A Provably Consistent Method for Imposing Sparsity in Feature-based SLAM Information Filters

October 13, 2005

Matthew Walter, Ryan Eustice^{*}, & John Leonard

Massachusetts Institute of Technology *Johns Hokpins University

ISRR 2005

Roadmap

I Introduction

II Sparsification in SEIFS

III ESEIFS

IV Results

V Conclusions

Recent related work (Information Form of SLAM)

- Sparse Extended Information Filters (Thrun, Koller, Ghahramani, Durrant-Whyte, and Ng, 2002)
- Thin Junction Tree Filter (Paskin, 2003)
- Treemap (Frese, 2004)
- Exactly Sparse Delayed State Filters (Eustice, 2005)
- Graphical SLAM (Folkesson and Christensen, 2005)
- Graph SLAM (Thrun, Burgard, and Fox, 2005, Chapter 11)
- Square Root SAM (Daellart, 2005)
- D-SLAM (Wang, Huang, and Dissanayake, 2005)

Recent related work (Information Form of SLAM)

- Sparse Extended Information Filters (Thrun, Koller, Ghahramani, Durrant-Whyte, and Ng, 2002)
- Thin Junction Tree Filter (Paskin, 2003)
- Treemap (Frese, 2004)
- Exactly Sparse Delayed State Filters (Eustice, 2005)
- Graphical SLAM (Folkesson and Christensen, 2005)
- Graph SLAM (Thrun, Burgard, and Fox, 2005, Chapter 11)
- Square Root SAM (Daellart, 2005)
- D-SLAM (Wang, Huang, and Dissanayake, 2005)

Canonical Gaussian Parameterization for SLAM

$$\begin{split} \boldsymbol{\xi}_t &\sim \mathcal{N} \big(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t \big) \\ &\sim \mathcal{N}^{-1} \big(\boldsymbol{\eta}_t, \boldsymbol{\Lambda}_t \big) & \longleftarrow \quad \begin{bmatrix} \boldsymbol{\Lambda}_t = \boldsymbol{\Sigma}_t^{-1} & \text{ information matrix} \\ \boldsymbol{\eta}_t = \boldsymbol{\Lambda}_t \boldsymbol{\mu}_t & \text{ information vector} \end{bmatrix} \end{split}$$

• Encodes Markov random field

Represents independence relationships

 $p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4, \mathbf{m}_5) = p(\mathbf{x}_{t+1}|\mathbf{x}_t)$

Duality of standard and information forms

$$p(\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\mu}_{\alpha}\\\boldsymbol{\mu}_{\beta}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Sigma}_{\alpha\alpha} & \boldsymbol{\Sigma}_{\alpha\beta}\\\boldsymbol{\Sigma}_{\beta\alpha} & \boldsymbol{\Sigma}_{\beta\beta}\end{bmatrix}\right) = \mathcal{N}^{-1}\left(\begin{bmatrix}\boldsymbol{\eta}_{\alpha}\\\boldsymbol{\eta}_{\beta}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Lambda}_{\alpha\alpha} & \boldsymbol{\Lambda}_{\alpha\beta}\\\boldsymbol{\Lambda}_{\beta\alpha} & \boldsymbol{\Lambda}_{\beta\beta}\end{bmatrix}\right)$$

	Covariance Form	Information Form
Marginalization	,	/
$p\left(oldsymbol{lpha} ight) =\int p\left(oldsymbol{lpha},oldsymbol{eta} ight) doldsymbol{eta}$	$oldsymbol{\mu}' = oldsymbol{\mu}_lpha \ \Sigma' = \Sigma_{lpha lpha}$ easy	$oldsymbol{\eta}' = oldsymbol{\eta}_{lpha} - \Lambda_{lphaeta}\Lambda_{etaeta}^{-1}oldsymbol{\eta}_{eta}$ $\Lambda' = \Lambda_{lphalpha} - \Lambda_{lphaeta}\Lambda_{etaeta}^{-1}\Lambda_{etalpha}$ hard
Conditioning		
$p\left(\boldsymbol{\alpha} \boldsymbol{\beta}\right) = rac{p\left(\boldsymbol{\alpha},\boldsymbol{\beta} ight)}{p\left(\boldsymbol{\beta} ight)}$	$\boldsymbol{\mu}' = \boldsymbol{\mu}_{\alpha} + \Sigma_{\alpha\beta}\Sigma_{\beta\beta}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\beta})$ $\Sigma' = \Sigma_{\alpha\alpha} - \Sigma_{\alpha\beta}\Sigma_{\beta\beta}^{-1}\Sigma_{\beta\alpha}$	$oldsymbol{\eta}^{\prime} = oldsymbol{\eta}_{lpha} - \Lambda_{lphaeta}oldsymbol{eta} \ \Lambda^{\prime} = \Lambda_{lphalpha}$

SEIF's key insight 1: <u>Information matrix is "relatively" sparse</u>

Problem: time projection causes fill-in

 $\mathbf{x}_{t+1} \mathbf{x}_t \mathbf{m}_1 \mathbf{m}_2 \mathbf{m}_3 \mathbf{m}_4$

 \mathbf{x}_{t+1} \mathbf{x}_t \mathbf{m}_1 \mathbf{m}_2 \mathbf{m}_3 \mathbf{m}_4 \mathbf{m}_5

 \mathbf{x}_{t+1} \mathbf{m}_1 \mathbf{m}_2 \mathbf{m}_3 \mathbf{m}_4 \mathbf{m}_5

ISRR 2005

SEIF's Key Insight II: It is possible to limit this fill-in by bounding the number of "active" links

ISRR 2005

Roadmap

I Introduction

II Sparsification in SEIFS

III ESEIFS

IV Results

V Conclusions

The SEIF algorithm cuts links to the weakest active features

Link deactivation imposes conditional independence

Issue: this leads to overconfidence

$$p(\mathbf{x}_t, \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-) = p(\mathbf{x}_t \mid \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-) p(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-)$$
 ok
$$= p(\mathbf{x}_t \mid \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^- = \boldsymbol{\alpha}) p(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-)$$
 ok

NOT OK: <u>can't ignore m^0 </u>

$$\begin{split} \tilde{p}_{\text{SEIFs}} \left(\mathbf{x}_t, \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^- \right) &= p \left(\mathbf{x}_t \mid \mathbf{m}^+, \mathbf{m}^- = \boldsymbol{\alpha} \right) p \left(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^- \right) \\ &= \frac{p_B \left(\mathbf{x}_t, \mathbf{m}^+ \mid \mathbf{m}^- = \boldsymbol{\alpha} \right)}{p_C \left(\mathbf{m}^+ \mid \mathbf{m}^- = \boldsymbol{\alpha} \right)} p_D \left(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^- \right) \end{split}$$

Roadmap

I Introduction

II Sparsification in SEIFS

III ESEIFS

IV Results

V Conclusions

Exactly Sparse Extended Information Filters

- Reformulation of SEIFs that avoids approximation to enforce sparseness
- Key idea: periodically marginalize out the vehicle pose and "relocate" the vehicle into the map
- This step occurs at most at the same frequency as sparsification in SEIFs
- Compute a slightly modified posterior, using all of the feature measurements, and nearly all of the odometry information
- Prevents "fill-in" of the inverse covariance matrix for terms relating active and in-active features

Complexity

(1) Update (2) marginalization and (3) relocalization are constant time (w/ estimate of mean*)

$$\begin{split} \check{\Lambda}_t = \mathbf{S}_{\mathbf{m}^0,\mathbf{m}^+,\mathbf{m}^-}^{\top} \bar{\Lambda}_t \mathbf{S}_{\mathbf{m}^0,\mathbf{m}^+,\mathbf{m}^-} - \mathbf{S}_{\mathbf{m}^0,\mathbf{m}^+,\mathbf{m}^-}^{\top} \bar{\Lambda}_t \mathbf{S}_{\mathbf{x}_t} \left(\mathbf{S}_{\mathbf{x}_t}^{\top} \bar{\Lambda}_t \mathbf{S}_{\mathbf{x}_t} \right)^{-1} \mathbf{S}_{\mathbf{x}_t}^{\top} \bar{\Lambda}_t \mathbf{S}_{\mathbf{m}^0,\mathbf{m}^+,\mathbf{m}^-} \\ \uparrow \\ inverse of matrix O(robot pose) \end{split}$$

Joint posterior exactly represents desired conditional independence

$$p_{\text{ESEIF}}(\boldsymbol{\xi}_t | \mathbf{z}^t, \mathbf{u}^t) = p(\mathbf{x}_t | \mathbf{m}_{\beta}, \mathbf{z}_{\beta}) p_2(\mathbf{M}_t | \{\mathbf{z}^{t-1}, \mathbf{z}_{\alpha}\}, \mathbf{u}^t)$$

Ignoring odometry information — Exact sparsity

(Identical to the relocated-EKF)

^{*}Linearization requires mean robot and update feature states. Efficiently accessible via multilevel relaxation.

Roadmap

I Introduction

- II Sparsification in SEIFS
- III ESEIFS

IV Results

V Conclusions

Linear Gaussian simulation results (KF optimal)

Nonlinear dataset I: MIT Hurdles

ISRR 2005

Nonlinear dataset 2: Sydney Victoria Park (Data courtesy Eduardo Nebot)

Roadmap

I Introduction

- II Sparsification in SEIFS
- III SEIFS
- IV Results

V Conclusions

Summary

- New alternative to the original Sparse Extended Information Filter (SEIF) formulation (Thrun et al, WAFR 2002)
- Avoids approximation to enforce sparseness
- Key idea: periodically marginalize out the vehicle pose and relocate the vehicle into the map
- Prevents fill-in of the inverse covariance matrix for terms relating active and in-active features
- Exact sparseness is achieved, ensuring consistency for the Linear Gaussian case
- Experimental analysis demonstrates good performance on two real-world nonlinear data sets

Compare and Contrast with D-SLAM:

- Both papers enforce *exact* sparsity in the SLAM Information Matrix
- Our work is much closer to the original SEIF formulation
- Our methods uses all the feature measurements and very nearly all the odometry measurements
- Our results demonstrate close agreement with the full covariance solution (extremely "tight" bound)
- Several other significant differences talk to me, Matt, and/or Ryan for discussion off-line

Any Questions?

Challenges for the future:

3D

Persistent autonomy

Limit as t -> infinity

Long-term memory

RobotGoogle

"wget the world"

Backups

"The key scientific and technological issue in robotics is that of coping with uncertainty ... In fact, the uncertainty is such that one of the most challenging activities for a mobile robot is simply going from point A to point B." Tomas Lozano-Perez, 1990

Robot's conditional independence from passive features

$$p\left(\mathbf{x}_{t},\mathbf{m}^{-}\mid\mathbf{m}^{0},\mathbf{m}^{+}\right)=\mathcal{N}^{-1}\left(S_{x_{t},m^{-}}^{\top}\boldsymbol{\xi}_{t};\boldsymbol{\eta}_{x_{t},m^{-}\mid m^{0},m^{+}},\Lambda_{x_{t},m^{-}\mid m^{0},m^{+}}\right)$$

$$\Lambda_{x_t,m^-|m^0,m^+} = S_{x_t,m^-}^\top \Lambda_t S_{x_t,m^-} \qquad \text{extract } \mathbf{x}_t \quad \mathbf{m}^- \text{ sub-block}$$
$$\eta_{x_t,m^-|m^0,m^+} = S_{x_t,m^-}^\top \eta_t - \left(S_{x_t,m^-}^\top \Lambda_t S_{m^0,m^+}\right) S_{m^0,m^+}^\top \boldsymbol{\xi}_t$$

 $\mathbf{x}_t \ \mathbf{m}^-$

 \mathbf{x}_t

 \mathbf{m}

The conditional information matrix is block-diagonal and the inverse of a block-diagonal matrix is also block-diagonal. This implies that the robot and passive features are uncorrelated which for a Gaussian RV implies independence. QED

Bayes rule:
$$p(\mathbf{x}_t, \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-) = p(\mathbf{x}_t \mid \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-) p(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-)$$

= $p(\mathbf{x}_t \mid \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^- = \alpha) p(\mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-)$
C.I.

Sparsification in SEIFs

SEIF's rule deactivates link by forcing conditional independence to feature we want to deactivate

Sparsification in SEIFs

 $\tilde{p}_{\text{SEIFs}}(\mathbf{x}_t, \mathbf{m}^0, \mathbf{m}^+, \mathbf{m}^-) = \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t)$

$$\begin{split} \tilde{\Lambda}_t &= S_{x_t,m^+} \Lambda_B S_{x_t,m^+}^\top \\ &- S_{m^+} \Lambda_C S_{m^+}^\top + S_{m^0,m^+,m^-} \Lambda_D S_{m^0,m^+,m^-}^\top \\ \tilde{\eta}_t &= S_{x_t,m^+} \eta_B - S_{m^+} \eta_C + S_{m^0,m^+,m^-} \eta_D \end{split}$$

$$\begin{split} \boldsymbol{\eta}_{\alpha} &= \Sigma_{t} S_{m^{-}} \boldsymbol{\alpha} \\ \Lambda_{B} &= S_{x_{t},m^{+}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{m^{0}} \left(S_{m^{0}}^{\top} \Lambda_{t} S_{m^{0}} \right)^{-1} S_{m^{0}}^{\top} \right) \Lambda_{t} S_{x_{t},m^{+}} \\ \boldsymbol{\eta}_{B} &= S_{x_{t},m^{+}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{m^{0}} \left(S_{m^{0}}^{\top} \Lambda_{t} S_{m^{0}} \right)^{-1} S_{m^{0}}^{\top} \right) \left(\boldsymbol{\eta}_{t} - \boldsymbol{\eta}_{\alpha} \right) \\ \Lambda_{C} &= S_{m^{+}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{x_{t},m^{0}} \left(S_{x_{t},m^{0}}^{\top} \Lambda_{t} S_{x_{t},m^{0}} \right)^{-1} S_{x_{t},m^{0}}^{\top} \right) \Lambda_{t} S_{m^{+}} \\ \boldsymbol{\eta}_{C} &= S_{m^{+}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{x_{t},m^{0}} \left(S_{x_{t},m^{0}}^{\top} \Lambda_{t} S_{x_{t},m^{0}} \right)^{-1} S_{x_{t},m^{0}}^{\top} \right) \left(\boldsymbol{\eta}_{t} - \boldsymbol{\eta}_{\alpha} \right) \\ \Lambda_{D} &= S_{m^{0},m^{+},m^{-}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{x_{t}} \left(S_{x_{t}}^{\top} \Lambda_{t} S_{x_{t}} \right)^{-1} S_{x_{t}}^{\top} \right) \Lambda_{t} S_{m^{0},m^{+},m^{-}} \\ \boldsymbol{\eta}_{D} &= S_{m^{0},m^{+},m^{-}}^{\top} \left(\mathbf{I} - \Lambda_{t} S_{x_{t}} \left(S_{x_{t}}^{\top} \Lambda_{t} S_{x_{t}} \right)^{-1} S_{x_{t}}^{\top} \right) \boldsymbol{\eta}_{t} \end{split}$$

only requires matrix inversion on the order of the number of links we are breaking

ISRR 2005

Controlling density: limit number of active features

- ${\rm m}^-$ active features
- \mathbf{m}^+ passive features

Controlling density: limit number of active features

- \mathbf{m}^+ active features
- ${\rm m}^-$ passive features

Pacify active landmarks by breaking weak links m^0 active features to be made passive

Deactivation: imposing conditional independence

- \mathbf{m}^+ active features
- \mathbf{m}^0 active features to
 - be made passive
- ${\rm m}^-$ passive features

