map elements used

for relocalization. Subsequently, only the mean estimates for

these features are necessary for the linearization.

xt = g
(

mβ , zβ

)

+ wt (6a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (6b)

Augmenting the map distribution (5) with the new pose

estimate yields a state which can be shown to have the

following canonical parameterization:

pESEIF(ξt|z
t,ut) = N−1

(

ξt; η̆t, Λ̆t

)

η̆t =

[

R−1
(

g (mβ , zβ) − Gµ̌t

)

η̌t − G"R−1
(

g (mβ, zβ) − Gµ̌t

)

]

(7a)

Λ̆t =

[

R−1 −R−1G
−G"R−1

(

Λ̌t + G"R−1G
)

]

(7b)

Due to the sparsity of G, most terms in −R−1G of (7b)

which link the robot to the map are zero, except for those

corresponding to the landmarks used for relocalization. The

new instantiation for the robot pose is then conditionally

independent of the rest of the map. As a result, ESEIF

sparsification leads to the joint posterior having the desired

factorization:

pESEIF(ξt|z
t,ut) = p(xt|mβ, zβ) p2(Mt|{z

t−1, zα},u
t)

As reflected by the resulting information matrix depicted in

Figure 3, the active features are then limited to those used for

relocalization.

In this manner, ESEIFs control the size of the active map

and, in turn, the sparseness of the information matrix. Like

the full EKF, the ESEIF performs exact inference on an

approximate model, albeit on a different posterior. When

we first marginalize out (kidnap) and subsequently relocalize

the robot, we are performing the dual of kidnapping and

relocation for the standard EKF. Essentially, we are ignoring

the odometry data which links the current and previous poses.

Hence, whereas the full EKF tracks the Gaussian approxi-

mation to the posterior, p(ξt|Z
t), ESEIFs and the relocated

EKF maintain the Gaussian model of an alternate distribution,

p(ξt|Z
t∗). In this way, the ESEIF employs exact inference

on an approximate model for which the information matrix is

exactly sparse.

D. Recovering the Mean

A drawback of representing the posterior in the canonical

form is that we no longer have access to the mean vector

or covariance matrix. When the system equations are nonlin-

ear, a subset of the mean is required to perform lineariza-

tions. Naively, we could recover the entire mean vector as

µt = Λ−1
t ηt, though this operation is cubic in the dimension

of the state and quickly becomes intractable. Instead, we can

pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)

2) Marginalize robot :     

1) Posterior Update: A Bayesian update is performed on

the joint posterior, p(ξt|z
t−1,ut) = N−1

(

ξt; ηt, Λt

)

based

upon the zα measurements:

p(ξt|z
t−1,ut)

zα={z2,z3,z5}
−−−−−−−−−→ p1

(

ξt|{z
t−1, zα},u

t
)

where p1

(

ξt|{z
t−1, zα},ut

)

= N−1
(

ξt; η̄, Λ̄
)

follows

from the standard update process for the information filter.

Note that we can perform this step in constant-time with, in

the nonlinear case, access to the mean estimate for the robot

as well as m2, m3, and m5. The information matrix, Λ̄t, is

modified as depicted in Figure 3 with the strengthening of the

constraints between the vehicle and the active features, m2

and m5, and, importantly, the creation of shared information

with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a

new constraint between the robot and a map element results

in a violation of, Γa, the bound on the number of active

features. The ESEIF sparsification routine then proceeds by

first marginalizing out the vehicle pose

p2

(

Mt|{z
t−1, zα},u

t
)

=

∫

xt

p1

(

ξt|{z
t−1, zα},u

t
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process

presented in Table I, the canonical parameterization of the

marginal is calculated as

p2

(

Mt|{z
t−1, zα}u

t
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = S"
m

0,m+,m−Λ̄tSm
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m
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·
(
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(5a)
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·
(
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xt
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)−1
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where S
m

0,m+,m− and Sxt
are projection matrices mapping

the state space to the
{

m0,m+,m−
}

and xt subspaces,

respectively.

The inverse term involves the block diagonal of the infor-

mation matrix corresponding to the vehicle pose, ST
xt

Λ̄tSxt
,

which is of fixed size. Meanwhile, the ST
m

0,m+,m− Λ̄tSxt

matrix corresponds to the shared information between the

map and the vehicle pose and, taken as an outer product

over the vehicle sub-block, yields a matrix having nonzero

values only for the active feature indices. It is a result of this

term that marginalization establishes the connectivity among

the active features shown in the right-hand side of Figure 3.

The computational complexity of this matrix outer product is

limited by the Γa and Γp bounds and the order of the matrix

inversion is fixed. Thus, the marginalization can be performed

in constant-time.

We complete sparsification in ESEIFs by relocalizing the

vehicle within the map using the remaining zβ measurements.

The new pose estimate is, in general, given by a nonlinear

function of measurement data and corresponding feature esti-

mates of the form in (6a) where wt ∼ N
(

wt;0, R
)

is white

Gaussian noise. Equation (6b) corresponds to the linearization

about the mean of the marginal distribution, N−1
(

Mt; η̌t, Λ
)

in (5). The Jacobian, G, is sparse as the only non-zero

columns are those corresponding to the map elements used

for relocalization. Subsequently, only the mean estimates for

these features are necessary for the linearization.

xt = g
(

mβ , zβ

)

+ wt (6a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (6b)

Augmenting the map distribution (5) with the new pose

estimate yields a state which can be shown to have the

following canonical parameterization:

pESEIF(ξt|z
t,ut) = N−1

(

ξt; η̆t, Λ̆t

)

η̆t =

[

R−1
(

g (mβ , zβ) − Gµ̌t

)

η̌t − G"R−1
(

g (mβ, zβ) − Gµ̌t

)

]

(7a)

Λ̆t =

[

R−1 −R−1G
−G"R−1

(

Λ̌t + G"R−1G
)

]

(7b)

Due to the sparsity of G, most terms in −R−1G of (7b)

which link the robot to the map are zero, except for those

corresponding to the landmarks used for relocalization. The

new instantiation for the robot pose is then conditionally

independent of the rest of the map. As a result, ESEIF

sparsification leads to the joint posterior having the desired

factorization:

pESEIF(ξt|z
t,ut) = p(xt|mβ, zβ) p2(Mt|{z

t−1, zα},u
t)

As reflected by the resulting information matrix depicted in

Figure 3, the active features are then limited to those used for

relocalization.

In this manner, ESEIFs control the size of the active map

and, in turn, the sparseness of the information matrix. Like

the full EKF, the ESEIF performs exact inference on an

approximate model, albeit on a different posterior. When

we first marginalize out (kidnap) and subsequently relocalize

the robot, we are performing the dual of kidnapping and

relocation for the standard EKF. Essentially, we are ignoring

the odometry data which links the current and previous poses.

Hence, whereas the full EKF tracks the Gaussian approxi-

mation to the posterior, p(ξt|Z
t), ESEIFs and the relocated

EKF maintain the Gaussian model of an alternate distribution,

p(ξt|Z
t∗). In this way, the ESEIF employs exact inference

on an approximate model for which the information matrix is

exactly sparse.

D. Recovering the Mean

A drawback of representing the posterior in the canonical

form is that we no longer have access to the mean vector

or covariance matrix. When the system equations are nonlin-

ear, a subset of the mean is required to perform lineariza-

tions. Naively, we could recover the entire mean vector as

µt = Λ−1
t ηt, though this operation is cubic in the dimension

of the state and quickly becomes intractable. Instead, we can

pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)
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1) Posterior Update: A Bayesian update is performed on

the joint posterior, p(ξt|z
t−1,ut) = N−1

(

ξt; ηt, Λt

)

based

upon the zα measurements:

p(ξt|z
t−1,ut)

zα={z2,z3,z5}
−−−−−−−−−→ p1

(

ξt|{z
t−1, zα},u

t
)

where p1

(

ξt|{z
t−1, zα},ut

)

= N−1
(

ξt; η̄, Λ̄
)

follows

from the standard update process for the information filter.

Note that we can perform this step in constant-time with, in

the nonlinear case, access to the mean estimate for the robot

as well as m2, m3, and m5. The information matrix, Λ̄t, is

modified as depicted in Figure 3 with the strengthening of the

constraints between the vehicle and the active features, m2

and m5, and, importantly, the creation of shared information

with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a

new constraint between the robot and a map element results

in a violation of, Γa, the bound on the number of active

features. The ESEIF sparsification routine then proceeds by

first marginalizing out the vehicle pose

p2

(

Mt|{z
t−1, zα},u

t
)

=

∫

xt

p1

(

ξt|{z
t−1, zα},u

t
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process

presented in Table I, the canonical parameterization of the

marginal is calculated as

p2

(

Mt|{z
t−1, zα}u

t
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = S"
m

0,m+,m−Λ̄tSm
0,m+,m− − S"

m
0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
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Λ̄tSm
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(5a)

η̌t = S"
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0,m+,m− η̄tS
"
m

0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
xt

η̄t

(5b)

where S
m

0,m+,m− and Sxt
are projection matrices mapping

the state space to the
{

m0,m+,m−
}

and xt subspaces,

respectively.

The inverse term involves the block diagonal of the infor-

mation matrix corresponding to the vehicle pose, ST
xt

Λ̄tSxt
,

which is of fixed size. Meanwhile, the ST
m

0,m+,m− Λ̄tSxt

matrix corresponds to the shared information between the

map and the vehicle pose and, taken as an outer product

over the vehicle sub-block, yields a matrix having nonzero

values only for the active feature indices. It is a result of this

term that marginalization establishes the connectivity among

the active features shown in the right-hand side of Figure 3.

The computational complexity of this matrix outer product is

limited by the Γa and Γp bounds and the order of the matrix

inversion is fixed. Thus, the marginalization can be performed

in constant-time.

We complete sparsification in ESEIFs by relocalizing the

vehicle within the map using the remaining zβ measurements.

The new pose estimate is, in general, given by a nonlinear

function of measurement data and corresponding feature esti-

mates of the form in (6a) where wt ∼ N
(

wt;0, R
)

is white

Gaussian noise. Equation (6b) corresponds to the linearization

about the mean of the marginal distribution, N−1
(

Mt; η̌t, Λ
)

in (5). The Jacobian, G, is sparse as the only non-zero

columns are those corresponding to the map elements used

for relocalization. Subsequently, only the mean estimates for

these features are necessary for the linearization.

xt = g
(

mβ , zβ

)

+ wt (6a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (6b)

Augmenting the map distribution (5) with the new pose

estimate yields a state which can be shown to have the

following canonical parameterization:

pESEIF(ξt|z
t,ut) = N−1

(

ξt; η̆t, Λ̆t

)

η̆t =

[

R−1
(

g (mβ , zβ) − Gµ̌t

)

η̌t − G"R−1
(

g (mβ, zβ) − Gµ̌t

)

]

(7a)

Λ̆t =

[

R−1 −R−1G
−G"R−1

(

Λ̌t + G"R−1G
)

]

(7b)

Due to the sparsity of G, most terms in −R−1G of (7b)

which link the robot to the map are zero, except for those

corresponding to the landmarks used for relocalization. The

new instantiation for the robot pose is then conditionally

independent of the rest of the map. As a result, ESEIF

sparsification leads to the joint posterior having the desired

factorization:

pESEIF(ξt|z
t,ut) = p(xt|mβ, zβ) p2(Mt|{z

t−1, zα},u
t)

As reflected by the resulting information matrix depicted in

Figure 3, the active features are then limited to those used for

relocalization.

In this manner, ESEIFs control the size of the active map

and, in turn, the sparseness of the information matrix. Like

the full EKF, the ESEIF performs exact inference on an

approximate model, albeit on a different posterior. When

we first marginalize out (kidnap) and subsequently relocalize

the robot, we are performing the dual of kidnapping and

relocation for the standard EKF. Essentially, we are ignoring

the odometry data which links the current and previous poses.

Hence, whereas the full EKF tracks the Gaussian approxi-

mation to the posterior, p(ξt|Z
t), ESEIFs and the relocated

EKF maintain the Gaussian model of an alternate distribution,

p(ξt|Z
t∗). In this way, the ESEIF employs exact inference

on an approximate model for which the information matrix is

exactly sparse.

D. Recovering the Mean

A drawback of representing the posterior in the canonical

form is that we no longer have access to the mean vector

or covariance matrix. When the system equations are nonlin-

ear, a subset of the mean is required to perform lineariza-

tions. Naively, we could recover the entire mean vector as

µt = Λ−1
t ηt, though this operation is cubic in the dimension

of the state and quickly becomes intractable. Instead, we can

pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)

1) Posterior Update: A Bayesian update is performed on

the joint posterior, p(ξt|z
t−1,ut) = N−1

(

ξt; ηt, Λt

)

based

upon the zα measurements:

p(ξt|z
t−1,ut)

zα={z2,z3,z5}
−−−−−−−−−→ p1

(

ξt|{z
t−1, zα},u

t
)

where p1

(

ξt|{z
t−1, zα},ut

)

= N−1
(

ξt; η̄, Λ̄
)

follows

from the standard update process for the information filter.

Note that we can perform this step in constant-time with, in

the nonlinear case, access to the mean estimate for the robot

as well as m2, m3, and m5. The information matrix, Λ̄t, is

modified as depicted in Figure 3 with the strengthening of the

constraints between the vehicle and the active features, m2

and m5, and, importantly, the creation of shared information

with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a

new constraint between the robot and a map element results

in a violation of, Γa, the bound on the number of active

features. The ESEIF sparsification routine then proceeds by

first marginalizing out the vehicle pose

p2

(

Mt|{z
t−1, zα},u

t
)

=

∫

xt

p1

(

ξt|{z
t−1, zα},u

t
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process

presented in Table I, the canonical parameterization of the

marginal is calculated as

p2

(

Mt|{z
t−1, zα}u

t
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = S"
m

0,m+,m−Λ̄tSm
0,m+,m− − S"

m
0,m+,m−Λ̄tSxt

·
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·
(

S"
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)−1
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η̄t

(5b)

where S
m

0,m+,m− and Sxt
are projection matrices mapping

the state space to the
{

m0,m+,m−
}

and xt subspaces,

respectively.

The inverse term involves the block diagonal of the infor-

mation matrix corresponding to the vehicle pose, ST
xt

Λ̄tSxt
,

which is of fixed size. Meanwhile, the ST
m

0,m+,m− Λ̄tSxt

matrix corresponds to the shared information between the

map and the vehicle pose and, taken as an outer product

over the vehicle sub-block, yields a matrix having nonzero

values only for the active feature indices. It is a result of this

term that marginalization establishes the connectivity among

the active features shown in the right-hand side of Figure 3.

The computational complexity of this matrix outer product is

limited by the Γa and Γp bounds and the order of the matrix

inversion is fixed. Thus, the marginalization can be performed

in constant-time.

We complete sparsification in ESEIFs by relocalizing the

vehicle within the map using the remaining zβ measurements.

The new pose estimate is, in general, given by a nonlinear

function of measurement data and corresponding feature esti-

mates of the form in (6a) where wt ∼ N
(

wt;0, R
)

is white

Gaussian noise. Equation (6b) corresponds to the linearization

about the mean of the marginal distribution, N−1
(

Mt; η̌t, Λ
)

in (5). The Jacobian, G, is sparse as the only non-zero

columns are those corresponding to the map elements used

for relocalization. Subsequently, only the mean estimates for

these features are necessary for the linearization.

xt = g
(

mβ , zβ

)

+ wt (6a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (6b)

Augmenting the map distribution (5) with the new pose

estimate yields a state which can be shown to have the

following canonical parameterization:

pESEIF(ξt|z
t,ut) = N−1

(

ξt; η̆t, Λ̆t

)

η̆t =

[

R−1
(

g (mβ , zβ) − Gµ̌t

)

η̌t − G"R−1
(

g (mβ, zβ) − Gµ̌t

)

]

(7a)

Λ̆t =

[

R−1 −R−1G
−G"R−1

(

Λ̌t + G"R−1G
)

]

(7b)

Due to the sparsity of G, most terms in −R−1G of (7b)

which link the robot to the map are zero, except for those

corresponding to the landmarks used for relocalization. The

new instantiation for the robot pose is then conditionally

independent of the rest of the map. As a result, ESEIF

sparsification leads to the joint posterior having the desired

factorization:

pESEIF(ξt|z
t,ut) = p(xt|mβ, zβ) p2(Mt|{z

t−1, zα},u
t)

As reflected by the resulting information matrix depicted in

Figure 3, the active features are then limited to those used for

relocalization.

In this manner, ESEIFs control the size of the active map

and, in turn, the sparseness of the information matrix. Like

the full EKF, the ESEIF performs exact inference on an

approximate model, albeit on a different posterior. When

we first marginalize out (kidnap) and subsequently relocalize

the robot, we are performing the dual of kidnapping and

relocation for the standard EKF. Essentially, we are ignoring

the odometry data which links the current and previous poses.

Hence, whereas the full EKF tracks the Gaussian approxi-

mation to the posterior, p(ξt|Z
t), ESEIFs and the relocated

EKF maintain the Gaussian model of an alternate distribution,

p(ξt|Z
t∗). In this way, the ESEIF employs exact inference

on an approximate model for which the information matrix is

exactly sparse.

D. Recovering the Mean

A drawback of representing the posterior in the canonical

form is that we no longer have access to the mean vector

or covariance matrix. When the system equations are nonlin-

ear, a subset of the mean is required to perform lineariza-

tions. Naively, we could recover the entire mean vector as

µt = Λ−1
t ηt, though this operation is cubic in the dimension

of the state and quickly becomes intractable. Instead, we can

pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)
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Example



(1) Update (2) marginalization and (3) relocalization are constant time (w/ estimate of mean*)

*Linearization requires mean robot and update feature states.  Efficiently accessible via multilevel relaxation.
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inverse of matrix O(robot pose)

1) Posterior Update: A Bayesian update is performed on

the joint posterior, p(ξt|z
t−1,ut) = N−1

(

ξt; ηt, Λt

)

based

upon the zα measurements:

p(ξt|z
t−1,ut)

zα={z2,z3,z5}
−−−−−−−−−→ p1

(

ξt|{z
t−1, zα},u

t
)

where p1

(

ξt|{z
t−1, zα},ut

)

= N−1
(

ξt; η̄, Λ̄
)

follows

from the standard update process for the information filter.

Note that we can perform this step in constant-time with, in

the nonlinear case, access to the mean estimate for the robot

as well as m2, m3, and m5. The information matrix, Λ̄t, is

modified as depicted in Figure 3 with the strengthening of the

constraints between the vehicle and the active features, m2

and m5, and, importantly, the creation of shared information

with the previously passive feature, m3.

2) Marginalization and Relocalization: The addition of a

new constraint between the robot and a map element results

in a violation of, Γa, the bound on the number of active

features. The ESEIF sparsification routine then proceeds by

first marginalizing out the vehicle pose

p2

(

Mt|{z
t−1, zα},u

t
)

=

∫

xt

p1

(

ξt|{z
t−1, zα},u

t
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process

presented in Table I, the canonical parameterization of the

marginal is calculated as

p2

(

Mt|{z
t−1, zα}u

t
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = S"
m

0,m+,m−Λ̄tSm
0,m+,m− − S"

m
0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
xt

Λ̄tSm
0,m+,m−

(5a)

η̌t = S"
m

0,m+,m− η̄tS
"
m

0,m+,m−Λ̄tSxt

·
(

S"
xt

Λ̄tSxt

)−1
S"
xt

η̄t

(5b)

where S
m

0,m+,m− and Sxt
are projection matrices mapping

the state space to the
{

m0,m+,m−
}

and xt subspaces,

respectively.

The inverse term involves the block diagonal of the infor-

mation matrix corresponding to the vehicle pose, ST
xt

Λ̄tSxt
,

which is of fixed size. Meanwhile, the ST
m

0,m+,m− Λ̄tSxt

matrix corresponds to the shared information between the

map and the vehicle pose and, taken as an outer product

over the vehicle sub-block, yields a matrix having nonzero

values only for the active feature indices. It is a result of this

term that marginalization establishes the connectivity among

the active features shown in the right-hand side of Figure 3.

The computational complexity of this matrix outer product is

limited by the Γa and Γp bounds and the order of the matrix

inversion is fixed. Thus, the marginalization can be performed

in constant-time.

We complete sparsification in ESEIFs by relocalizing the

vehicle within the map using the remaining zβ measurements.

The new pose estimate is, in general, given by a nonlinear

function of measurement data and corresponding feature esti-

mates of the form in (6a) where wt ∼ N
(

wt;0, R
)

is white

Gaussian noise. Equation (6b) corresponds to the linearization

about the mean of the marginal distribution, N−1
(

Mt; η̌t, Λ
)

in (5). The Jacobian, G, is sparse as the only non-zero

columns are those corresponding to the map elements used

for relocalization. Subsequently, only the mean estimates for

these features are necessary for the linearization.

xt = g
(

mβ , zβ

)

+ wt (6a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (6b)

Augmenting the map distribution (5) with the new pose

estimate yields a state which can be shown to have the

following canonical parameterization:

pESEIF(ξt|z
t,ut) = N−1

(

ξt; η̆t, Λ̆t

)

η̆t =

[

R−1
(

g (mβ , zβ) − Gµ̌t

)

η̌t − G"R−1
(

g (mβ, zβ) − Gµ̌t

)

]

(7a)

Λ̆t =

[

R−1 −R−1G
−G"R−1

(

Λ̌t + G"R−1G
)

]

(7b)

Due to the sparsity of G, most terms in −R−1G of (7b)

which link the robot to the map are zero, except for those

corresponding to the landmarks used for relocalization. The

new instantiation for the robot pose is then conditionally

independent of the rest of the map. As a result, ESEIF

sparsification leads to the joint posterior having the desired

factorization:

pESEIF(ξt|z
t,ut) = p(xt|mβ, zβ) p2(Mt|{z

t−1, zα},u
t)

As reflected by the resulting information matrix depicted in

Figure 3, the active features are then limited to those used for

relocalization.

In this manner, ESEIFs control the size of the active map

and, in turn, the sparseness of the information matrix. Like

the full EKF, the ESEIF performs exact inference on an

approximate model, albeit on a different posterior. When

we first marginalize out (kidnap) and subsequently relocalize

the robot, we are performing the dual of kidnapping and

relocation for the standard EKF. Essentially, we are ignoring

the odometry data which links the current and previous poses.

Hence, whereas the full EKF tracks the Gaussian approxi-

mation to the posterior, p(ξt|Z
t), ESEIFs and the relocated

EKF maintain the Gaussian model of an alternate distribution,

p(ξt|Z
t∗). In this way, the ESEIF employs exact inference

on an approximate model for which the information matrix is

exactly sparse.

D. Recovering the Mean

A drawback of representing the posterior in the canonical

form is that we no longer have access to the mean vector

or covariance matrix. When the system equations are nonlin-

ear, a subset of the mean is required to perform lineariza-

tions. Naively, we could recover the entire mean vector as

µt = Λ−1
t ηt, though this operation is cubic in the dimension

of the state and quickly becomes intractable. Instead, we can

pose the problem in terms of solving a set of linear equations

Λtµt = ηt (8)

Joint posterior exactly represents desired conditional independence

Exact sparsity
Ignoring odometry 

information

( Identical to the relocated-EKF )

Complexity
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Results:   Globally referenced maps
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Fig. 8. The final maps generated by the (a) ESEIF and (b) SEIF algorithms. Included is an outline of the tennis courts overlayed with the ground truth hurdle
poses indicated by the black cross hairs. The ellipses centered at the base leg of each feature represent the three sigma uncertainty bounds for position. Note
the significant difference in magnitude between the confidence estimates maintained by the two filters. While the true feature locations are captured by the
ESEIF uncertainty regions, a majority of the hurdles fall outside the SEIF ellipses. This overconfidence is a result of the approximation employed by SEIFs
to enforce sparseness and is indicative of global inconsistency.

While we are able to maintain an estimate of the state which

is both globally and locally consistent using ESEIFs, enforcing

sparsity in the SEIF results in an estimate which suffers from

global inconsistency.

V. CONCLUSION

Of late, many researchers in the robotics community have

been interested in developing solutions to the SLAM problem

which scale with environments of arbitrary size. One approach

that is particularly promising follows from the key insight that

the information matrix is relatively sparse for feature-based

SLAM. In the case where the matrix is exactly sparse, state

estimation can be performed in near-constant time, irrespective

of the number of landmarks in the environment.

While a majority of the elements in the information matrix

are relatively weak, the matrix is naturally dense due to the

effect of marginalizing out old robot poses. To achieve the

efficiency benefits, the SEIF algorithm enforces sparsity by

deliberately breaking weak links between the robot and the

map. As a consequence of this pruning strategy, the SEIF state

estimate suffers from global inconsistency.

In this paper, we have introduced an algorithm for feature-

based SLAM which achieves an exactly sparse information

matrix while maintaining both global and local consistency.

We have shown that, by periodically marginalizing out the

robot and then relocalizing it within the map, we control the

number of active landmarks and, in turn, the population of the

information matrix. The ESEIF is then able to benefit from

the efficiency of the sparse information form while yielding

conservative estimates for the robot pose and map.

We have demonstrated the performance of ESEIFs, both

in a systematic linear Gaussian simulation as well as on two

different nonlinear data sets. In all three, we have shown that

ESEIFs maintain estimates nearly identical to those of the EKF

which are both globally and locally consistent.
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Fig. 9. An overhead image of Victoria Park in Sydney, Australia along with a rough plot of the GPS vehicle trajectory.

leads to an inconsistent posterior. The results empirically show, though, that the ESEIF provides a sparse

representation the canonical Gaussian while simultaneously preserving consistency. Unfortunately, the

simulations are not representative of most real-world applications which generally involve motion and

measurement models that are nonlinear and noise that is not Gaussian. To study the performance of the

ESEIF and two other information filters under these circumstances, we implement the algorithms alongside

the standard EKF on two nonlinear SLAM datasets.

Victoria Park Dataset

For the first real-world SLAM problem, we consider the benchmark Victoria Park dataset courtesy

of E. Nebot of the University of Sydney. The dataset is widely popular in the SLAM community as a

testbed for a number of different algorithms [5], [7], [22], [23] that address the scalability problem. In the

experiment, a truck equipped with odometry sensors and a laser range-finder drives in a series of loops

within Victoria Park, Sydney shown in Figure 9 along with a rough plot of the trajectory determined from

GPS. We use a simple perceptual grouping implementation to detect tree trunks located throughout the

park among the laser data which is cluttered with spurious returns. We solve the data association problem

offline to ensure that the correspondences are identical for each filter.

We apply the SEIF and ESEIF algorithms together with the EKF which as been successfully applied

to the dataset in the past [22]. We limit the size of the active map to a maximum of Γa = 10 features for
the two sparse information filters. As with the LG simulation, we place a priority on the relocation step

when sparsifying the ESEIF, reserving as many tree observations as possible (i.e. no more than Γa = 10)
for the sake of adding the vehicle back into the map. Any additional measurements are used to update

the filter prior to marginalization. This helps to minimize the influence of spurious observations on the

estimate for the relocated vehicle pose.

The final SEIF and ESEIF maps are presented in Figures 10(a) and 10(b), respectively, along with the

estimate for the robot trajectory. The ellipses denote the three sigma uncertainty bounds estimated by the

two filters. As a basis for comparison, we plot the map generated by the EKF which is similar to those

published elsewhere. One sees that the feature position estimates for the three filters are alike, yet the

SEIF exhibits a larger deviation from the EKF map than does the ESEIF. The most obvious distinction

between the two maps, though, is the difference in the estimated accuracy of the resulting map indicated

by the size of the uncertainty ellipses. While not ground truth, the EKF results represent the baseline

which the information filters seek to emulate, yet many of the EKF feature estimates fall outside the

three-sigma SEIF uncertainty bounds. This is particularly evident in the periphery as we indicate in the

Nonlinear dataset 2: Sydney Victoria Park 
(Data courtesy Eduardo Nebot)



Results:   Victoria Park Dataset
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Fig. 6. Map and vehicle trajectory estimates for the Victoria Park dataset. In each, we include the final EKF map which agrees with previous results published
in the literature. The top two plots represent the global state estimate while the two at the bottom are the result of root-shifting the map into the vehicle frame
via compounding: xvi = !xv ⊕ xi. The plot in (a) presents the results of the ESEIF, including the three sigma confidence bounds for each of the features.
The ESEIF produces feature estimates which are nearly identical to those of the EKF and, while it is omitted to make the plot readable, the uncertainty ellipses
are very similar for the two filters. In (b), we see that while the SEIF and EKF maps are similar, the difference between the two estimates is noticeably larger
for the SEIF algorithm. Additionally, the inset reveals that the SEIF yields global error estimates which are significantly over-confident. Looking at the maps
expressed in the vehicle frame, though, we see that both (c) ESEIFs and (d) SEIFs preserve relative map structure.

positions along the baselines of four adjacent tennis courts.

Wheel encoders provide the input to the kinematic motion

model while observations of the environment are made using a

SICK laser scanner. Data association is again performed offline

and is the same for each filter.

We perform SLAM on the data again using both the ESEIF

and SEIF alongside a standard EKF implementation. When

necessary, we employ the two sparsification strategies to

maintain a bound of Γa = 10 active features. During ESEIF
sparsification, we relocate the robot using a single feature

observation which provides a measurement of the relative

transformation (translation and rotation) between the vehicle

and the hurdle. In Figure 8(a), we show the final map estimated

by ESEIFs, overlayed onto a depiction of the ground truth.

The ellipses drawn around each feature correspond to the

three sigma bound on the position one of the hurdle legs.

The same plot is shown in Figure 8(b) for the map estimated

using the SEIF algorithm. Notice that the uncertainty bounds

maintained by the SEIF are significantly over-confident and,

for many hurdles, do not include the true feature position.
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Fig. 5. The estimate of map uncertainty maintained by the ESEIF and SEIF
compared with that of the KF. For each feature, we consider the log of the
ratio of the covariance sub-block determinant for the information filters to the
determinant for the KF. Values equal to zero when the filter indicate an exact
estimate for the uncertainty. Log ratios greater than zero imply conservative
estimates while values less than zero correspond to over-confidence. In (a) we
show a histogram describing the global measure of uncertainty determined
directly from the inverse of the information matrices. The SEIF yields map
estimates which are largely over-confident while the ESEIF leads to estimates
which are conservative. Depicted in (b), the over-confidence of the SEIF is
less severe when we consider the relative map uncertainty which follows from
root-shifting the state to the first feature added to the map. The one outlier
corresponds to the original world origin as represented in the new reference
frame. Meanwhile, the histogram shows that the ESEIF maintains conservative
estimates for the relative map covariance matrix.

used to update the ESEIF prior to marginalization. This helps

to minimize the influence of spurious data on the relocated

vehicle pose.

We plot the ESEIF and SEIF estimates of the map together

with the three sigma uncertainty bounds in Figures 6(a) and

6(b), respectively. The estimates of the 3 km trajectory for the
car are superimposed on the plot. As a basis for comparison,

the plots include the feature locations resulting from the EKF

which are nearly identical to those published elsewhere. Both

sparsified filters yield similar maps though the deviation from

the EKF estimates is noticeably larger for SEIFs than it is

for the ESEIF. Furthermore, the global confidence bounds for

ESEIFs are conservative, yet comparable to the feature uncer-

tainties maintained by the EKF while they are significantly

over-confident for the SEIF. While not ground truth, the EKF

represents the baseline which the information filters strive to

match and, yet, many of the EKF estimates lie outside the

three sigma uncertainty bounds for the SEIF. This is especially

evident in the periphery as we indicate in the inset plot. As

we saw in the LG simulation, all three algorithms seem to

equivalently represent the local map relationships given by the

transformation of the map into the vehicle’s reference frame

at its final pose. Both the ESEIF relative map shown in Figure
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Fig. 7. Histograms of the ESEIF and SEIF uncertainty estimates as compared
to the EKF results. We again use the log of the ratio of the covariance
sub-block for each feature. The histogram in (a) corresponds to the direct
filter estimates and is representative of the global uncertainty. The ESEIF
maintains conservative estimates for the uncertainties while the SEIF estimates
are over-confident when compared to the EKF. Expressing the map in the
vehicle’s reference frame, (b) demonstrates that SEIFs remain over-confident
but are better able to capture the relative uncertainty. Due to the global over-
confidence, there is an outlier corresponding to the representation of the global
origin in the robot’s frame. Meanwhile, the ESEIF relative estimates remain
conservative.

6(c) and the SEIF relative map in Figure 6(d) are almost

identical to the corresponding EKF results. In this case, the

relative ESEIF and SEIF uncertainty bounds now capture the

EKF estimate for the feature locations. The SEIF algorithm

allows us to achieve results which are similar to the standard

EKF in the local but not global sense while ESEIFs provide

a conservative map estimate which is nearly identical to the

EKF both globally and locally.

We have seen from the plots of the two SLAM maps that

SEIFs are much more confident in their state estimates. In

Figure 7(a) we compare the global uncertainty of each feature

for the ESEIF and SEIF to the EKF, again using the log of

the ratio of the determinant of the feature covariances. As

with the linear Gaussian simulations, the ESEIF log ratios

are all greater than zero, indicating that ESEIFs maintain

conservative estimates for the global uncertainty of each state

element. On the other hand, the SEIFs are largely over-

confident. Expressing the state in the vehicle reference frame,

the histogram Figure 7(b) reveals that, SEIFs remain over-

confident, although to a lesser extent. The one exception is

again the representation of the global origin in the vehicle

frame which a direct consequence of the global inconsistency

of SEIFs. The ESEIF, meanwhile, remains conservative in the

relative frame.

In the second experiment, a wheeled robot drives around a

gymnasium in which 64 track hurdles are positioned at known

Histogram of feature covariance determinants relative to EKF estimates
> 0  Conservative       < 0   Over-confident

ESEIF estimates are conservative yet 
nearly identical to EKF

SEIF estimates are significantly 
over-confident
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Summary
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• New alternative to the original Sparse Extended 
Information Filter (SEIF) formulation (Thrun et al, 
WAFR 2002) 

• Avoids approximation to enforce sparseness
• Key idea: periodically marginalize out the vehicle pose 

and relocate the vehicle into the map
• Prevents fill-in of the inverse covariance matrix for 

terms relating active and in-active features
• Exact sparseness is achieved, ensuring consistency 

for the Linear Gaussian case
• Experimental analysis demonstrates good performance 

on two real-world nonlinear data sets



Compare and Contrast with D-SLAM:

ISRR 2005 24

• Both papers enforce *exact* sparsity in the SLAM 
Information Matrix

• Our work is much closer to the original SEIF 
formulation

• Our methods uses all the feature measurements and 
very nearly all the odometry measurements

• Our results demonstrate close agreement with the full 
covariance solution (extremely “tight” bound)

• Several other significant differences .... talk to me, 
Matt, and/or Ryan for discussion off-line



Any Questions?



3D

Persistent autonomy

Limit as t -> infinity

Long-term memory

RobotGoogle

“wget the world”

Challenges for the future: 



Backups



Why is Concurrent Mapping and Localization Difficult? 
(ISRR 1999)



Why is Concurrent Mapping and Localization Difficult? 
(ISRR 1999)

 “The key scientific  and technological issue in robotics is that of coping with 
uncertainty ... In fact, the uncertainty is such that one of the most challenging 
activities for a mobile robot is simply going from point A to point B.'’

      Tomas Lozano-Perez, 1990



Consequences for EKF and EIF
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A useful property to note is the robot's conditional

independence from the passive features m- given the

active features m0 & m+

The conditional information matrix is block-diagonal and the

inverse of a block-diagonal matrix is also block-diagonal.  This

implies that the robot and passive features are uncorrelated which

for a Gaussian RV implies independence.   QED

extract                sub-block
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SEIF’s rule deactivates link by forcing conditional
independence to feature we want to deactivate
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where (4b) merely expresses the conditional of (4a) as a
ratio and the subscripts pB , pC , pD are used for notational
convenience to reference the different pdfs involved in its
calculation. While the factorization expressed in (3b) is the-
oretically exact due to the conditional independence between
xt and m− given the active features, equation (4) is in error
because xt is no longer conditionally independent of m−

given only a partial set of the active features (i.e., the set of all
active features is m0 ∪ m+). This implies that the particular
value of α we choose modifies the posterior approximation.
Equations (5)–(8) summarize the SEIF sparsified posterior

(4) as expressed in both covariance and information form —
due to space limitations we omit their derivation and only
present the resulting expressions. For ease of comparison we
use the same notation as [4] where S denotes a projection
matrix over the state space ξt (e.g., xt = S"

xt
ξt extracts the

robot pose). Note that the mean update in equation (6) clearly
shows that the original mean vector µt is modified during
the sparsification step for values of α "= S"

m−µt indicating
α’s influence on the term p

(
xt | m+,m− = α

)
used in the

approximation (4)1.
Covariance Form

Σ̃t =
(
Sxt,m+Σ−1

B S"
xt,m+ − Sm+Σ−1

C S"
m+

+ Sm0,m+,m−Σ−1
D S"

m0,m+,m−

)−1 (5)
µ̃t = µt + Σ̃t

(
Sxt,m+Σ−1

B S"
xt,m+ − Sm+Σ−1

C S"
m+

)
×

ΣtSm−
(
S"

m−ΣtSm−
)−1(

α − S"
m−µt

)
(6)

where

ΣB = S!
x,m+

“
I − ΣtSm−

`
S!

m−ΣtSm−
´−1

S!
m−

”
ΣtSx,m+

ΣC = S!
m+

“
I − ΣtSm−

`
S!

m−ΣtSm−
´−1

S!
m−

”
ΣtSm+

ΣD = S!
m0,m+,m−ΣtSm0,m+,m−

Information Form

Λ̃t = Sxt,m+ΛBS"
xt,m+

− Sm+ΛCS"
m+ + Sm0,m+,m−ΛDS"

m0,m+,m− (7)
η̃t = Sxt,m+ηB − Sm+ηC + Sm0,m+,m−ηD (8)

where
ηα = ΣtSm−α

ΛB = S!
xt,m+

“
I − ΛtSm0

`
S!

m0ΛtSm0

´−1
S!

m0

”
ΛtSxt,m+

ηB = S!
xt,m+

“
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`
S!

m0ΛtSm0

´−1
S!

m0

”
(ηt − ηα)

ΛC = S!
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“
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`
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xt,m0ΛtSxt,m0
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S!

xt,m0

”
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m+
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`
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1The expression for the sparsified information vector as presented in [4]
corresponds to setting α = S!

m−µt, (i.e., the mean of the passive features)
and not α = 0 as stated in their paper.

B. Modified Sparsification Rule
In the previous section we showed that the derivation of the

SEIF sparsification rule introduces a conditioning on a specific
realization of the passive features — i.e., their mean estimate.
This conditioning influences the outcome of the sparsification
approximation and in particular can modify the resulting mean
estimate as evident by the functional dependence on α in
(6). In the following we show that we can easily modify the
original SEIFs approximation to derive a more correct version
of the sparsification rule by explicitly using xt’s conditional
independence of the passive features m− to drop its depen-
dence. This modified version of the SEIFs sparsification rule
will be shown to preserve the state mean and, as demonstrated
in §IV, provide a high fidelity approximation yielding results
comparable to the full-covariance EKF.
We begin by factorizing the posterior p

(
xt,m0,m+,m−)

using Bayes rule like in equation (3a) of the SEIF derivation,
but this time we explicitly employ the available conditional
independence between the robot and passive features given the
active features which allows us to dropm− from the posterior
over xt as

p
(
xt,m

0,m+,m−)

= p
(
xt | m0,m+,m−)

p
(
m0,m+,m−)

(9a)
C.I.
= p

(
xt | m0,m+

)
p
(
m0,m+,m−)

(9b)

=
p
(
xt,m0 | m+

)

p
(
m0 | m+

) p
(
m0,m+,m−)

(9c)

The posterior factorization shown above is exact where for
convenience equation (9c) merely re-expresses the conditional
over xt in (9b) as a ratio. To obtain the sparsified posterior
approximation, we now impose conditional independence be-
tween xt and m0 as

p̆MODRULE
(
xt,m

0,m+,m−)

=
p
(
xt | m+

)
p
(
m0 | m+

)

p
(
m0 | m+

) p
(
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(10a)

= p
(
xt | m+

)
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(10b)

=
pU

(
xt,m+

)

pV

(
m+

) pD

(
m0,m+,m−)

(10c)

where again for convenience equation (10c) simplifies the
sparsified posterior to a ratio of marginals and the subscripts
pU , pV , pD are used to notationally reference the different
pdfs involved. As equations (10a)–(10b) show, sparsification
is equivalent to imposing conditional independence, which in
turn is equivalent to dropping dependence on the set of features
we wish to deactivate (i.e., m0). The resulting modified
sparsification rule is summarized by equations (11)–(14) which
express it in both covariance and information form.
Covariance Form
Σ̆t =

(
Sxt,m+Σ−1

U S"
xt,m+ − Sm+Σ−1

V S"
m+

+ Sm0,m+,m−Σ−1
D S"

m0,m+,m−

)−1 (11)
µ̆t = µt (12)

where (4b) merely expresses the conditional of (4a) as a
ratio and the subscripts pB , pC , pD are used for notational
convenience to reference the different pdfs involved in its
calculation. While the factorization expressed in (3b) is the-
oretically exact due to the conditional independence between
xt and m− given the active features, equation (4) is in error
because xt is no longer conditionally independent of m−

given only a partial set of the active features (i.e., the set of all
active features is m0 ∪ m+). This implies that the particular
value of α we choose modifies the posterior approximation.
Equations (5)–(8) summarize the SEIF sparsified posterior

(4) as expressed in both covariance and information form —
due to space limitations we omit their derivation and only
present the resulting expressions. For ease of comparison we
use the same notation as [4] where S denotes a projection
matrix over the state space ξt (e.g., xt = S"

xt
ξt extracts the

robot pose). Note that the mean update in equation (6) clearly
shows that the original mean vector µt is modified during
the sparsification step for values of α "= S"

m−µt indicating
α’s influence on the term p

(
xt | m+,m− = α

)
used in the

approximation (4)1.
Covariance Form

Σ̃t =
(
Sxt,m+Σ−1

B S"
xt,m+ − Sm+Σ−1

C S"
m+

+ Sm0,m+,m−Σ−1
D S"
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)−1 (5)
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B S"
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×
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(
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)−1(
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)
(6)

where
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“
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`
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”
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`
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ΣD = S!
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Information Form
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1The expression for the sparsified information vector as presented in [4]
corresponds to setting α = S!

m−µt, (i.e., the mean of the passive features)
and not α = 0 as stated in their paper.

B. Modified Sparsification Rule
In the previous section we showed that the derivation of the

SEIF sparsification rule introduces a conditioning on a specific
realization of the passive features — i.e., their mean estimate.
This conditioning influences the outcome of the sparsification
approximation and in particular can modify the resulting mean
estimate as evident by the functional dependence on α in
(6). In the following we show that we can easily modify the
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will be shown to preserve the state mean and, as demonstrated
in §IV, provide a high fidelity approximation yielding results
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using Bayes rule like in equation (3a) of the SEIF derivation,
but this time we explicitly employ the available conditional
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p
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)
p
(
m0,m+,m−)

(9b)

=
p
(
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)

p
(
m0 | m+

) p
(
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(9c)

The posterior factorization shown above is exact where for
convenience equation (9c) merely re-expresses the conditional
over xt in (9b) as a ratio. To obtain the sparsified posterior
approximation, we now impose conditional independence be-
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(
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) p
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)
p
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pU

(
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)

pV

(
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) pD

(
m0,m+,m−)

(10c)

where again for convenience equation (10c) simplifies the
sparsified posterior to a ratio of marginals and the subscripts
pU , pV , pD are used to notationally reference the different
pdfs involved. As equations (10a)–(10b) show, sparsification
is equivalent to imposing conditional independence, which in
turn is equivalent to dropping dependence on the set of features
we wish to deactivate (i.e., m0). The resulting modified
sparsification rule is summarized by equations (11)–(14) which
express it in both covariance and information form.
Covariance Form
Σ̆t =

(
Sxt,m+Σ−1

U S"
xt,m+ − Sm+Σ−1

V S"
m+

+ Sm0,m+,m−Σ−1
D S"

m0,m+,m−

)−1 (11)
µ̆t = µt (12)

only requires
matrix inversion
on the order of
the number of 
links we are 

breaking
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p (α, β)

p (β)

µ′ = µα

Σ′ = Σαα

η′ = ηα − ΛαβΛ−1
ββηβ

Λ′ = Λαα − ΛαβΛ−1
ββΛβα

µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ′ = Σαα − ΣαβΣ−1
ββΣβα

η′ = ηα − Λαββ

Λ′ = Λαα

1

ξt ∼ N
(

µt, Σt

)

∼ N−1
(

ηt, Λt

)

Λt = Σ−1
t

ηt = Λtµt

p (xt+1|xt,m1,m2,m3,m4,m5) = p (xt+1|xt)

m
+

m
−

m
0

p (ξt) = p (xt|m
+,m0) p (m+,m0,m−)

p̃ (ξt) = p (xt|m
+) p (m+,m0,m−)

p (α, β) = N
(

[

µα
µβ

]

,
[

Σαα Σαβ

Σβα Σββ

]

)

= N−1
(

[

ηα
ηβ

]

,
[

Λαα Λαβ

Λβα Λββ

]

)

p (α) =

∫

p (α, β) dβ

p (α|β) =
p (α, β)

p (β)

µ′ = µα

Σ′ = Σαα

η′ = ηα − ΛαβΛ−1
ββηβ

Λ′ = Λαα − ΛαβΛ−1
ββΛβα

µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ′ = Σαα − ΣαβΣ−1
ββΣβα

η′ = ηα − Λαββ

Λ′ = Λαα

1

How we sparsify
is nontrivial!


