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Abstract

Graphical models provide a powerful framework for stochastic processes by repre-
senting dependencies among random variables compactly with graphs. In particular,
multiscale tree-structured graphs have attracted much attention for their computa-
tional efficiency as well as their ability to capture long-range correlations. However,
tree models have limited modeling power that may lead to blocky artifacts. Previ-
ous works on extending trees to pyramidal structures resorted to computationally
expensive methods to get solutions due to the resulting model complexity.

In this thesis, we propose a pyramidal graphical model with rich modeling power
for Gaussian processes, and develop efficient inference algorithms to solve large-scale
estimation problems. The pyramidal graph has statistical links between pairs of
neighboring nodes within each scale as well as between adjacent scales. Although the
graph has many cycles, its hierarchical structure enables us to develop a class of fast
algorithms in the spirit of multipole methods. The algorithms operate by guiding
far-apart nodes to communicate through coarser scales and considering only local
interactions at finer scales.

The consistent stochastic structure of the pyramidal graph provides great flexibil-
ities in designing and analyzing inference algorithms. Based on emerging techniques
for inference on Gaussian graphical models, we propose several different inference
algorithms to compute not only the optimal estimates but also approximate error
variances as well. In addition, we consider the problem of rapidly updating the esti-
mates based on some new local information, and develop a re-estimation algorithm
on the pyramidal graph. Simulation results show that this algorithm can be applied
to reconstruct discontinuities blurred during the estimation process or to update the
estimates to incorporate a new set of measurements introduced in a local region.

Thesis Supervisor: Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering
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Chapter 1

Introduction

Gaussian processes are widely used in modeling various natural phenomena not only

because they have attractive properties that enable a mathematical analysis of al-

gorithms, but also because a random process in a large-scale system often can be

approximated well by a Gaussian distribution. Therefore, the estimation of Gaussian

processes in a large-scale system arises in a variety of applications including image

processing [34], machine learning [44], oceanography [13], and communication systems

[19].

Throughout this thesis, we use the term estimation to indicate the process of

computing both Bayes’ least square estimates and error covariances of the estimates

of a Gaussian process given noisy measurements. This estimation problem can be

formulated as a system of linear equations, and if the number of variables is small, it

can be easily solved by matrix inversion. However, matrix inversion has computation

complexity that scales cubically with the number of variables, whereas for large-

scale problems with millions or billions variables, we need algorithms with linear

computational complexity.

Graphical models provide a powerful framework for stochastic processes by rep-

resenting random variables and their dependency structures with a graph [24, 25].

Markov random fields (MRFs) are undirected graphical models in which nodes rep-

resent random variables and edges capture conditional dependencies among the vari-

ables. When the random variables are jointly Gaussian, the graphical model is called
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a Gauss-Markov random field (GMRF). Gaussian processes defined on graphs pro-

vide both intuitive interpretation of existing estimation techniques and also highly

efficient algorithms that utilize the graph structure.

Given a distribution on a graphical model, the problem of computing marginal

statistics at each node is often called inference [55]. Many iterative inference algo-

rithms on a graphical model can be interpreted as passing ’messages’ along the edges

of the graph. When the MRF of interest has long-range correlations, variables (or

nodes) located far apart in the graph need to communicate with each other before

an iterative algorithm converges. Instead of passing messages through neighboring

nodes, we get significant computational gain by communicating through coarser res-

olutions. This motivates us to construct graphical models with multiple scales, in

which the original model is placed at the finest scale (at the bottom of the hierarchy)

and auxiliary variables are added at coarser scales to represent the field of interest at

coarser resolutions.

This multiscale, or multiresolution modeling framework has attracted much at-

tention in the signal and image processing community for its modeling power as well

as computational efficiency (for a list of references, see [56]). Some researchers fo-

cus on coarse-to-fine philosophy originated from multigrid methods [4] and develop

algorithms which consider the stochastic structure of different scales isolated from

each other [16, 20]. Others construct statistically consistent multiscale trees, a class

of multiscale models which allow interaction between nodes at adjacent scales but

not within each scale, and develop extremely efficient and powerful algorithms [7, 13].

Many researchers [8, 27–29, 32, 48] consider models which incorporate both intra- and

inter- scale interactions, but due to the resulting complexity, they either allow only

limited extensions of multiscale trees or use computationally expensive methods to

get solutions.

In recent years, there have been significant advances in understanding and devel-

oping efficient inference algorithms for a larger class of Gaussian graphical models

[6, 11, 21, 37, 48]. Based on these emerging techniques, we no longer need to limit our-

selves to tree-structured graphs in order to obtain tractable algorithms. In this thesis,
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we propose a pyramidal graph in which we allow consistent statistical links between

neighbors at each scale as well as between adjacent scales. Then, we develop highly

efficient algorithms in the spirit of multipole methods [18] to compute the optimal

estimates as well as the uncertainties of the estimates given noisy measurements at

some of the nodes. In addition, using the consistent graphical structure of our models,

we propose efficient methods to ’update’ the estimates rapidly when measurements

are added or new knowledge of a local region (for example, existence of discontinuities

in the field) is provided. Lastly, the problem of fitting the model to best explain the

given data is considered.

In the remainder of the introduction, we provide a high-level description of the

pyramidal graph and discuss its rich modeling capability and attractive structure that

enables efficient inference algorithms. Then, we introduce the problem of updating

the estimates based on local changes and discuss how the hierarchical structure in

the pyramidal graph can be utilized.

1.1 Multiscale Modeling

Constructing a graphical model to describe a stochastic process involves trade-offs

between model complexity and modeling capability. When a pair of nodes are not

connected with an edge, the corresponding probability distribution is required to

satisfy some constraints (see Section 2.1). So as we allow more edges, the modeling

capability of a graphical model increases, i.e. the graph can represent a broader set

of probability densities. However, the complexity of an inference algorithm usually

depends on the sparsity of the graph (see Section 2.2.2), which means that we tend

to make an inference problem more difficult when we add edges to the graph.

At the one end of the spectrum lie trees, graphs without cycles. For Gauss-Markov

processes defined on tree-structured graphs, there exist highly efficient algorithms

that exactly compute the estimates and error covariances with linear computational

complexity [7, 56]. However, this efficiency of trees comes at the cost of limited

modeling capability.
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(a)

(b)

(c)

(d)

Figure 1-1: Different graphical models for a one-dimensional stochastic process. (a)
First-order chain. (b) Multiscale tree. (c) Tree augmented by an edge. (d) Pyramidal
graph.

Consider a one-dimensional process, for example, a time series. A simple approach

to model such a process is a first-order Markov chain as shown in Figure 1-1(a).

However, since each node in the chain is only connected to the nodes next to it, a

first-order chain can not capture long-range correlations well. One common way to

overcome this limitation while maintaining a tree structure is to construct a multiscale

tree model as shown in Figure 1-1(b). Here, the additional nodes correspond to

18



coarser representations of the original nodes at the bottom of the tree. Tree models

are better than first-order chains in capturing long-range correlations but they tend to

produce blocky artifacts [2, 17, 48]. For example, The neighboring nodes indicated by

an arrow in Figure 1-1(b) are located far away in the tree (the shortest path between

them consists of many edges), so the correlation between the two nodes cannot be

correctly modeled in the tree. Sudderth et al. [48] considered an augmented model

in Figure 1-1(c) in which a few edges are inserted between the finest scale nodes that

are likely to produce most apparent blocky artifacts.

In this thesis, we take a step further and construct a pyramidal graph in Figure

1-1(d) which allows edges between every pair of neighboring nodes at each scale. At

a glance, this model seems to reflect an extravagant notion with too many loops

compared to trees, but utilizing various emerging techniques that exploit tractable

subgraphs (see Section 2.2), we develop highly efficient inference algorithms on the

pyramidal graph.

For two-dimensional processes, the motivation to develop multiscale models is

even more important. Unlike the one-dimensional case, the most straightforward

way of modeling a two-dimensional field is the nearest-neighbor grid model shown in

Figure 1-2(a) which has many cycles. Iterative algorithms on this grid model tend to

converge slowly, and may find only a local minimum of the cost function, which is a

serious drawback especially for image classification or segmentation problems.

To overcome these difficulties, multiscale approaches motivated by multigrid meth-

ods [4] in computational physics, have been used in image processing [16, 20]. When

we construct multiple coarser-resolution versions of the problem, at the coarsest scale,

the number of variables may be small enough to perform exact inference and find the

global minimum. Once we compute the optimal estimates of a coarser scale, the es-

timation at the next finer scale can be ’guided’ by the result of estimation at coarser

scales.

Instead of creating multiple stochastic structures at different scales separated from

each other, a multiscale quad-tree model shown in Figure 1-2(b) forms one consistent

graphical model structure. Inference algorithms on the tree models are much more
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(a)

(b)

(c)

Figure 1-2: Different graphical models for a two-dimensional stochastic process. (a)
Nearest-neighbor grid. (b) Multiscale tree. (c) Pyramidal graph.

efficient than multigrid-motivated algorithms, but sophisticated modeling is required

to avoid blocky artifacts [15, 34].

We propose a multiscale pyramidal model in Figure 1-2(c), which incorporates

20



neighbors both within the same scale and between adjacent scales. The pyramidal

graph has a consistent statistical dependency structure for the entire graph as with

multiscale trees. Similar pyramidal structures have been suggested in [8, 28, 29, 32]

for image classification or segmentation applications. However, in those pyramidal

models, the original measurements at the finest scale are transformed into coarser

scales, either by replicating or by extracting features at multiple resolutions. While

it is clear that these multiresolution measurements have dependent errors (as they

are all derived from the original fine-scale data), it is implicitly assumed in these

approaches that these transformed measurements are conditionally independent. In

addition, their approaches use computationally expensive methods such as simulated

annealing or Gibbs sampling to obtain solutions.

In spite of the apparent increased complexity compared to a single-scale grid

model, the pyramidal graph has many attractive properties that make efficient in-

ference possible. Specifically, we design inference algorithms in the spirit of mul-

tipole methods [18], which were originally developed to calculate potentials due to

distributions of charges. Instead of calculating every pairwise interaction between

the particles, interactions between particle clusters are computed to estimate far-

field potentials. This approximation allows us to aggregate far-field effects to reduce

computational complexity significantly [15]. In Chapter 4, we use the basic idea of

multipole methods to develop efficient inference algorithms, in which variables far-

apart communicate through coarser resolutions and nearby variables interact at finer

resolutions.

1.2 Re-estimation

Assume that we already have solved an estimation problem based on a large number

of measurements, and then wish to modify the estimates to account for new local

information. Since variables are correlated with each other, nodes outside the area

with new information also need to be updated. Restarting the estimation algorithm

would be time-consuming and inefficient. We refer the problem of efficiently updating
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Figure 1-3: Limitation of prior models. (a) Surface with discontinuities. (b) Recon-
struction using a smoothness prior model.

the estimates based on local information as a re-estimation problem.

There are two possible scenarios when we need to solve a re-estimation problem.

The first case is adding, removing, or changing measurements of a local region. This

may happen when measurements are collected over a long period of time or updated

continually, of both cases are common in geophysics applications. In addition, we

may choose to update the measurements either adaptively or manually if we have

unsatisfactory initial estimates at a particular region.

The second issue is detecting and getting accurate estimates of discontinuities.

For example, a smoothness prior (see Section 2.2.1) is commonly used to reconstruct

surfaces, but as shown in Figure 1-3, a reconstruction based on a smoothness prior

results in blurrings across surface discontinuities [14, 56]. For some applications, dis-

continuities provide more crucial information than smooth regions, so we may wish to

post-process the estimates to get more accurate results around the cliffs by relaxing

the smoothness prior locally.

In Gaussian graphical models, these two cases can be interpreted in a unified

framework of updating nodes when a few model parameters are perturbed from their

initial values. The questions arising from this problem is first, what variables should

we update and second, how can we update them rapidly.

When the field of interest has long-range correlations, changing the variables in

a local region may affect variables far apart. In the spirit of multipole algorithms,

22



50 100 150 200 250
−100

−50

0

50

100

150

X: 200
Y: −70.56

X: 130
Y: −25.03

es
tim

at
es

(a)

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X: 200
Y: 0.5284

X: 130
Y: 2.568

di
ffe

re
nc

e

(b)

160 165 170 175 180 185 190
0.5

1

1.5

2

di
ffe

re
nc

e

(c)

205 210 215 220 225 230 235
0

0.02

0.04

0.06

0.08

0.1

0.12

di
ffe

re
nc

e

(d)

Figure 1-4: Effect of adding new measurements at a local interval.
(a) Measurements (plotted as +) and estimates before (thick solid line) and after
(thin solid line) a new set of measurements are added at the interval x = [130, 200],
indicated with square boxes in the figure. (b) Difference between the two estimates in
a magnified view in y-axis. (c) Difference for the interval x = [160, 190], which is inside
the region with added measurements. (d) Difference for the interval x = [205, 235],
which is just outside the region with added measurements.

mentioned in the previous section, we model far-field effects as interactions at coarser

resolution. Figure 1-4(a) shows two estimates of a one-dimensional process before and

after a set of new measurements are added inside the indicated interval x = [130, 200].

The difference of the two estimates is magnified in Figure 1-4(b)-(d). Inside the region

with added measurements, the difference has high-frequency components as shown

in (c), but the difference outside the region in (d) appears smooth and can be well

described at a coarser resolution.

This observation suggests that a multiscale representation is an appropriate frame-
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work to solve re-estimation problems. When a local region is perturbed, we update

the neighboring nodes at a fine scale, but change far away nodes only at coarser scales.

In this way, we can update the estimates efficiently without restarting the estimation

procedure.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2. Background

In Chapter 2, we first introduce basic concepts and terminology for graphical models,

especially focusing on Gauss-Markov random fields. Then, we discuss estimation of

Gaussian processes and a class of iterative algorithms on graphical models based on

tractable subgraphs. A walk-sum interpretation of inference ensures that for a certain

class of graphical models, an iterative algorithm converges regardless of the order of

subgraphs it chooses, so we are allowed to choose the subgraphs adaptively to achieve

a faster convergence. In addition, we introduce recently developed techniques to

approximately compute variances in Gaussian graphical models. Then, we review the

existing hierarchical algorithms and models that have been widely used in inference,

image segmentation and classification, and solving partial differential equations.

Chapter 3. Multiscale Modeling Using a Pyramidal Graph

We propose a multiscale graphical model with a pyramidal structure in Chapter 3,

and define a prior model which is appropriate for smooth fields. Our model is mainly

motivated by two-dimensional problems, but we also use one-dimensional problems to

illustrate our results. The marginal covariance at the finest scale resulting from this

prior model shows that the pyramidal graph can capture long-range correlations bet-

ter than trees or monoscale grid models. In addition, conditioned on adjacent scales,

the conditional covariance of one scale decays quickly since long-range correlations
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are captured by coarser scale nodes. This implies that despite the complicated ap-

pearance of the pyramidal graph, we may obtain highly efficient algorithms exploiting

its hierarchical structure.

Chapter 4. Inference on the Pyramidal Graph

In Chapter 4, we describe several efficient inference algorithms on the pyramidal

graphical model introduced in Chapter 3. In order to compute the optimal esti-

mates, we design a class of multipole-motivated algorithms consisting of two steps:

in the tree-inference step, different scales share information so that we can perform

approximate inference at coarser scales. Then, during the in-scale inference step,

nearby nodes within each scale pass messages to each other to obtain smooth es-

timates. Since our pyramidal graph is a GMRF, recently developed techniques for

inference in graphs with cycles, such as Embedded Trees (ET) [6, 48] and Lagrangian

Relaxation (LR) methods [21] can also be applied. Using the analysis in [6], we show

that the multipole-motivated algorithms are guaranteed to converge on the pyramidal

graph. Error covariances can be approximately computed using the LR method or

the low-rank approximation algorithms [35, 36, 38]. We also consider the re-estimation

problems and conclude the chapter with a set of simulations which support the effec-

tiveness of the proposed inference algorithms.

Chapter 5. Multiscale Parameter Estimation

Without the full knowledge of prior models, it is necessary to estimate the model

parameters from given data in order to fit the model to best describe the data. We

discuss parameter estimation in the pyramidal graph in Chapter 5. Since measure-

ments are only available at the finest scale, it is not easy to estimate the model

parameters for the entire pyramidal graph. When we allow a single free parameter to

control the prior model, we can apply the standard Expectation Maximization (EM)

algorithm which is commonly used for parameter estimation with partially observed

data. However, as soon as we increase the number of free parameters, the EM algo-
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rithm becomes intractable for our model. We suggest possible directions to perform

approximate parameter estimation and leave their investigation as future research

topics.

Chapter 6. Conclusions

The main contributions of this thesis are summarized in Chapter 6. We present

possible directions to extend the pyramidal graph approach and discuss several open

problems in multiscale modeling.
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Chapter 2

Background

In this chapter, we introduce basic concepts necessary for the subsequent chapters

and review the literature on multiscale models and algorithms. We begin Section

2.1 by discussing graphical models and exponential families, and then formulate the

problem of estimating Gaussian processes in the graphical model framework. Then,

in Section 2.2, we introduce iterative algorithms for efficient inference on graphs with

cycles, and describe walk-sum analysis and adaptive iterations which will be utilized

in both estimation and re-estimation algorithms in Chapter 4. In addition, low-

rank approximation methods to compute variances are introduced. Lastly, in Section

2.3, we review the literature on multiscale models and algorithms, and address the

limitations of existing methods which motivate our pyramidal graph in Chapter 3.

2.1 Gaussian Graphical Models

This section provides a brief description of graphical models and exponential families,

beginning with general concepts and then specifying the details for the Gaussian case.

Then, we discuss how the problem of estimating Gaussian processes can be formulated

in the graphical model framework and describe commonly used prior and observation

models.
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(a) (b)

Figure 2-1: (a) Graph separation ⇔ conditional independence. (b) J is sparse with
respect to the graph in (a). The shaded areas correspond to zero elements or zero
block matrices.

2.1.1 Graphical Models

In graphical models [25, 26], a probability distribution is represented by a graph G
consisting of nodes V and (directed or undirected) edges E . Each node i is associated

with a random variable or a random vector xi, and edges connecting the nodes capture

the statistical dependencies among the random variables or random vectors. We focus

on undirected graphical models, or Markov random fields, where an edge from node

i to node j is equivalent to an edge from node j to node i. For notational simplicity,

we assume that xi is a scalar for every i, but any of the analysis in this thesis can be

easily generalized to the case when xi is a random vector.

Two sets of nodes A and C are said to be separated by B if every path between A

and C passes through a node in B as shown in Figure 2-1(a). Let xA be the collection

of random variables corresponding to the nodes in set A, and let x denote xV , where

V is the set of all nodes in G. A stochastic process with pdf p(x) is Markov with

respect to G if it satisfies the following condition: If A and C are separated by B

in graph G, then xA and xC are conditionally independent conditioned on xB, i.e.

p(xA, xC |xB) = p(xA|xB)p(xC |xB).

A clique in a graph is defined as a set of nodes that are fully connected to each other

(for example, in Figure 2-1(a), B and C are cliques, but A is not). The Hammersely-

Clifford theorem [52] states that if a probability distribution can be factorized as

a product of functions on each clique, then the underlying process is Markov with
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respect to the graph. Conversely, a probability distribution p(x) defined on an MRF

can be factorized in terms of clique potentials if the pdf is strictly positive (p(x) > 0

for all x ∈ X ).

If the random variables corresponding to the nodes on the graph are jointly

Gaussian, then the MRF is called a Gauss-Markov random field (GMRF). The pdf

of a Gaussian process is parameterized by its mean µ and covariance matrix P :

p(x) ∝ exp(−1

2
(x− µ)T P−1(x− µ)), (2.1)

and we denote the process as x ∼ N (µ, P ). In graphical models, it is more convenient

to express a Gaussian process in the equivalent information form x ∼ N−1(h, J):

p(x) ∝ exp(−1

2
xT Jx + hT x) (2.2)

where J = P−1 is the information matrix, and h = P−1µ is the potential vector.

Since a covariance matrix is positive definite, it is necessary that J is also positive

definite, and we call a graphical model with J Â 0 a valid model. If x is Markov

with respect to G, then the inverse covariance matrix J is sparse with respect to G:

A nonzero off-diagonal element in matrix J indicates the presence of an edge linking

the corresponding nodes [47]. An example is shown in Figure 2-1(a) and 2-1(b). J12

and J21 are nonzero since there is an edge between x1 and x2, but J13 and J31 are

zero because x1 and x3 are not connected with an edge. Similarly, the block matrices

JAC and JCA are zero because there is no edge connecting A and C directly.

2.1.2 Exponential Families

An exponential family [55] of probability distributions is defined by a set of sufficient

statistics φa(x) (also called potential functions) and associated parameters θa:

p(x; θ) = exp(
∑

a

θaφa(x)− Φ(θ)) (2.3)

The log partition function Φ(θ) normalizes the probability distribution so that it
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integrates to one:

Φ(θ) = log

∫

X
exp(

∑
a

θaφa(x))dx, (2.4)

where X is the sample space in which x is taking values. The domain of the expo-

nential parameter vector is the set Θ = {θ|Φ(θ) < ∞}. By the Hammersley-Clifford

theorem, if each potential function φa(x) is a function of random variables in a clique,

then the underlying process x is Markov with respect to the graph G.

The log partition function plays an important role in parameter estimation in

Chapter 5, and also in inference for Lagrangian relaxation methods (see Section 2.2.3).

Specifically, it can be shown that the derivatives of Φ(θ) with respect to θ gives the

cumulants of φa(x) [55]:

∂Φ

∂θa

(θ) = E[φa] (2.5)

∂2Φ

∂θa∂θb

(θ) = E{(φa − E[φa])(φb − E[φb])} (2.6)

where the expectation is taken with respect to p(x; θ). From (2.6), it can be shown

that the log partition function is a convex function of θ.

Let x = (x1, . . . xn) be a Gaussian random vector and represent its probability

density in the information form:

p(x) =
1√

det(2πJ−1)
exp(−1

2
xT Jx + hT x− 1

2
hT J−1h) (2.7)

Comparing the above equation with (2.3), we can see that Gaussian distributions

are a class of exponential families with exponential parameters, sufficient statistics,

and the log partition function given as:

θa = {hi} ∪ {−0.5 ∗ Jii} ∪ {−Jij, i 6= j}
φa(x) = {xi} ∪ {x2

i } ∪ {xixj, i 6= j}
Φ(θ) =

1

2
(n log(2π) + hT J−1h− log det(J)). (2.8)
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2.1.3 Prior and Observation Models

We assume that the field we are estimating is smooth overall, with the possible excep-

tion of a few discontinuities. Two models have been commonly used as smoothness

priors [56]. The thin-membrane model penalizes the gradient by minimizing the dif-

ferences between the neighbors. Each node is modeled to be close to its neighbor. If

we denote the neighboring nodes of xi as N (xi),

p(x) ∝ exp(−α1

∑
i∈V

∑

j∈N (xi)

(xi − xj)
2) = exp(−xT Jtmx) (2.9)

The thin-plate model penalizes the curvature. Each node is modeled to be close

to the average of its neighbors. While the thin-membrane prior prefers a flat surface

over a tilted one, the thin-plate model treats a tilted surface and a flat surface equally

as long as they have the same curvature.

p(x) ∝ exp(−α2

∑
i∈V

(xi − 1

|N (xi)|
∑

j∈N (xi)

xj)
2) = exp(−xT Jtpx) (2.10)

Based on (2.9) and (2.10), we can define hprior = 0, and Jprior as either Jtm ,

Jtp, or a mixture of them. Then the Jprior matrix is sparse (the number of nonzero

elements is small compared to the number of total elements of the matrix), so the

corresponding graph is sparse (the number of edges is small compared to that of a

fully-connected graph).

Suppose we are given noisy observations y = Cx + v, where v ∼ N (0, R) is a

Gaussian white noise process. If we have one measurement for each node, C would

simply be an identity matrix. More generally, if we have measurements at only a

subset of the nodes, then C is a selection matrix with only a single nonzero value

(equal to 1) in each row. However, if we are modeling a physical phenomenon which

is defined over a continuous field, a measurement may be taken at a spatial location

between nodes. In this case, we can either map an observation to the closest node or

use bilinear interpolation to involve a set of nodes contributing to the observation, so

that the resulting C matrix may have more than one nonzero entry in some of the
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rows. The conditional distribution of x given the observation y is as follows:

p(x|y) ∝ p(x)p(y|x)

∝ exp(−1

2
xT Jpriorx + hT

priorx) exp(−1

2
(y − Cx)T R−1(y − Cx))

∝ exp(−1

2
xT (Jprior + CT R−1C)x + xT (hprior + CT R−1y)) (2.11)

If we take the first approach and assign an observation to the closest node,

CT R−1C is a diagonal matrix, so J = Jprior+CT R−1C has the same sparsity structure

as Jprior. In other words, including the observation model leaves the graph structure

unaltered.

2.1.4 Estimation of Gaussian Processes

In Gaussian processes, both maximum a posteriori (MAP) and Bayes’ least squares

estimates lead to the conditional mean E[x|y], which can be derived from (2.11):

x̂ = arg max p(x|y) = J−1h, (2.12)

where J−1 = (Jprior + CT R−1C)−1, and h = hprior + CT R−1y. The error covariance

matrix is the inverse of the J matrix:

P = E[(x− x̂)(x− x̂)T |y] = J−1 (2.13)

When the number of variables is small, the optimal estimates and its error co-

variance can be directly calculated by inverting J . However, inverting a matrix has

a cubic computational complexity, so in large-scale systems with millions or billions

of variables, this direct computation is intractable.

If a process x can be modeled in a graph with no loops, an efficient algorithm is

available for computing both conditional means and error covariances as described in

[56]. For graphs with cycles, we may use Gaussian elimination based on junction trees

[25, 31] to get exact marginal probabilities, but the complexity is cubic in the order
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of the tree-width of the graph. For example, for a nearest-neighbor grid model shown

in Figure 1-2(a), the tree-width is equal to the width of the graph, so for a square

grid with N nodes, the junction tree algorithm results in O(N3/2) computations.

When the number of variables N is large, we need an algorithm with computational

complexity O(N), so we turn to iterative algorithms introduced in the next section.

2.2 Inference Algorithms on Graphs with Cycles

In the recent few years, there have been significant advances in understanding and

developing inference algorithms on graphs with cycles. Embedded subgraph algo-

rithms [6, 11, 48] and Lagrangian relaxation methods [21] exploit tractable subgraphs

to solve (2.12) iteratively. These algorithms have linear complexity for each iteration

and usually converge in a few iterations compared to the number of variables. Using

the walk-sum analysis [37], we can choose the order of subgraphs for Embedded sub-

graph algorithms adaptively to reduce estimation errors quickly as possible. Although

these iterative algorithms converge to the correct mean for a large class of graphical

models, estimating error covariances is a more challenging problem. In the last part

of this section, we introduce low-rank variance approximation methods [35, 36, 38].

2.2.1 Embedded Subgraph Algorithms

Computing conditional means of Gaussian processes is essentially solving the linear

system equation Jx̂ = h. Let G = (V, E) be the corresponding graph of the random

process x. The Embedded Trees (ET) algorithm [6, 48] selects a subset of edges

En ⊆ E at each iteration and forms a spanning tree Gn = (V, En). Let Jn be the

matrix defined as follows:

(Jn)ij =





(J)ij if(i, j) ∈ En

0 otherwise
(2.14)
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Then, Jn is sparse with respect to Gn. Let Kn = J − Jn, then

x̂ = J−1
n (h−Knx̂). (2.15)

If we assume that x̂ in the right side of the above equation is a fixed vector, this

equation can be interpreted as an inference problem in the tree defined by Jn, which

can be solved in linear time. This leads to the recursive equation to compute x̂n:

x̂(n) = J−1
n (h−Knx̂

(n−1)) (2.16)

Instead of selecting a subset of edges, we can also consider the block Gauss-Seidel

algorithm [11], which updates a subset of nodes Vn ⊆ V at each iteration. Let xVn =

{xi|i ∈ Vn} be the variables to be updated at nth iteration and let xV c
n

= {xi|i /∈ Vn}
be the variables to be unchanged. By reordering the variables, the equation Jx̂ = h

can be decomposed as follows:


 JVn JVn,V c

n

JV c
n ,Vn JV c

n





 x̂Vn

x̂V c
n


 =


 hVn

hV c
n


 (2.17)

From the upper part of the equation, it follows that

x̂Vn = J−1
Vn

(
hVn − JVn,V c

n
· x̂V c

n

)
(2.18)

If |Vn| is small, (2.18) can be solved by inverting JVn . When |Vn| is large and in-

verting the matrix is intractable, we can apply the ET algorithm within the subgraph

Gn = (Vn, EVn), where EVn = {(i, j)|(i, j) ∈ E , i, j ∈ Vn}. This leads to the hybrid of

ET and block Gauss-Seidel algorithms: At nth iteration, choose a subset of variables

Vn ⊆ V and a subset of edges En ⊆ EVn . Let Sn = (Vn, En) be the embedded subgraph

of Gn = (Vn, EVn). A node i ∈ Vn first gets messages from all its neighboring nodes

except those in j ∈ Sn. Then we perform local estimation within Sn. A node i ∈ V c
n
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remains unchanged at this iteration.

x̂
(n)
Vn

= J−1
Sn

(
hVn −KSn · x̂(n−1)

Vn
− JVn,V c

n
· x̂(n−1)

V c
n

)

x̂
(n)
V c

n
= x̂

(n−1)
V c

n
(2.19)

Using the walk-sum analysis in the next section, it can be shown that this iterative

algorithm is guaranteed to converge for a certain class of graphical models.

The marginal error variance of each node corresponds to the diagonal element of

the inverse of J . Let ei be the N-dimensional vector of zeros with a one in the ith

position, then

(J−1)ii = (J−1ei)i. (2.20)

So the error variance of node i can be computed by setting h in (2.12) to ei and

computing the resulting conditional means. Since conditional means can be computed

in O(N) operations per iteration, it takes O(N2) operations at each iteration to com-

pute error variances for all nodes. Sudderth et al. [48] developed an algorithm which

has linear complexity for each iteration when the graph of interest has cycles but is

sparsely connected. Delouille et al. [11] focus on sensor network applications and

approximately compute the variance of a node by considering only a subset of neces-

sary messages. However, both of these methods are not appropriate to compute error

variances of all nodes in a general graphical model, for example, a two-dimensional

grid.

2.2.2 Walk-sum Analysis and Adaptive Iterations

Inference in Gaussian graphical models can be interpreted as computing walk-sums

on the graph as described in [37]. Let us first define the edge weight of an edge in

graph G = (V, E). The partial correlation coefficient between variable xi and xj is

defined as the conditional correlation coefficient of xi and xj conditioned on all other

variables xV \ij , {xi|i ∈ V \{i, j}}:
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rij , cov(xi, xj|xV \ij)√
var(xi|xV \ij)var(xj|xV \ij)

= − Jij√
JiiJjj

(2.21)

The edge weight of an edge (i, j) ∈ E is defined as the partial correlation coefficient

between xi and xj and can be computed as follows: let D = diag(J) be a diagonal

matrix with diagonal entries of J and J̃ = D−1/2JD−1/2 be a normalized J matrix in

which all diagonal entries are one. Then, an edge weight rij of an edge (i, j) ∈ E is

the (i, j) entry of the matrix R , I − J̃ .

A walk of length l in G is defined as a sequence w = (i0, i1, . . . , il) where ik ∈ V

for all k = 0, 1, . . . , l and (ik−1, ik) ∈ E for all k = 1, 2, . . . , l. The weight of a walk is

defined as the product of all edge weights along the walk:

φ(w) =
l∏

k=1

rik−1ik , (2.22)

Then, the (i, j) entry of the matrix Rl is equivalent to the sum of all length-l walks

from node i to node j.

Let us denote φ(j → i) as the sum of weights of all possible walks from node j to

node i.

φ(j → i) =
∑

w:j→i

φ(w) (2.23)

A GMRF is called walk-summable if for every i, j ∈ V , the sum in (2.23) converges to

the same value for every summation order. For walk-summable models, the inverse

of normalized J matrix can be computed by walk-sums:

(J̃−1)ij = ((I −R)−1)ij = (I + R + R2 + · · ·)ij = φ(j → i). (2.24)

Since J̃−1 = D1/2J−1D1/2, we can easily recover the covariance matrix P = J−1 from

the walk-sums.

The normalized conditional means µ = J̃−1h can be interpreted as reweighted

walk-sums in which each walk is weighted by hj at the start node j of the walk:
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µi =
∑
j∈V

(J̃−1)ijhj =
∑
j∈V

hjφ(j → i) (2.25)

Chandrasekaran et al. [6] analyzed the embedded subgraph algorithms using walk-

sums and showed that in walk-summable models, as long as every edge is updated

infinitely often, the convergence of (2.19) is guaranteed for any order of subgraphs

we choose. Taking advantage of this flexibility in choosing the order of subgraphs,

they developed techniques for choosing trees and subsets of variables adaptively to

reduce the error quickly as possible. These techniques will prove to be useful both

for inference and for re-estimation in Chapter 4.

2.2.3 Lagrangian Relaxation Methods

The inference algorithms presented in Section 2.2.1 exploit tractable subgraphs em-

bedded in an intractable graph. In this section, we introduce another method that

explicitly decomposes a graph into tractable subgraphs and uses the result of inference

in each subgraph to perform approximate inference for the entire graph.

As presented in Section 2.1.2, the derivatives of the log partition function with

respect to an exponential parameter gives the expected value of the corresponding

potential function. For Gaussian graphical models, we can recover the conditional

means, variances of each node, and covariance between neighboring nodes by taking

derivatives of the log partition function with respect to the elements in h and J ,

defined in Section 2.1.4. Therefore, the log partition function is useful not only for

parameter estimation but also for inference as well [55]. For tree-structured graphs,

the log partition function can be computed in linear computational complexity using

a dynamic programming approach [40]. Unfortunately, for intractable graphs, com-

puting the log partition function is at least as difficult as performing inference, so

we are interested in finding a surrogate log partition function which is tractable to

compute.

Let’s consider splitting an intractable graph G defined by J into subgraphs Gk and

associated Jk such that J =
∑

k Jk. Here, for notational simplicity, we consider zero-
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mean Gaussian processes and assume that h = 0, but the analysis can be extended

to general cases with an arbitrary mean vector. Then, J determines the exponential

parameters, so we denote the log partition function as Φ(J). Since the log partition

function is a convex function of exponential parameters, for any ρk’s such that ρk >

0,
∑

k ρk = 1, we get an upper bound of the log partition function as follows:

Φ(J) = Φ(
∑

k

ρk
Jk

ρk

) ≤
∑

k

ρkΦ(
Jk

ρk

) (2.26)

Now, a surrogate log partition function can be obtained by minimizing the upper

bound. Johnson [21] proved that for a fixed decomposition {Jk}, the optimal weight

ρ∗ can be explicitly represented in terms of Jk’s as follows:

ρk =
1

Z
exp

1
N

log det Jk

, (2.27)

where N is the number of nodes in the original graph and Z is the normalizing factor

Z =
∑

k

exp
1
N

log det Jk

(2.28)

In [21], it is shown that for a given set of subgraphs Gk = (V k, Ek), minimizing the

upper-bound is equivalent to identifying a valid decomposition (Jk Â 0) that satisfies

the re-weighted moment-matching conditions:

ρ∗kP
k
i = Ki, ∀k, i ∈ V k

ρ∗kP
k
e = Ke, ∀k, e ∈ Ek (2.29)

where ρ∗k is the optimal weight for Jk and P k = (Jk)−1. Ki and Ke’s are Lagrange

multipliers and can be interpreted as pseudo-moments of the original graph.

A similar set of conditions is also derived by Wainwright et al. [54] for models in

which each node is a discrete random variable (or vector). They consider a convex

decomposition of exponential parameters to find an upper bound on the log partition

function, and developed the tree-reweighted message passing algorithm to identify the
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optimal weights as well as optimal decomposition that minimizes the upper bound.

However, instead of passing messages in the original graph, the Lagrangian relaxation

algorithm [21] performs inference in each subgraph and exchange potentials among the

subgraphs that share the same node or same edge. The pseudo-moments computed

by this algorithm converge to the correct conditional means and provides an upper

bound on true variances. In Chapter 4, we describe the algorithm in detail, and apply

it to our pyramidal graph.

2.2.4 Low-Rank Variance Approximation Algorithms

As shown in the previous sections, it is more challenging to compute exact variances

in linear operations per iteration than to compute conditional means. Malioutov et

al. [36] describe a simple idea to use low-rank approximation to estimate variances

for models in which correlations decay exponentially in distance.

Let J be the inverse covariance matrix of x ∈ RN . Remember that iterative

inference algorithms approach the variance estimation problem as solving (J (−1)ei)

N times, once for each node i. Since this is too costly, consider a matrix B ∈ RN×M

with M ¿ N and BT B = I, and let us use (BBT ) as a low-rank approximation of I.

Let bi denote the ith row of B and assume that bT
i bi = 1 for all i. Then,

P̂ii , (J−1(BBT ))ii = Pii +
∑

i 6=j

Pijbi
T bj. (2.30)

When the model of interest has short-range correlations, Pij becomes negligible

compared to Pii when the distance from node i to node j becomes far. Therefore, by

designing the matrix B such that bi and bj becomes orthogonal only when i and j are

close, an unbiased estimator of the variances is developed in [36].

In [38], this idea is extended to an elegant wavelet-based approach to apply the

method to models with longer correlation lengths. This approach is based on the

observation that when a covariance matrix P is filtered with wavelet, the correlation

lengths at finest scale become much shorter. At coarser scales, the correlation still

decays slowly, but since coarser scales are low-pass filtered, we are allowed to decimate
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the output to have a fewer number of variables. The computational complexity can

be reduced significantly by this multiscale approach.

2.3 Hierarchical Models

For some cases, multiscale stochastic models are natural framework to describe the

physical phenomenon of interest or to assimilate data from distinct sources. In ad-

dition, for large-scale problems, it is often desirable to provide estimates at different

resolutions depending on the need of users. However, even when multiscale modeling

is not required by the physical phenomenon, the data, or the user’s interest, multiscale

algorithms may provide significant computational gains over the monoscale counter-

part. In this section, we review the existing hierarchical models and algorithms. For

a comprehensive overview of multiscale, or multiresolution models arising in a wide

variety of disciplines, see the survey paper [56].

The common weakness of iterative relaxation methods, such as Jacobi and Gauss-

Seidel algorithms [6], is that they tend to eliminate high-frequency components of the

error rapidly, but require many iterations to remove low-frequency components of the

error. In order to overcome this weakness, multigrid methods [4], commonly used to

solve partial differential equations, create multiple grids at different resolutions and

replicate measurements at each scale. Low-frequency components of the error are

transformed to higher frequencies at coarser resolutions, so they can be eliminated

rapidly at those scales. In addition, even if the original problem has a large number

of nodes, the size of the problem may be small enough at a coarser scale to get

estimates easily. Therefore, multigrid algorithms start by solving a problem at the

coarsest scale, and then proceed to the next finer scale and use the estimates of the

coarser scale as the initial guess. In turn, the estimates at a finer scale can be used

to reduce aliasing effects at a coarser scale.

There has been considerable work to incorporate multigrid concepts in signal or

image processing by modeling coarse-to-fine mechanism as stochastic relationships

[20, 50]. However, many of these models have limited relationships between different

40



0


1
 2


(a) (b)

Figure 2-2: (a) A tree-structured graph. (b) Augmented hierarchical graph structure
used in [2].

scales. The finer grids are averaged to produce a coarser scale, and the coarser grids

are interpolated to create a finer scale. Moreover, the coarser scale variables are not

hidden variables because measurements are replicated at every scale. In other words,

given a scale, the finer scale and the coarser scales are not conditionally independent

since they share the same measurements.

The renormalization group (RG) method [16] generates coarser scales by a non-

linear transformation called the RG transformation. The iterations at finer scales are

accelerated by searching in the subspace of configurations constrained by coarser scale

estimates. However, Markovianity is not usually satisfied at coarser scales generated

by RG transformations, and although for certain cases, one can make an approxima-

tion as in [16], the computation is not straightforward in general.

Instead of isolating the statistical structure from scale to scale, we can build a

coherent graphical model by linking random variables at different resolutions. When

a graph does not contain a loop as shown in Figure 2-2(a), both conditional means

and error covariances can be efficiently calculated in O(d3N) time complexity [56],

where d is the state dimension of the nodes and N is the number of nodes. Therefore,

we may introduce auxiliary variables at coarser scales and construct a tree-structured

graph to approximate the fine scale stochastic process of interest. The multiscale

autoregressive (MAR) model specifies the tree model in the following recursive way:

x(s) = A(s)x(sγ̄) + w(s) (2.31)
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where sγ̄ is the parent node of node s and w(s) is a Gaussian white noise process.

Therefore, we are assuming that given the parent node, its children are independent

of each other.

However, this is a rather severe assumption, especially in the regions where neigh-

boring nodes in the finest scale are far apart in the tree. For example, in Figure

2-2(a), s1 and s2 should be independent given s0. As a result, a tree-structured graph

can have boundary artifacts as pointed out in [48]. In order to reduce the blockiness,

ones needs to use a sophisticated modeling such as overlapping trees [14], or increase

the state dimensions of nodes at coarser scales.

In order to overcome the limitation of tree-structured models, hierarchical graphs

with extra edges augmented to trees have been suggested. Bouman and Shapiro [2]

proposed a multiscale random field in which a sequence of random fields from coarse

to fine scale form a Markov chain. The artifacts of tree-based algorithms are reduced

by adding extra edges between adjacent scales as shown in Figure 2-2(b), and a non-

iterative upward-downward sweep algorithm for image segmentation is developed.

However, in order to circumvent the complexity arising from introducing cycles in

the graph, they use tree models in the upward-sweep and only consider extra edges

in the downward-sweep.

Sudderth et al. [48] introduced a few edges at the finest scale between the neigh-

boring nodes modeled to be far on a tree and reduced the blockiness artifact sig-

nificantly. Li et al. [32] designed a causal quadtree model for image classification

application and allowed intrascale interactions only between the nodes that share the

same parent node, to incorporate high-frequency information useful for distinguishing

classes.

In order to capture both inter- and intra- scale interactions, a pyramidal graph

shown in Figure 1-2(c) is a natural extension to the quad-tree models. Kato et al. [27–

29] constructed such pyramidal graph by introducing a quad-tree neighboring system

between two neighboring grids in multigrid models. By partitioning the pyramidal

graph into disjoint sets so that the nodes in the same set are conditionally independent

given all other sets, they developed a massively parallel relaxation algorithms that
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updates different scales at the same time. However, these interactions between scales

make the model more complicated, and although the algorithm converges in fewer

iterations, each iteration becomes computationally much more expensive.

Comer et al. [8] also proposed a full pyramidal graph to segment textured images,

and considered the neighborhood system that consists of a parent, four children, and

four adjacent nodes within the same scale. They used Gibbs sampler to compute the

marginal statistics.

The pyramidal graph we are proposing in this thesis essentially has the same

graphical structure as considered in [8, 27–29]. However, there are several fundamental

differences. First of all, in the previous approaches, the data are either observed

at multiple resolutions [8] or replicated for inference at coarser resolutions [27–29].

In our model, the measurements stay in the original resolution (finest scale) so the

coarser scale variables are truly hidden variables. Secondly, we use recently developed

efficient algorithms for Gaussian graphical models (in particular, Embedded subgraph

algorithms, Lagrange Relaxation... etc.) and develop algorithms much faster than

simulated annealing or sampling approaches. Thirdly, we utilize the fact that our

pyramidal graph is a coherent graphical model with consistent statistical dependencies

between intra- and inter- scale variables, which provides great flexibility in designing

inference algorithms.
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Chapter 3

Multiscale Modeling Using a

Pyramidal Graph

In this chapter, we propose a class of multiscale graphical models with a pyramidal

structure and demonstrate its rich modeling power. We begin Section 3.1 with the

basic notation of pyramidal graphs and extend the thin-membrane model introduced

in Section 2.1.3 to define a prior model. In Section 3.2, we observe the resulting

covariance structure and compare the correlation decays at the finest scale of the

pyramidal graph with the tree and monoscale thin-membrane counterparts. The

pyramidal graph can capture long-range correlations better than monoscale thin-

membrane models and do not produce blockiness as in tree models. In addition, the

conditional covariance of each scale conditioned on other scales can be approximated

as a banded covariance matrix. This suggest that despite the complicated appear-

ance of the pyramidal graph, we may obtain highly efficient algorithms utilizing its

hierarchical structure.

3.1 Prior Models

In multiscale modeling, it is common to consider the original resolution as the finest

resolution and construct approximate, coarser versions of the problem. Although the

pyramidal graph we are proposing in this thesis can easily incorporate data or user
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objectives at multiple resolutions, we focus on the case in which the coarser scales

are merely acting to help the inference at the finest scale. Let’s assume that the field

of interest is two-dimensional and originally can be described at a single resolution.

Even though the iterative algorithms introduced in Section 2.2 provide tractable

methods of inference, they may take many iterations to converge for single-resolution

models with large numbers of variables and with complex stochastic dependencies.

The convergence rate can be significantly improved by introducing auxiliary variables

which represent the field of interest at coarser resolutions.

We construct a pyramidal graphical model shown in Figure 3-1(a) by placing

the original field at the bottom of the hierarchy and introducing hidden variables at

coarser scales. Let M be the number of different levels of resolution in the hierarchy.

We denote the coarsest resolution as scale 1 and place it at the top of the hierarchy.

The scale number increases as we go downward and the field of interest is placed at the

bottom of the hierarchy and denoted as the finest scale or scale M . For 1 < m < M ,

each scale m has its coarser, or parent scale m− 1 and the finer, or child scale m + 1.

The ith random variable at scale m is denoted as x(m,i), and the collection of all

random variables at scale m is denoted as xm.

The structure of a Gaussian graphical model can be represented by the corre-

sponding information matrix J = P−1. The J matrix for the prior that we use

consists of two components:

Jprior = Jt + Js. (3.1)

where Jt encodes statistical links between different scales, and Js represents edges

within each scale. For a pyramidal graph for two-dimensional processes shown in Fig-

ure 3-1(a), Jt corresponds to a quadtree in Figure 3-1(b) in which each parent-child

pair is connected by an edge, and Js corresponds to nearest-neighbor grid models

within each scale as shown in Figure 3-1(c). There are many ways to define these pri-

ors, but we extend the thin-membrane model introduced in Section 2.1.3 to construct

the prior for our pyramidal graph.
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(a)

(b) (c)

Figure 3-1: A pyramidal graphical model and its decomposition. (a) A pyramidal
graph for two-dimensional processes. (b) A quadtree (c) Nearest-neighbor grids at
multiple scales.

Quadtree structure

A parent node in the quadtree is the coarse representation of its four children. There-

fore, we simply let Jt impose the constraint that a parent node is close to its children.

If we use C(i) ⊂ Vm+1 to denote the children of node i ∈ Vm, Jt is defined as follows:

exp(−x′Jtx) = exp(−
M−1∑
m=1

βm

∑
i∈Vm

∑

j∈C(i)
(x(m,i) − x(m+1,j))

2), (3.2)

where the parameter βm determines how severely we penalize the difference between

the value at a node at scale m and the value at each of its children at scale m + 1. Jt
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is a block tri-diagonal matrix and can be decomposed by scale as follows:

Jt =




cβ1IN1 β1JT12 0 0

β1JT21 (β1 + cβ2)IN2 β2JT23 0

0
. . . . . . . . .

0 0 βM−1JTM,M−1
βM−1INM




(3.3)

Here, Nm indicates the number of nodes at scale m, and INm is the Nm×Nm identity

matrix. The constant c is the number of children each parent has, so in our pyra-

midal graph, c equals 4. JTm,m+1 is a sparse Nm × Nm+1 matrix in which each entry

corresponding to a parent-child pair equals −1, and all other entries are zero. We

denote the collection of βm’s as β = [β1, β2, . . . βM−1].

Grid structure

The nearest-neighbor grid model Js imposes smoothness within each scale. Since the

edges between different scales are captured by Jt, every element of Js that corresponds

to an inter-scale entry is zero, so it can be decomposed by scale as follows:

Js =




α1Js1 0 0 0

0 α2Js2 0 0

0 0
. . . 0

0 0 0 αMJsM




(3.4)

where Jsm represents a thin-membrane prior at scale m. Therefore, if we let N (i) ⊂
Vm be the neighboring nodes of node i ∈ Vm within the same scale,

exp(−x′mJsmxm) = exp(−
∑
i∈Vm

∑

j∈N (i)

(x(m,i) − x(m,j))
2). (3.5)

Notice that an off-diagonal entry of Jsm is (Jsm)ij = −1 if (i, j) ∈ E and 0 otherwise.

The diagonal elements of Jsm are equal to the number of neighbors each node has

within scale m. The parameter αm determines how severely we penalize the gradient
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of the field at scale m. If we want a smoother field, we can increase the value of αm.

Coarser scale nodes represent spatial regions in which the center points are located

farther apart, so it is natural to decrease αm as we go to a coarser scale. We use

vector α = [α1, α2, . . . αM ] to denote the collection of αm’s.

Note that the thin-membrane model, as well as its extension to a quadtree and

multiple grids, yields positive semidefinite J matrices. Therefore, in order to make

Jprior a valid prior model, we add a small regularization term εI to Jprior to make it

positive definite. Unless otherwise stated, it is assumed that all prior models in the

rest of this chapter are valid models.

Walk-summability

Notice that as long as all parameters α and β are nonnegative, the diagonal elements

of Jprior = Jt +Js are positive, and the off-diagonal elements are negative. Therefore,

the partial correlation coefficient between any pair of nodes is nonnegative, and the

prior of the pyramidal graph is an attractive model [37]. As mentioned in Section

2.1.3, if irregular measurements are mapped to the closest nodes, the observation

model CT R−1C is a diagonal matrix with positive elements, so the posterior model

J = Jprior + CT R−1C is also an attractive model. It is proven in [37] that all valid

and attractive models are walk-summable. Without the regularization term εI, Jprior

is positive semidefinite, but if we have at least one measurement, the observation

model makes J a positive definite matrix. Therefore, the posterior model J is walk-

summable, and Jprior is also walk-summable if we add the regularization term εI to

make it a valid model.

We may use other variants of prior models for either Jt or Js. For example, a

parent node may be modeled as the scaling coefficient of a wavelet transform [39]

of its children, or the thin-plate model introduced in Section 2.1.3 can be used to

model intra-scale smoothness in Js. However, these priors may produce a more com-

plicated graph structure with more edges, and for many cases, the walk-summability

of such models is not guaranteed (for example, the thin-plate model is not walk-

summable). Therefore, in this thesis, we focus on the multiresolution extension of the
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Figure 3-2: An illustration of the pyramidal graph with all nodes projected downward.
◦ : nodes at scale m + 1; • : nodes at scale m; £ : a node at scale m− 1.

thin-membrane model to define the prior on pyramidal graphs.

3.2 Covariance Realized by Pyramidal Graphs

In this section, we observe the covariance structure of the pyramidal graph with

the prior model defined in the previous section. Since we are primarily interested

in modeling the finest scale of pyramidal graphs, we compare the correlation decay

at the finest scale with the tree and monoscale thin-membrane counterparts. For

illustration purposes, we use one-dimensional processes in this section to plot the

decay of correlations with distances. The covariance structure of two-dimensional

processes can be described similarly.

Let us decompose the J matrix of the pyramidal graph into block matrices for

each scale as follows:

J =




| | |
... J[m−1,m−1] J[m−1,m] 0 0

0 J[m,m−1] J[m,m] J[m,m+1] 0

0 0 J[m+1,m] J[m+1,m+1] ...

| | |




(3.6)
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where J[i,j] refers to the Ni ×Nj sub-matrix of J , corresponding to scale i and scale

j. Notice that scale m does not have edges from the scales other than its parent

scale m − 1 and its child scale m + 1. Therefore, Ji,m is a zero matrix except i =

m− 1,m, m + 1.

The thin-membrane model as well as its extension to trees and pyramidal graphs

is nearly singular even with the added regularization term. So, in order to observe

how correlations decay with distances, we use posterior covariance with a stronger

regularization term which corresponds to measurements at the finest scale:

P , J−1 = (Jprior + CT R−1C)−1 (3.7)

For the pyramidal graph, we also consider posterior conditional covariance at scale

m conditioned on adjacent scales m− 1 and m + 1:

P̄[m,m] ,
(
J[m,m]

)−1
(3.8)

This posterior conditional covariance conditioned on other scales plays an impor-

tant role in developing efficient inference algorithms, so we use the shortened term

conditional covariance throughout the thesis to denote P̄[m,m]. When we wish to em-

phasize the contrast between P and P̄[m,m], we use the term marginal covariance to

denote P . For a mathematical analysis of conditional covariances later in this chapter,

we remove the regularization term and analyze prior conditional covariance:

(P̄prior)[m,m] ,
(
(Jprior)[m,m]

)−1
(3.9)

Once we fix the structure of a Gaussian graphical model, its posterior covariance

matrix P is parameterized by the noise variance R and the parameters of the prior.

In the pyramidal graph, the ratio of α and β of different scales can be adjusted to

get the desired covariance structure at the finest scale. We first set the ratio of the

parameters based on the physical distance between the corresponding pair of nodes

when projected downward as shown in Figure 3-2. The distance between a pair of

neighboring nodes at scale m is twice the distance of a pair of neighboring nodes at
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scale m + 1. Since we are putting constraints on the square of the differences (see

(3.2) and (3.5)), it is appealing to set αm−1 as one quarter of αm, to impose weaker

constraints on nodes that are farther apart. Similarly, βm also decreases by a factor

of four as we go to coarser scales. A parent node is located at the center of its four

children, so the physical distance between a child and a parent is 1/
√

2 of the distance

between a pair of siblings (nodes which share the same parent). So, βm−1 = 1
2
αm.

Therefore, we let αM = ϕ and set the rest of the parameters as follows:

αm =
ϕ

4M−m
m = 1, 2, . . .M

βm =
1

2

ϕ

4M−1−m
m = 1, 2, . . .M − 1 (3.10)

We use a one-dimensional (1D) process with 64 variables and set both ϕ and

the noise variance equal to one (R = σ2I, σ = 1). The thin-membrane model in

1D is a first-order chain model shown in Figure 1-1(a), and we construct four scales

for both the pyramidal graph and the tree. For the tree model, we use the same

parameter β but remove all edges within each scale (equivalent to setting α = 0).

For the monoscale thin-membrane model counterpart, we use the parameter αM of

the pyramidal graph. Let us number the 64 nodes at the finest scale as node i,

i = 1, 2, . . . 64 starting from the left. Figure 3-3(a) shows the correlation between

node 8 and node i, where i runs from 8 through 37 for the pyramidal graph, the tree,

and the monoscale thin-membrane model.

The correlations in the tree model show severe blockiness and depend solely on

the length of the paths between the two nodes on the tree. Specifically, since node

8 and node 9 are far apart on the tree (the shortest path between them consists of

seven edges), the correlation between the two nodes is very small. Note that this is

an extremely naive implementation of a tree-structured graph. In practice, people

use more sophisticated models such as overlapping trees [14] or wavelet trees [10].

The finest scale of the pyramidal graph has long-range correlations compared to its

monoscale counterpart as shown in Figure 3-3(a), since coarser scale variables impose

additional long-range correlations to the thin-membrane model. So, the pyramidal
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Figure 3-3: The correlation decays of a pyramidal graph and its tree and monoscale
counterparts. (a) Correlations of the monoscale thin-membrane model and of the
finest scale in the pyramidal graph and in the tree. (b) Conditional correlations at
the finest scale of the pyramidal graph, plotted together with marginal correlations
at the finest scale and marginal correlations of the monoscale thin-membrane model.
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graph is more powerful in modeling processes with long-range correlations such as

fractional Brownian motion (fBm) [10]. In addition, the conditional correlation of

one scale, conditioned on adjacent scales, decays very quickly since the long-range

correlations are captured by coarser nodes. Figure 3-3(b) shows the correlations of the

monoscale thin-membrane model and the marginal and conditional correlations at the

finest scale of the pyramidal graph. Although the marginal correlation decays slowly,

the conditional correlation falls faster than marginal correlation of the monoscale

counterpart.

The condition number [3] of a symmetric and positive definite matrix A is given

as the ratio of the largest and the smallest eigenvalue:

κ(A) =
max eig(A)

min eig(A)
. (3.11)

A matrix is called well-conditioned if its condition number is small.

Proposition 3.1. The conditional covariance of one scale of the pyramidal graph

conditioned on adjacent scales is well-conditioned compared to the monoscale thin-

membrane model with the same parameter.

Proof. Let us consider the conditional prior covariance matrix of the finest scale as an

example. The same analysis can be applied to all other scales as well as to posterior

covariance matrices. From (3.1), (3.3) and (3.4), the conditional prior J matrix of

the finest scale conditioned on coarser scales is

J̄[M,M ] , αMJsM + βM−1INM
. (3.12)

Let {λi} be the eigenvalues of JsM , then the eigenvalues of J̄[M,M ] are {αMλi +βM−1}.
The condition number of J̄[M,M ] is

κ(J̄[M,M ]) =
max eig(J̄[M,M ])

min eig(J̄[M,M ])
=

αMλmax + βM−1

αMλmin + βM−1

=
λmax

λmin

· 1 + βM−1/(αMλmax)

1 + βM−1/(αMλmin)

≤ λmax

λmin

= κ(JsM) (3.13)
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Figure 3-4: Prior conditional correlations of the finest scale in the pyramidal graph
conditioned on coarser scales and prior correlations of its monoscale thin-membrane
counterpart.

If we focus on prior covariances, JsM is nearly singular, so λmin is close to zero.

In this case,

1 + β/(αMλmax)

1 + β/(αMλmin)
¿ 1 (3.14)

and the condition number of αMJsM is reduced significantly by adding the term

βM−1INM
in (3.12).

Figure 3-4 shows the conditional prior correlations at the finest scale of the pyrami-

dal graph with parameters in (3.10) and the prior correlations of its monoscale coun-

terpart. The condition number of the monoscale thin-membrane model is 5.7646 ×
1017, but it reduces to 9 in the conditional covariance of the pyramidal graph.

Therefore, we may ignore the conditional correlations between the pair of nodes

more than a few edges apart, and approximate the structure of each scale as a banded

covariance matrix when conditioned on adjacent scales. This indicates that once we

have estimates at adjacent scales, we can perform approximate inference at each scale
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Figure 3-5: Different correlation decays at the finest scale realized by pyramidal
graphs with four scales. model 1 : α = [1/64, 1/16, 1/4, 1], β = [1/32, 1/8, 1/2];
model 2 : α = [1, 1, 1, 1], β = [1, 1, 1]; model 3 : α = [0.0001, 0.0001, 0.0001, 1],
β = [1/32, 1/8, 1/2].

by only passing messages between nearby nodes. This is reminiscent of multipole

algorithms in which far-away effects are considered at coarser scales and the finer

scales only compute interactions among nearby regions. We may take a step further

and efficiently construct a pyramidal structure which combines a quadtree and an

FIR model in each scale. It is not straightforward, however, to model this structure

in graphical model framework, so we leave it as one of our future research topics.

Now, let us change the parameters of the pyramidal graph and observe the result-

ing marginal and conditional covariance at the finest scale. Figure 3-5 shows several

different types of correlation decays all realized by pyramidal graphs. Model 1 corre-

sponds to the model considered so far with parameters defined in (3.10) with ϕ = 1.

If we do not decrease the parameters at coarser scales and set αm = 1, and βm = 1

for all scales, the correlation at the finest scale decays even more slowly. If we want

to realize exponential decaying correlations as in monoscale thin-membrane models,

we leave β in the original model unchanged, but make αm at coarser scales extremely
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small (0.0001 for the model 3 in the plot). This demonstrates that by adjusting the

parameters in pyramidal graphs, we can capture long-range correlations as well as

fast-decaying correlations.
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Chapter 4

Inference on the Pyramidal Graph

In this chapter, we introduce efficient inference algorithms for models on the pyramidal

graph defined in Chapter 3. We begin in Section 4.1 with a brief introduction to the

multipole algorithm in computational physics. Then, we propose a class of multipole-

motivated inference algorithms which is guaranteed to converge because of the walk-

summability of the pyramidal graphical model. In Section 4.2, we decompose the

pyramidal graph into a quadtree and disconnected chains at each resolution and use

the Lagrangian Relaxation method, introduced in Section 2.2.3, to get estimates of

conditional means and upper bounds on variances using inference algorithms on each

subgraph. We focus on estimating approximate variances in Section 4.3, and apply

the low-rank approximation methods (see Section 2.2.4) to our pyramidal graph. The

re-estimation problem is discussed in Section 4.4, and we conclude this chapter with

experimental results in Section 4.5.

4.1 Multipole-motivated Approach

Multipole algorithms use multiple scales in order to reduce computational complex-

ity, but in a different context from multigrid methods. Instead of using coarser scale

estimates as an initial estimate at the finer scale, it is assumed that far-field ef-

fects are captured by coarser scales, and each fine scale only computes effects due to

nearby nodes. Although multipole algorithms were not developed in the graphical
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(a) (b) (c)

Figure 4-1: Illustration of the multipole algorithm. (a) Upward pass. (b) Downward
pass. (c) At the finest scale.

model framework, we can adopt the basic idea which performs only local operations

within each scale. This approximation is based on our observation from Chapter 3

that conditioned on adjacent scales, the correlation of one scale decays quickly. We

first develop a simple iterative algorithm in which the order of inference steps follow

the spirit of multipole algorithms, and then extend the idea to more sophisticated

iterations using adaptive ET algorithms.

4.1.1 Multipole Algorithm

The multipole algorithm [18] was developed to evaluate potentials due to distributions

of charges. Assume that charges are located at u1, u2, · · · um and we are interested

in calculating potentials at locations v1, v2, · · · vn far away from ui’s. If we compute

all pairwise interactions, it will take O(mn) computations. However, when the ui’s

and vj’s are located far apart from each other, we may approximate the potentials by

clustering ui’s and computing the influence of the cluster {ui} to each of vj. In this

way, we can reduce the computation to O(m + n).

Figure 4-1 illustrates the upward-downward algorithm to approximate far-field
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potentials. During the upward pass (Figure 4-1(a)), each region calculates its local

potential and passes the message upward. The coarser scale region collects the local

potentials of its children to compute its own local potential.

When the algorithm reaches the coarsest scale, it starts the downward pass (Fig-

ure 4-1(b)). When a region gets a message from its parent, it assumes that all the

necessary information about far-field regions are included in the message. For ex-

ample, in Figure 4-1(b), the colored region in the finer scale gets a message from its

parent (the colored region in the coarser scale) and ignores the dotted areas. Then,

it computes the potentials due to the areas with slanted lines and passes the message

to its children. When the algorithm reaches the finest scale, each region calculates

potentials due to its nearest neighbors and adds them to the far-field potentials com-

puted at the coarser scales. Usually, these estimates are used then as preconditioners

for other iterative algorithms.

4.1.2 Multipole-motivated Inference Algorithm

Computing the optimal estimates of a Gaussian process given measurements y =

Cx + v is equivalent to solving the linear equation:

(Jprior + CT R−1C)x̂ = h (4.1)

where R is the covariance matrix of the noise process v, and h = CT R−1y. Since

the pyramidal graph has measurements only at the finest scale nodes, the matrix

CT R−1C and the vector h have entries corresponding to coarser scale nodes equal to

zero:

CT R−1C =




0 0
. . .

...

0 0

0 · · · 0 CT
MR−1CM




h =




0
...

0

CMR−1y




(4.2)

where CM is the matrix which maps the finest scale nodes to measurements: y =
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(a) (b)

Figure 4-2: A pyramidal graphical model with multiple nodes at the coarsest scale.
(a) A pyramidal graph. (b) An embedded subgraph used for the initialization step of
the multipole-motivated inference.

CMxM + v. We use hm to denote the subvector of h corresponding to scale m, even

though hm = 0 for all m 6= M .

Remember that the pyramidal graph with the prior defined in Chapter 3 is walk-

summable. Therefore, we may use any combination of embedded subgraph iterations

introduced in Section 2.2.1, and the algorithm will eventually converge to the solution

x̂ of (4.1). However, to speed up the convergence, we design an inference algorithm

to guide the order of subgraphs to follow the spirit of multipole algorithms.

Note that the main objective in the upward pass of the multipole algorithm is to

collect local information and to pass it upward to coarser scales. Since the coarser

scale nodes in the pyramidal graph do not have any measurements at the beginning,

we need to distribute the measurement information to coarser scales rapidly. At this

stage, we are not interested in getting smooth estimates at each scale, so we assume

that our prior model has only the Jt component and ignore Js in (3.1) except at the

coarsest scale. While the pyramidal graph in Figure 3-1 has one node at the coarsest

scale, we may stop the pyramid at a scale below this coarsest scale, i.e. one with

multiple nodes as in Figure 4-2(a). Even in this case, the number of variables at

the coarsest scale is often small enough to make exact, global inference possible. For

example, for a pyramidal graph with 5 scales, the number of nodes at the coarsest

scale is reduced by 1024 compared to the finest scale. Therefore, we use the subgraph
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shown in Figure 4-2(b) and use the Jt matrix and the Js[1,1] matrix as a prior to get

rough initial estimates.

x̂(0) = (Jt + [Js[1,1]] + CT R−1C)−1h (4.3)

where the notation [Js[1,1]] means that Js[1,1] is zero-padded to an N × N matrix as

follows:

[Js[1,1]] =




Js[1,1] 0 · · · 0

0 0
...

. . .

0 0




(4.4)

Starting with the initial estimates in (4.3), we perform a coarse-to-fine sweep

(downward pass) to smooth the estimates within each scale. Since different scales in

the pyramidal graph are statistically connected to each other, the changes at finer

scales affect the nodes at coarser scales. Therefore, we need to perform the upward-

and downward- pass multiple times before the iterative inference algorithm converges.

Let x̂d(2n−1) be the estimates computed by the downward pass at iteration (2n− 1),

and let x̂u(2n) be the estimates computed by the upward pass at iteration (2n). Let

xu(0) = x(0).

As the equivalent step to the downward pass in the multipole algorithm, we per-

form some in-scale operations within each scale starting from the coarsest scale and

proceeding downward. At scale m, we first get messages from adjacent scales and

perform inference within scale m. This is basically a block Gauss-Seidel iteration

introduced in Section 2.2.1 with the nodes at scale m being the nodes to be updated.

x̂d(2n−1)
m = J−1

[m,m](hm − J[m,m−1] · x̂d(2n−1)
m−1 − J[m,m+1] · x̂u(2n−2)

m+1 ) (4.5)

Since inverting J[m,m] is not tractable for finer scales with a large number of nodes,

we apply a hybrid of ET and block Gauss-Seidel iterations.

x̂d(2n−1)
m = J−1

Sn
(hm −KSn · x̂u(2n−2)

m − J[m,m−1] · x̂d(2n−1)
m−1 − J[m,m+1] · x̂u(2n−2)

m+1 ) (4.6)
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1. Initialization: get initial estimates based on the tree prior and the thin-
membrane prior within the coarsest scale.

2. In-scale inference: starting from the coarsest scale and proceeding to finer
scales, smooth the estimates using a single Gauss-Jacobi iteration within each
scale.

3. Tree inference: apply one ET iteration using the embedded quadtree.

4. Repeat the in-scale inference and tree inference steps until a stopping criterion
is met.

Table 4.1: Multipole-motivated inference algorithm using the quadtree and Gauss-
Jacobi iterations.

where Sn is a tractable subgraph embedded in Gn = (Vm, EVm) and KSn = J[m,m]−JSn .

Recall from Chapter 3 that in the pyramidal graph, the correlations within one

scale decay quickly with distance once conditioned on adjacent scales. Therefore,

within each scale, we may ignore messages from far-away nodes and only pass mes-

sages among nearby nodes. In the multipole algorithm context, this can be interpreted

as computing potentials from nearby nodes at each scale, assuming that far-field ef-

fects are captured at coarser scales. Therefore, we choose the subgraph Sn to be a

fully disconnected graph at each scale. This is essentially applying a single Gauss-

Jacobi iteration within each scale. So, JSn is a diagonal matrix with entries taken

from J[m,m]:

(JSn)ij =





(J[m,m])ij if i = j

0 otherwise
(4.7)

For each fine-to-coarse sweep, or the upward pass, we use the quadtree structure

connecting different scales. Although it is sufficient for this step to pass messages up-

ward, to facilitate convergence analysis, we pass messages both upward and downward

to perform exact inference on the quadtree. Then, this step is equivalent to applying

one ET iteration. Let Jn be defined as the associated J matrix corresponding to the
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quadtree as follows:

(Jn)ij =





(J)ij if i = j or j ∈ C(i)

0 otherwise
(4.8)

where C(i) is the set of child nodes of i, i.e. the neighbors at the next finer scale.

An equivalent representation is Jn = Jt + diag(Js) + CT R−1C, where diag(Js) is a

diagonal matrix with entries taken from Js. Let Kn = J−Jn. Then, the ET iteration

using the quadtree structure can be represented as:

x̂u(2n) = J−1
n (h−Knx̂

d(2n−1)) (4.9)

The algorithm is summarized in Table 4.1. Since the pyramidal model is walk-

summable, and since every edge is included infinitely often in either the tree inference

or the in-scale inference step, the iteration converges for any combination of the two

inference steps.

4.1.3 Adaptive Iterations

In the previous section, we used Gauss-Jacobi iterations for the in-scale inference

steps and the quadtree for the tree inference steps. In order to reduce the number of

iterations, we apply the adaptive ET iterations developed by Chandrasekaran et al.

[6] to adaptively choose these subgraphs to reduce the estimation error quickly. Let

the error at iteration n be e(n) = x̂− x̂(n) and the residual error be h(n) = h− Jx̂(n).

In [6], it is shown that minimizing a loose upper bound of the error ‖ e(n) ‖`1 is

equivalent to solving the maximum spanning tree problem:

arg max
Sn a tree

∑

(i,j)∈Sn

ωij (4.10)
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1. Initialization: get initial estimates based on the tree prior and the thin-
membrane prior within the coarsest scale.

2. In-scale inference: starting from the coarsest scale and proceeding to finer
scales, smooth the estimates using an adaptively chosen spanning tree within
each scale.

3. Tree inference: choose a spanning tree of the pyramidal graph using the
adaptive ET algorithm, and apply one ET iteration.

4. Repeat the in-scale inference and tree inference steps until a stopping criterion
is met.

Table 4.2: Multipole-motivated inference algorithm using the adaptive ET iterations.

where ωij is the absolute walk-sum over the walks that live solely on edge (i, j) re-

weighted by the absolute residual of nodes i and j:

ωij =
|rij|

1− |rij| · (|h
(n−1)
i |+ |h(n−1)

j |) (4.11)

where rij is the partial correlation coefficient between xi and xj as defined in (2.21).

In principle, we may treat the pyramidal graph as a general graphical model and

apply the adaptive ET iterations without any guidance to utilize the hierarchical

structure. However, since the adaptive algorithm chooses a spanning tree in a greedy

fashion, it tends to focus on the edges within the finest scale in which the residual

errors of the nodes are usually largest. We need to force the algorithm to utilize

coarser scale structure more actively, which may not reduce the error immediately at

the next step, but eventually will lead to faster convergence. So, we again use the

combination of global and in-scale computations to speed up the convergence. In other

words, we use the same upward-downward procedure as in the previous section, but

replace both the Gauss-Jacobi iteration and the quadtree with spanning trees chosen

by adaptive ET algorithms. The algorithm is summarized in Table 4.2. Again, from

the walk-summability of the pyramidal graph, this procedure is guaranteed that the

iteration converges.
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Initial Decomposition


Inference on Each Subgraph


Node Potential Exchange

at node i


Select a node i


Figure 4-3: A block diagram of the Lagrangian relaxation method. A more efficient
implementation is illustrate in Figure 4-4.

4.2 Lagrangian Relaxation Methods

In Section 2.2.3, we introduced the Lagrangian relaxation method which decomposes

an intractable graph into tractable subgraphs and computes the approximate mo-

ments of the original graph by identifying a valid decomposition which satisfies the

reweighted moment-matching conditions in (2.29). In this section, we describe an it-

erative method developed by Johnson [21] to solve the reweighted moment-matching

conditions, and apply it to our pyramidal graph.

Consider a graphical model G = (V, E) with associated information matrix J and

potential vector h. Assuming that inference on the original graph is intractable,

we decompose G into tractable subgraphs Gk = (V k, Ek). These subgraphs may

share nodes, edges, or cliques, but we focus our attention here on the case when the

subgraphs only have common nodes as shown in Figure 4-6. Consider a valid initial

decomposition {Jk} and {hk} such that J =
∑

k Jk, h =
∑

k hk, and Jk Â 0 for all

k. We alternately solve inference problems on each subgraph and then modify the

decomposition to force the reweighted moment-matching condition at a single node.

Note that when we perform inference again on each subgraph using the modified

decomposition, the reweighted moment-matching condition will not be satisfied at

any other node in general. So we iteratively cycle through all of the nodes in the

original graph. This procedure is illustrated in the block diagram in Figure 4-3.
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Inference on Each Subgraph We perform inference on each subgraph Gk =

(V k, Ek), and compute the marginal statistics Ĵk
i , (P k

i )−1 and ĥk
i , Ĵk

i x̂k
i at node i.

Node Potential Exchange For each subgraph Gk, we update the node potentials

Jk
ii and hk

i by exchanging potentials among the subgraphs which share the same node:

Jk
ii ← Jk

ii + (ρk(
∑

k

Ĵk
i )− Ĵk

i )

hk
i ← hk

i + (ρk(
∑

k

ĥk
i )− ĥk

i ) (4.12)

where the sum is over k such that i ∈ V k. The weight ρk of each subgraph Gk is given

as the function of Jk as in (2.27).

Theorem 4.1. After the node potential exchange step at node i, the following condi-

tions are satisfied.

1. All subgraphs are valid: Jk Â 0 for all k.

2. J =
∑

k Jk, h =
∑

k hk

3. When inference is again performed on each subgraph with the modified decom-

position, the re-weighted moment-matching condition is satisfied at node i, i.e.

(Ĵk
i )−1ĥk

i and ρk(Ĵ
k
i )−1 are constants independent of k.

Proof. See [21].

In order to find the valid decomposition which satisfies the reweighted moment-

matching conditions at all nodes, we iteratively cycle through all of the nodes of the

original graph. The order of nodes can be specified arbitrarily as long as each node is

revisited during each cycle. Then, the algorithm is guaranteed to converge as stated

in the following theorem.

Theorem 4.2. If we follow the procedure in the block diagram in Figure 4-3 and

iterate through all of the nodes of the original graph, the node potentials at all nodes
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Initial Decomposition


Inference on Each Subgraph


Node Potential Exchange

at node u
(n)


Select a node u
(n)


Efficient Inference (updating


messages from u
(n)
 to u
(n+1)
)


Figure 4-4: A block diagram of the efficient implementation of the Lagrangian re-
laxation method. u(n) is a single node in V and u(n+1) is the node to be updated
next.

converge to fixed points. After the convergence, the pseudo-moments of the original

graph at each node i ∈ V can be computed as follows:

x̃i = (Ĵk
i )−1ĥk

i

P̃i = ρk(Ĵ
k
i )−1 (4.13)

In addition, x̃i converges to the correct conditional mean x̂i, and P̃i is an upper bound

on the true covariance Pi.

Proof. See [21].

In principle, after updating each node potential in each subgraph, we need to

propagate the changes in the messages to all other nodes in each subgraph so that

the other nodes can compute correct marginal statistics before updating their own

node potentials. However, this procedure takes O(N) computation for the update

of each node potential. Instead, we design an efficient message-passing algorithm to

update only a subset of messages after the update of each node potential as illustrated

in the block diagram in Figure 4-4. Kolmogorov [30] proposed a similar idea for an

efficient implementation of tree-reweighted message passing algorithms [53], but he

only considered the case when each subgraph is a first-order chain model and when
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1. Initialization

(a) Decompose J and h into a set of subgraphs Gk = (V k, Ek) and associated
Jk Â 0 and hk such that J =

∑
k Jk and h =

∑
k hk.

(b) Run BP on each subgraph until convergence.

2. Specify an ordering of nodes {u(1), u(2), . . . , u(N)}, where u(n) is a single node in
V . For n = 1, 2, . . . N , at sub-iteration n:

(a) For all subgraphs Gk such that u(n) ∈ V k, compute the marginal statistics
Ĵk

u(n) and ĥk
u(n) using (4.14).

(b) Update the node potentials of u(n) in each subgraph using (4.12).

(c) Update the messages on the path from u(n) to u(n+1).

3. Update the weights ρk’s using (2.27).

4. Repeat Step 2 and 3 until convergence.

5. Compute the pseudo-moments of the original graph using (4.13).

Table 4.3: Lagrangian relaxation methods with the efficient message update scheme.

the nodes are updated sequentially from one end of the chain to the other end.

We begin with a formal definition of up-to-date messages. Let Tj\i denote the

subtree rooted at j away from i. If the message mj→i , exp (−1
2
∆Jj→ix

2
j + ∆hj→ixj)

contains all the necessary information from Tj\i, a node i in a tree can compute its

exact marginal statistics by combining messages and its local potentials [37]:

Ĵi = Jii +
∑

j∈N (i)

∆Jj→i

ĥi = hi +
∑

j∈N (i)

∆hj→i (4.14)

Therefore, when a node potential of node k ∈ Tj\i is changed, the message mj→i

needs to be updated to compute the correct marginal statistics at node i.

Definition 4.3. A message mj→i is up-to-date if it represents the result of elimi-

nating all variables in Tj\i.
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u
u
(n)
 (n-1)


Figure 4-5: An illustration of Theorem 4.4.

Table 4.3 presents the Lagrangian Relaxation method with an efficient message

passing scheme which can be applied to the case when each subgraph is cycle-free

and shares only nodes with other subgraphs. After the initial decomposition, we run

the Belief Propagation (BP) algorithm [40] until convergence in each subgraph. Note

that after BP converges in a tree-structured graph, every message is up-to-date.

Let N be the number of nodes in the original graph. At sub-iteration n, we update

the node potential of a single node u(n) ∈ V . Let us specify an ordering of nodes {u(n)}
in which each node is included once. We define one iteration as one cycle of N sub-

iterations in which the potentials of every node are updated exactly once. After one

iteration, we specify a new ordering of nodes and repeat the N sub-iterations.

The following theorem guarantees that we can indeed compute the correct mar-

ginal statistics at node u(n) by only updating messages on the path from u(n−1) to

u(n).

Theorem 4.4. Using the message passing scheme in Table 4.3, every incoming mes-

sage for node u(n) is up-to-date when the marginal statistics at node u(n) are computed.

We describe a simple illustration here and provide a detailed proof in Appendix

A. Figure 4-5 shows one subgraph with the two nodes u(n−1) and u(n) to be updated

at sub-iteration (n− 1) and n, respectively. If u(n−1) had all incoming messages up-

to-date at sub-iteration (n−1), then after the node potential of u(n−1) is modified, all
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(a) (b)

(c) (d)

Figure 4-6: A pyramidal graphical model and its decomposition into subgraphs.
(a) The original pyramidal graph with two scales. (b) Subgraph 1 : Disconnected
quadtrees. (c) Subgraph 2 : Vertical chains. (d) Subgraph 3 : Horizontal chains.

messages coming from outside of the circled area still remain up-to-date. Therefore, if

we update the messages on the path from u(n−1) to u(n), the node u(n) has all incoming

messages up-to-date.

Figure 4-6 shows one natural decomposition of the pyramidal graph into three

subgraphs. We first decompose the pyramidal graph into the quadtrees and sepa-

rated multiple grid models, and then further decompose the grid models into vertical

and horizontal chains. The quadtrees and coarser scale nodes provides paths through

which far-away nodes can communicate rapidly, so the subgraphs can exchange poten-

tials more efficiently than in the monoscale counterpart. Note that this decomposition

enables a simple implementation of the Lagrangian relaxation method, since all sub-

graphs are trees and only share nodes with each other, as assumed in the analysis

of this section. However, we may construct other subgraphs with more complicated
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Figure 4-7: An illustration of the pyramidal graph as a Markov chain model. (a) A
first-order Markov chain in which each node represents one scale in the pyramidal
graph. (b) A reduced chain in which all nodes except the node m− 1, m, m + 1 are
eliminated from (a).

structure in order to get faster convergence, and the analysis in this section can be

extended to the case when subgraphs share edges. In addition, note that the con-

vergence of this algorithm is not based on the walk-summability of the model as in

embedded subgraph algorithms. Therefore, we may use other prior models for the

pyramidal graph (such as a thin-plate model for each scale) and still be able to prove

convergence.

4.3 Low-rank Variance Approximation Algorithms

The diagonal elements of the error covariance matrix P correspond to the uncertain-

ties in the estimates at each node, and provide valuable information. For example,

from the estimates of error variances, we may detect regions in which the prior model

should be modified or more measurements need to be taken (see Section 4.4). There-

fore, we wish to get approximate values of the diagonal elements of P , which, of

course, satisfies J · P = I, where I is an identity matrix, without inverting J . We

decompose the J and P matrix by scale as in (3.6), and let J[i,j] and P[i,j] denote the

sub-matrix of J and P respectively, corresponding to scale i and scale j. Notice that

even though J[i,m] is zero except for i = m− 1,m, m + 1, the covariance matrix P is

usually a full matrix.

Theorem 4.5. The marginal covariance of nodes at scale m can be represented as
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follows:

P[m,m] =
(
J[m,m]

)−1
+

(
J[m,m]

)−1
Qm

(
J[m,m]

)−1
(4.15)

where

Qm =






 J[m−1,m]

J[m+1,m]




T 
 P[m−1,m−1] P[m−1,m+1]

P[m+1,m−1] P[m+1,m+1]





 J[m−1,m]

J[m+1,m]


 1 < m < M

J[1,2] P[2,2] J[2,1] m = 1

J[M,M−1] P[M−1,M−1] J[M−1,M ] m = M

(4.16)

Proof. Consider representing our pyramidal model as a first-order Markov chain

model as shown in Figure 4-7(a), in which each node m is associated with xm, the

collection of all variables at scale m. We eliminate all the coarser nodes from 1 to

m− 2 sequentially and denote the resulting vector at node m− 1 as xa
m−1, which cor-

responds to the ancestors of nodes at scale m. Similarly, we eliminate all finer nodes

and let xd
m+1 represent the descendants of nodes at scale m. Figure 4-7(b) shows the

reduced chain model. Let Ja
[m−1] and Jd

[m+1] denote the sub-matrix of the reduced J

matrix associated with xa
m−1 and xd

m+1, respectively, and let Ĵ[m] denote the marginal

J matrix for scale m when nodes at all other scales are eliminated. Using Gaussian

elimination [37], the marginal J matrix for scale m is given by

Ĵ[m] = J[m,m] − J[m,m−1]

(
Ja

[m−1]

)−1
J[m−1,m] − J[m,m+1]

(
Jd

[m+1]

)−1
J[m+1,m]

= J[m,m] −

 J[m−1,m]

J[m+1,m]




T 


(
Ja

[m−1]

)−1

0

0
(
Jd

[m+1]

)−1





 J[m−1,m]

J[m+1,m]




Using the Woodbury Identity [41],

(
Ĵ[m]

)−1

=
(
J[m,m]

)−1
+

(
J[m,m]

)−1


 J[m−1,m]

J[m+1,m]




T

A−1


 J[m−1,m]

J[m+1,m]


 (

J[m,m]

)−1

(4.17)
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where A is the (Nm−1 + Nm+1)× (Nm−1 + Nm+1) matrix:

A =


 Ja

[m−1] 0

0 Jd
[m+1]


−


 J[m−1,m]

J[m+1,m]


 (

J[m,m]

)−1


 J[m−1,m]

J[m+1,m]




T

. (4.18)

The above equation corresponds exactly to the Gaussian elimination step of elim-

inating node m from the chain model in Figure 4-7(b). So, the inverse of A is simply

the marginal covariance of the nodes at scale m− 1 and scale m + 1 when we elimi-

nated nodes at all other scales. Substituting A in (4.17), and denoting the marginal

covariance of scale m as P[m,m] ,
(
Ĵ[m]

)−1

, we get the expression in (4.15) for the

covariance of nodes at scale m.

Evaluating the right side of (4.15) is still intractable since we need to invert J[m,m]

and compute the joint covariance matrix of scales m − 1 and m + 1. So, we focus

on computing lower bounds on the diagonal elements of P[m,m]. Let pii denote the ith

diagonal element of P[m,m], which corresponds to the error variance of node i at scale

m.

In Section 3.2, we defined the conditional covariance P̄[m,m] ,
(
J[m,m]

)−1
at scale

m conditioned on its parent scale m− 1 and and its child scale m+1. We denote the

(i, j) entry of P̄[m,m] as p̄ij, which corresponds to the conditional covariance between

node i ∈ Vm and node j ∈ Vm conditioned on nodes at the coarser scale m−1 and the

finer scale m + 1. Then, we consider the following lower bound on the error variance

at node i:

pii = p̄ii +
∑
j∈Vm

∑

k∈Vm

p̄ij · p̄ik · (Qm)jk

> p̄ii + p̄ii · p̄ii · (Qm)ii +
∑

j∈Nm(i)

∑

k∈Nm(i)

p̄ij · p̄ik · (Qm)jk (4.19)

where Nm(i) is the set of neighboring nodes of i within scale m. The first equality

follows from (4.15), and the inequality follows from the fact that the pyramidal graph

is an attractive model. Since the partial correlation coefficient for every pair of node

is positive, every walk-sum is positive (see Section 2.2.2), and the covariance, as
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well as the conditional covariance between any pair of node is positive. It is also

straightforward to show that every element of the matrix Qm is also nonnegative.

We have seen in Figure 3-3(b) that conditional covariances decay quickly, so p̄ij

becomes very small when i and j are not neighbors. Therefore, although the lower

bound in (4.19) is not tight, it closely approximates the true value. In addition,

we can estimate p̄ij rapidly for j = i or j ∈ Nm(i) using the low-rank variance

approximation algorithm [36] introduced in Section 2.2.4. The algorithm computes

approximate covariances rapidly for models with exponentially decaying correlations,

and the shorter the correlation length is, the more accuracy the algorithm guarantees.

Now, let’s consider computing the matrix Qm defined in (4.16). The Nm×(Nm−1+

Nm+1) matrix
(
J[m,m−1] J[m,m+1]

)
is a sparse matrix with only 5 nonzero elements

at each row. The middle component of (4.16), the 2 × 2 block matrix, is the full

joint covariance matrix of scales m − 1 and m + 1 which is difficult to compute and

to store. Since we are only interested in computing a subset of elements of Qm, as

a first approach, we further relax the lower bound in (4.19), and approximate the

joint covariance matrix of scales m− 1 and m + 1 with a diagonal matrix. Then, the

approximate variances can be computed iteratively using coarse-to-fine sweeps. Let

ρ
(n)
i denote the approximate variance at node i ∈ Vm computed at nth coarse-to-fine

sweep, then from (4.19),

ρ
(n)
i = p̄ii + p̄ii · p̄ii · (Q̃(n)

m )ii +
∑

j∈Nm(i)

∑

k∈Nm(i)

p̄ij · p̄ik · (Q̃(n)
m )jk (4.20)

where Q̃
(n)
m is defined as follows:

Q̃(n)
m =






 J[m−1,m]

J[m+1,m]




T 
 Υ

(n)
[m−1] 0

0 Υ
(n−1)
[m+1]





 J[m−1,m]

J[m+1,m]


 1 < m < M

J[M,M−1] Υ
(n)
[M−1] J[M−1,M ] m = M

(4.21)

Υ
(n)
[m] is a diagonal matrix with ith diagonal element corresponding to the approximate

variance at i ∈ Vm computed at nth coarse-to-fine sweep, i.e. ρ
(n)
i . It is tractable to
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1. Compute the exact variances of nodes at scale 1.

2. For all finer scales, use the low-rank variance approximation algorithm (see
Section 2.2.4) to compute conditional covariance P̄[m,m] conditioned on adjacent
scales.

3. Initialize the variances of nodes at finer scales as the conditional variances com-
puted at Step 2, i.e. ρ

(0)
i = p̄ii for all i ∈ V \V1.

4. At nth coarse-to-fine sweep, for m = 2, 3, . . . , M :

(a) Compute Q̃
(n)
m in (4.21) using the approximate variances of nodes at adja-

cent scales.

(b) Compute the lower bound on variances ρ
(n)
i < pii for i ∈ Vm using (4.20).

5. Repeat Step 4 until a stopping criterion is met.

Table 4.4: The coarse-to-fine variance computation using the low-rank approximation
algorithm.

compute the variances of the nodes at the coarsest scale exactly, so we define Υ
(n)
[1] to

be a diagonal matrix with entries taken from P[1,1]. Table 4.3 summarizes the iterative

variance approximation algorithm.

The approximate lower bound computed by the algorithm in Table 4.3 is close

to the true error variance when we have dense measurements. However, for a model

with sparse measurements, even conditional correlations may have slow decay, and

the terms ignored in the lower bound in (4.20) may have significant values. This

problem can be resolved by using the wavelet-based approach proposed in [38].

It is well known that wavelet coefficients tend to be less correlated than the original

signal. Therefore, instead of constructing the low-rank matrix B (see Section 2.2.4)

by combining columns of the identity matrix I, Malioutov et al. [38] combine the

columns of a wavelet basis matrix W , in which each column corresponds to a wavelet

function. In addition, by using wavelet functions at multiple scales, they achieve

more compression at finer scales with larger number of nodes, resulting in significant

computational savings.
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Figure 4-8: The marginal model when the four coarser nodes in Figure 4-6 are elim-
inated. Edges with larger edgeweights are plotted with darker lines (except for the
edges forming the original grid model, which have edgeweights about 10 times larger
than the strongest edge newly introduced by the marginalization).

Although this multiscale approach is different from the multiscale modeling con-

sidered in this thesis, the algorithm can be applied easily to our pyramidal graph.

We provide a brief description here, and refer the reader to [35] for further details.

Assume that we are only interested in estimating the covariances at the finest scale

nodes. It is easy to design a low-rank matrix for a regular grid model(see [36]), so we

let BM be the spliced wavelet basis for the embedded grid model at scale M . Then,

the algorithm can be easily extended to our pyramidal graph by using the matrix

B = (0 BT
M)T with 0 for all coarser scales to compute the approximate variances at

the finest scale nodes.

We showed in Figure 3-3(a) that the monoscale thin-membrane model cannot

capture long-range correlations, so in order to model slowly decaying correlations

using a single scale model, we need to use a more densely connected graph. For

example, Figure 4-8 shows the resulting single scale graph when the coarser scale

nodes in the pyramidal graph in Figure 4-6 are marginalized out. Note that in general,

the low-rank approximation algorithm involves designing a matrix B such that bi and

bj are orthogonal to each other when i and j are close (see Section 2.2.4). This process

is simple for a regular grid model, and can be easily extended to our pyramidal graph,

but becomes challenging for a more densely connected graph. Therefore, it is easier

to apply the low-rank approximation algorithm on the pyramidal graph than on the
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single scale model in Figure 4-8.

In addition, the efficiency of this algorithm critically depends on how fast we can

solve the inference problem in (2.12). Since algorithms to compute conditional means

on the pyramidal graph converge faster than those on the monoscale models (see

Section 4.5), we can reduce the computational complexity significantly by using the

pyramidal graph.

4.4 Re-estimation

Let us re-state here the problem of computing the estimates of a Gaussian process

given measurements and a prior model:

Estimation problem Compute x̂ = J−1h, where J = Jprior + CT R−1C and h =

hprior + CT R−1y.

The re-estimation problem arises when we wish to update the estimates x̂ to

account for additional local information. In Section 1.2, we introduced two possible

scenarios when we need to solve the re-estimation problem. The first case is when

new measurements are introduced in a local region. In this case, the measurement

vector y and the mapping matrix CT R−1C are changed from our estimation problem.

The second case is modifying the model locally, for example, to get more accurate

estimates around discontinuities. By comparing the difference between measurements

and estimates with the value of estimated error variances, we may detect areas in

which the assumption of the prior model is seriously violated. Specifically, the esti-

mated error variance has information about the variance of the noise and the sparsity

of the measurements. If the difference between the estimates and measurements are

much larger than this estimated error variance, it can be assumed that the prior model

is not modeling the region accurately. Fieguth et al. [14] demonstrated that surface

discontinuities can be detected using this method. Alternatively, human experts may

analyze the estimates and indicate the local region which needs to be estimated again.

When we detect discontinuities, we may modify our smoothness prior locally to

weaken the smoothness constraints. This results in putting relatively more confidence

79



in measurements by reducing the weights of the prior. As a first approach, when the

neighboring nodes i and j are on the different side of the discontinuities, we remove

the constraint term regarding the two nodes from (3.2) or from (3.5), so the nodes

on either side of discontinuities are are not connected with an edge. This procedure

corresponds to modifying the Jprior matrix.

For either case, the re-estimation problem can be posed as follows:

Re-estimation problem Suppose that we have x̂ = J−1h. Efficiently compute the

updated estimates x̃ = (J + ∆J)−1(h + ∆h), where ∆J and ∆h have nonzero

elements only in a localized area.

Note that the term localized here means relative to the original J and h. For example,

if there is a cliff which spans across the entire region as in Figure 1-3, ∆J may have

nonzero elements for all nodes around the cliff. Still, the number of variables affected

is on the order of square root of the number of all variables.

We solve the re-estimation problem iteratively by updating a subset of variables

at each iteration. Chandrasekaran et al. [6] developed adaptive block Gauss-Seidel

algorithms to choose the next best subset of k variables to minimize an upper bound

of the error ‖ x̂ − x̂(n) ‖`1 . Let h(n) = h − Jx̂(n) be the residual error at iteration n

and let Vn be the set of nodes to be updated at iteration n.

1. Set Vn = ∅. For each node, set the node weight as the residual at iteration

(n− 1):

ωi = |h(n−1)
i | (4.22)

2. Pick the node i∗ ∈ V \Vn with the maximum weights, and set Vn ← Vn ∪ i∗.

3. If |Vn| = k, stop. Otherwise, update the neighboring nodes of i∗ not yet in Vn,

i.e. j ∈ N (i∗) ∩ V \Vn:

ωj ← ωj +
(
|h(n−1)

i∗ |+ |h(n−1)
j |

) |ri∗j|
1− |ri∗j| (4.23)

Then, go to step 2.
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1. Let S be the set of nodes i for which either ∆hi or ∆Jij is nonzero.

2. For each node i at the coarsest scale, define a quadtree Ti which consists of i
and the descendants of i (Figure 4-6(b) shows four such trees). Let TS = {Ti}
be the set of disjoint quadtrees sitting on the region of interest, i.e. Ti ∈ TS

only when there exist at least one node j ∈ Ti such that j ∈ S.

3. Tree inference: Perform exact inference on the subgraphs in TS.

4. Adaptive block Gauss-Seidel iteration:

(a) Set Vn = ∅. For i ∈ S, compute the node weights using (4.22). For all
other nodes i ∈ V \S, set the node weights to zero.

(b) Find the maximum weight node i∗ from V \Vn, and set Vn ← Vn ∪ i∗.

(c) If |Vn| = k, stop. Otherwise, update the weight of each node j ∈ N (i) ∩
V \Vn. If j ∈ S, update the node weight using (4.23). If j ∈ V \S, compute
the node weight of j first using (4.22) and update it using (4.23). Go to
step 2(b).

(d) Apply the Gauss-Seidel iteration in (2.18) and update the nodes in Vn.

5. Repeat Step 3 and 4 until a stopping criterion is met.

Table 4.5: Re-estimation algorithm to efficiently update the estimates to incorporate
local changes in a pyramidal graphical model.

Although the adaptive GS algorithm tends to select the nodes in the region with

nonzero entries in ∆J or ∆h, the algorithm is greedy in nature and thus tends to

pick only the finest scale nodes. As with the adaptive ET algorithm in Section 4.1,

including the coarser scale nodes may not reduce the error greatly at the immediate

next iteration, but eventually leads to faster convergence by propagating the changes

rapidly. In addition, we have seen in Section 1.2 that the changes in the far-apart

nodes can be well approximated at coarser scales. Therefore, we alternate between

tree-based inference iterations on the quadtrees sitting on the region of interest and

adaptive block GS iterations to get a faster convergence.

Table 4.5 describes the re-estimation algorithm for our pyramidal graph. Since ∆J

and ∆h have nonzero elements only in a localized region, it is likely that the nodes in

the region have larger node weights than the nodes outside of the region. Therefore,
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Figure 4-9: Test surface and measurements. (a) True surface. (b) Dense measure-
ments with low-level noise (σ2 = 1). (c) Dense measurements with high-level noise
(σ2 = 25). (d) Sparse measurements (10% of the finest scale nodes) with low-level
noise (σ2 = 1).

when applying the adaptive block GS iteration, instead of searching through all nodes

to find the node with the maximum weights, we first consider the nodes inside the

region as candidate nodes to be updated. When a node at the boundary of the region

is selected, we include all the neighboring nodes in our candidate set. Note that using

this modified version of the adaptive block Gauss-Seidel algorithm at step 4 in Table

4.5, we do not need to perform any global operation.
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4.5 Simulation Results

In this section, we present simulation results using the inference algorithms presented

in the previous sections. For estimation of conditional means and error variances,

we use a 64× 64 synthetic surface shown in Figure 4-9(a) as the ”true” surface, and

generate three sets of measurements in Figure 4-9(b)-(d):

• Dense measurements with low-level noise

• Dense measurements with high-level noise

• Sparse measurements with low-level noise

For dense measurements, each node at the finest scale generates one noisy mea-

surement: so yi = xi + vi for i ∈ VM , where v is a white Gaussian noise process with

covariance matrix R = σ2I. Note that even in this case, the coarser scales nodes of

the pyramidal graph do not have any measurements. We show inference results for

both low (σ2 = 1) and high (σ2 = 25) level noise1. For sparse measurements, we

randomly select 10% of the finest scale nodes to generate measurements with noise

variance σ2 = 1.

4.5.1 Estimation of Conditional Means

We test the multipole-motivated algorithms described in Table 4.1 and 4.2 on the

pyramidal graph with four scales and compare their performances with the corre-

sponding coarse-to-fine multigrid method and inference on a monoscale thin-membrane

model. Let xi be the height of the true surface at i ∈ VM , then the RMS error of

1Recall that J = Jprior + CT R−1C = Jprior + 1
σ2 CT C. For dense measurements, CT C is a

diagonal matrix with identity matrix at the finest scale and zero entries for all coarser scales. For
the high-level noise with σ2 = 25 and for the prior model with the parameter we used (see Table
4.6), each entry in the measurement matrix 1

σ2 CT C has a value less than 5% of the corresponding
entry in the Jprior matrix. For the low-level noise with σ2 = 1, the measurement term is about 15%
of the corresponding entry in the prior model, so we are putting more confidence in the measurement
term than the high-level noise case.
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estimates at iteration n can be computed as follows:

e(n)
rms =

√∑
i∈VM

(xi − x̂
(n)
i )2

NM

(4.24)

where x̂(n) denotes the vector of estimates at iteration n and NM is the number

of nodes at the finest scale. Figure 4-10 shows the convergence of the RMS error

for inference algorithms on the three models. For the plots in the left column, we

applied the algorithm in Table 4.1 for the pyramidal graph, and Gauss-Jacobi (GJ)

iterations for the monoscale thin-membrane model. To compare the performance with

the coarse-to-fine multigrid methods, we constructed multiple grid models with four

scales, and used GJ iterations within each grid model. For the plots in the right

column, we used the algorithm described in Table 4.2 for the pyramidal graph, and

also applied the adaptive ET iterations for each scale in the multigrid methods and

for the monoscale model.

In order to account for the fact that the number of variables updated is different

for each iteration in the pyramidal graph, in the multiple grids, and in the monoscale

grid model, we convert the number of iterations to equivalent GJ iterations in the

monoscale model. For the pyramidal graph, each iteration involves one downward

sweep in which we perform a single GJ iteration within each scale, and a tree-inference

step using the quadtree embedded in the pyramidal graph. So the number of opera-

tions is twice the number of nodes in the pyramidal graph, and we count one coarse-

to-fine and fine-to-coarse sweep as being equivalent to 2 × (1 + 1/4 + 1/16 + 1/64)

iterations in a monoscale model. For the multigrid method, each iteration at scale m

is re-scaled by 1/2M−m to account for the fact that iterations at coarser scales involve

smaller numbers of nodes. Both the inference algorithms in the pyramidal graph and

the multigrid method require far fewer equivalent iterations than algorithms in the

monoscale counterpart.

Note that the iterations in Figure 4-10 do not necessarily converge to the point

where the RMS error is minimized. This is because the true surface is not exactly

equal to the solution of the problem x̂ = J−1h. In addition, for real problems, the
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Figure 4-10: RMS errors in surface estimation using multipole-motivated algorithms
on the pyramidal graph and corresponding multigrid methods and iterations on the
monoscale model. Left: Gauss-Jacobi iterations. Right: Adaptive ET iterations.
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Figure 4-11: Convergence rates for the pyramidal graph, multiple grids, and the
monoscale grid model. Left: Gauss-Jacobi iterations. Right: Adaptive ET iterations.

86



Dense measurements with low-level noise

Dense measurements with high-level noise

Sparse measurements with low-level noise

Figure 4-12: Estimates using adaptive ET iterations on the pyramidal graph when
the normalized residual is reduced to 0.01.
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Pyramid Monoscale grid
Dense measurements with low-level noise 1.5 2
Dense measurements with high-level noise 0.2 0.3
Sparse measurements with low-level noise 0.4 0.5

Table 4.6: The values of the parameter ϕ used for the prior models.

RMS error is not computable because we do not know the true value of x. Therefore,

in practice, we use the residual h(n) = h−Jx̂(n) to test the convergence of an algorithm.

Figure 4-11 shows the the normalized residual error
‖h(n)‖`2

‖h‖`2
versus the the number of

re-scaled iterations. Note that the h and J for the pyramidal graph are different from

those in the multiple or monoscale grid models. The pyramidal graph has a more

complicated graph structure than separate grid models used in the multigrid method,

but still the multipole-motivated algorithms demonstrate comparable convergence

rates to the multigrid methods. Figure 4-12 shows the estimation results using the

pyramidal graph for each measurement set when the normalized residual is reduced

to 1%.

The convergence rates of the normalized residuals critically depend on the val-

ues of parameters of the prior model (see Section 3.1). We set the parameters for

the pyramidal graph following the ratios of physical distances between nodes as in

(3.10). Since a pyramidal graph has correlations with slower decays compared to the

monoscale counterpart with the same parameter at the finest scale, we adjuste the

parameters of different models to yield approximately similar estimates for each set

of measurements. The parameters used for the pyramidal graph and the monoscale

model are listed in Table 4.6. The grid models used in the multigrid methods have the

same parameter values as the monoscale model at the finest scale and the parameters

are decreased by 4 as we go to coarser scales.

Next, we apply the Lagrangian relaxation method to the pyramidal graph with

subgraphs in Figure 4-6. Based on the prior model of the pyramidal graph, we set
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Figure 4-13: Ordering of nodes in the pyramidal graph.

the initial decomposition as follows:

J1 = Jt + (1− 2ε) CT R−1C h1 = (1− 2ε) CT R−1y

J2 = Jsv + ε CT R−1C h2 = ε CT R−1y

J3 = Jsh + ε CT R−1C h3 = ε CT R−1y

(4.25)

where Jsv corresponds to the matrix with smoothness constraints in the vertical chains

in Figure 4-6(c) and Jsh corresponds to the horizontal chains in Figure 4-6(d) and

Jsv + Jsh = Js. The constant ε assigns weights of measurements to each subgraph

and we set ε = 1/3. It is straightforward to check that for all ε such that 0 < ε < 1,

the following conditions are satisfied: Jk Â 0 for all k, J =
∑

k Jk and h =
∑

k hk.

We number the nodes in the pyramidal graph sequentially from the coarsest scale

nodes to the finest scale nodes. In each grid model, we use lexicographic ordering by

columns, i.e. starting from the node at the upper left corner, we increase the number

in the direction of vertical chains. Figure 4-13 shows the ordering of nodes for the

pyramidal graph in Figure 4-6(a). We adopt the coarse-to-fine and fine-to-coarse

philosophy here and set the ordering of node updates {u(n)} in Table 4.3 alternating

between coarse-to-fine {1, 2, · · · , N} and fine-to-coarse {N, N − 1, · · · , 1} orders.

The LR method is applied to reconstruct the surface from the sparse measure-

ments in Figure 4-9(d). Figure 4-14 shows the estimates on each subgraph after the

initialization step in Table 4.3 and after 30 iterations of the LR algorithm. Initially,
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Estimates after the initialization step

Estimates after convergence

Figure 4-14: Estimates using the Lagrangian relaxation method for sparse measure-
ments. Left: subgraph 1 (quadtrees). Middle: subgraph 2 (vertical chains). Right:
subgraph 3 (horizontal chains)

the estimates on each subgraph show severe discontinuities and blockiness, but after

convergence, estimates are smoothed out by node potential exchange procedures. At

each iteration n, let x̂(n) be the average of estimates in each subgraph, and Figure

4-15 shows the RMS error at each iteration.

Both the multipole-motivated algorithms and the LR method have linear complex-

ity per iteration and converge in a few iterations compared to the number of nodes

in the graph. However, the LR method updates each node sequentially while the

multipole-motivated algorithms update all nodes in one scale in a parallel way. Since

the operations per iteration are of different characteristics, it is not straightforward

to compare the performance of these algorithms in general.

4.5.2 Estimation of Variances

In the previous sections, we introduced three methods to estimate variances of the

nodes in the pyramidal graph. First, using the Lagrangian relaxation method, we

obtain upper bounds of error variances. Secondly, the coarse-to-fine low-rank approx-
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Figure 4-15: RMS error in surface estimation for sparse measurements using the
Lagrangian relaxation methods on the pyramidal graph.

imation method described in Table 4.3 computes approximate lower bounds. Lastly,

using the wavelet-based low-rank approach, the variances at the finest scale nodes

can be estimated.

Figure 4-16 shows one cross section of the bounds on variances of the 64×64 syn-

thetic surface given the three sets of measurements in Figure 4-9. The upper bounds

show estimates computed by the LR method after 30 iterations, and lower bounds are

computed by applying 5 coarse-to-fine sweeps of the low-rank approximation method.

The upper bounds obtained by the LR method are rather loose, but they follow the

shape of the true variances. In addition, note that these bounds are obtained while

computing the optimal estimates without any additional cost. For the coarse-to-fine

low-rank approximation, the simple spliced standard bases with 2m−1 columns are

used to estimate the conditional correlations at scale m.

Figure 4-17 shows the variances estimated by the wavelet-based low-rank approx-

imation methods. We used 160 columns to compute the finest scale variances, and it

can be observed that the estimates are very close to the true variances.

4.5.3 Re-estimation

We revisit the example introduced in Section 1.2 in which sharp discontinuities are

blurred in the estimation process because of the smoothness prior, and apply the
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Figure 4-16: A cross section of estimates of approximate variances using the La-
grangian relaxation (LR) methods and the coarse-to-fine low-rank algorithm on the
pyramidal graph.
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Figure 4-17: A cross section of estimates of variances using the wavelet-based low-rank
approach on the pyramidal graph.
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(a) (b)

(c)

Figure 4-18: Re-estimation applied to a surface with discontinuities. (a) True surface.
(b) Estimates using a smoothness prior on the pyramidal graph. (c) Re-estimates after
10 iterations. Each iteration involves a little more than the half of all nodes.

re-estimation algorithm to correct the estimates. Figure 4-18(a) and 4-18(b) show

the true surface and blurred estimates, respectively. We pick the location of discon-

tinuities manually and modify the prior of the pyramidal graph such that the two

nodes on either side of the discontinuities are not connected with an edge. The pyra-

midal graph with four scales modeling this surface has 1360 nodes in total. Instead

of updating all the nodes, we use the set of quadtrees sitting along the discontinu-

ities, which involves the half of all nodes. Then we apply the tree inference steps

alternating with the adaptive block Gauss-Seidel iteration which selects and updates

10 nodes at each iteration. Figure 4-18(c) shows the results after 10 iterations, with

much more accurate estimates around the discontinuities.

Next, consider applying the re-estimation algorithm to the case when a set of

94



200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

Figure 4-19: The estimates of the top surface of a salt deposit.

measurements is added to a local region. We use the real problem of estimating the

top surface of a large salt deposit located below the sea floor of Gulf of Mexico. The

measurements, provided by Shell International Exploration, Inc., consist of 377, 384

picks by analysts interpreted from seismic data. We set the resolution at the finest

scale as 60 feet and estimate the surface at 1757 × 1284 nodes using a pyramidal

graph with four scales. The total number of nodes in the pyramidal graph is about 3

million. Figure 4-19 shows a 2D illustration of the estimates of the salt-top surface.

We introduce 100 new measurements in the small 17× 17 region indicated as the

white square in Figure 4-19. The re-estimation algorithm uses a tree-inference step

involving 765 nodes alternating with an adaptive block Gauss-Seidel iteration which

updates 100 nodes. Figure 4-20(b) shows the updated estimates after 10 iterations.

The estimates show more detailed surface delineations in the region compared to the

estimates before adding the measurements shown in Figure 4-20(a).

Figure 4-20(c) shows one cross section of the re-estimates together with the esti-

mates before adding the measurements. To compare the performance, the figure also
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Figure 4-20: Reestimation applied to the problem of updating estimates to incor-
porate a new set of measurements in a local region. (a) Estimates before adding
measurements. (b) Re-estimates. (c) A cross section of re-estimates.

shows the updated estimates using a naive method: after modifying J and h to incor-

porate the new measurements, we simply perform inference on the entire pyramid.

Using this naive implementation, 3 million nodes are updated at each iteration. The

re-estimation algorithm updates less than 1000 nodes at each iteration, yet after 10

iterations, they converge to the same results.

4.5.4 Observations

From the preceding simulations, we first showed that multiscale approaches, using

pyramidal graphical model or multigrid methods, require far fewer iterations than

the counterpart monoscale approach. In particular, multipole-motivated inference

algorithms on the pyramidal graph significantly outperform the inference algorithms

on the monoscale model when the measurements are sparse or corrupted by high-level
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noise.

The pyramidal graph is a consistent graphical model, while in the multigrid meth-

ods, it is assumed that stochastic structure in different scales are separated from each

other. The benefit of using the pyramidal graph is that various efficient algorithms

developed for inference on GMRF can be easily applied. For example, using the

Lagrangian relaxation method, we demonstrated that the inference on the pyrami-

dal graph can be performed by iteratively solving inference problems on tractable

subgraphs. In addition, the lower bound on variances can be computed by applying

the low-rank approximation in each scale iteratively through coarse-to-fine sweeps.

Using the wavelet-based low-rank algorithms, we also obtained close approximations

of variances of nodes at the finest scale.

To solve the re-estimation problem efficiently, we first need to propagate the local

changes rapidly and also adaptively select a subset of nodes to be updated. Com-

bining the tree-inference step with the adaptive block Gauss-Seidel iteration on the

pyramidal graph, the re-estimation algorithm rapidly computes more accurate esti-

mates around the discontinuities or updates the estimates to incorporate a new set

of measurements in a local area.
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Chapter 5

Multiscale Parameter Estimation

The pyramidal graphical model defined in Chapter 3 has a set of parameters which

control the strength of the smoothness constraints. In this chapter, we discuss es-

timating the parameters defining the prior model as well as the noise variance. We

begin Section 5.1 by reviewing the parameters in the pyramidal graph and intro-

ducing necessary notation. When the ratios between the parameters are fixed and

there remains a single free parameter for the prior model, the parameter estimation

problem can be solved by the standard Expectation-Maximization (EM) algorithm.

In Section 5.2, we describe the EM algorithm for the pyramidal graph and present

simulation results. When the number of free parameters is increased, however, the

problem becomes much more challenging because of the log partition function, and

using a surrogate log partition function as described in Section 5.3 fails to provide

satisfying results. We discuss the difficulties and possible directions for approximate

parameter estimation in Section 5.4.

5.1 Parameters in the Pyramidal Graph

The prior model Jprior = Js + Jt defined on the pyramidal graph with M scales has

M in-scale parameters αm’s associated with Js and M − 1 inter-scale parameters

βm’s associated with Jt (see (3.2), (3.3), and (3.4)). The pyramidal graph can be

considered as a set of candidate models, and estimating the parameters corresponds
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to searching for the best candidate given measurements [33].

Throughout Chapter 3 and Chapter 4, we fixed the ratios of these parameters

based on the physical distance between the corresponding pair of nodes as in (3.10),

and allowed a single free parameter ϕ to control the overall strength of the constraints.

In addition to this prior parameter, we define γ , 1/σ2 as a parameter which specifies

the noise variance. Then, the J matrix can be represented in terms of the two free

parameters ϕ and γ as follows:

J = ϕJP + γCT C (5.1)

where C is the measurement mapping matrix defined in Section 2.1.3 and JP is the

Jprior matrix with the fixed parameter ϕ = 1. We use the vector θ to denote all free

parameters, so in this case, θ = (ϕ, γ).

Now, consider estimating α and β separately. We still force the coarser scale

parameters to be decreased by 4, but allow the ratio between αM and βM−1 to vary.

Then, we have two free parameters for the prior model and the J matrix can be

represented as follows:

J = αJS + βJT + γCT C (5.2)

where JS is the Js matrix in (3.4) with the fixed parameters αm = 1
4M−m and JT

is the Jt matrix in (3.2) with βm = 1
4M−1−m . The collection of free parameters is

θ = (α, β, γ).

Since Js is a block diagonal matrix, it is straightforward to extend the above case

to consider αm’s separately and to estimate θ = (α1, . . . , αM , β, γ). Then,

J = Jprior + γCT C

= Js + βJT + γCT C

=




α1Js1 0 0 0

0 α2Js2 0 0

0 0
. . . 0

0 0 0 αMJsM




+ βJT + γCT C (5.3)
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where Jsm is a thin-membrane model within each scale with a unit parameter in (2.9).

5.2 EM Algorithm

The Expectation Maximization (EM) algorithm [1, 12] is an iterative method to esti-

mate parameters given incomplete (partially-observed) data. Let us denote the joint

probability of x and y as an exponential family (see Section 2.1.2):

p(x, y|θ) = exp(
∑
a∈A

θaφa(x, y)− Φ(θ)) (5.4)

Given observation y, we seek the parameter θ which maximizes the log-likelihood

function:

l(θ) ≡ log p(y|θ) = log

∫
p(x, y|θ)dx. (5.5)

This log-likelihood is difficult to maximize or even evaluate due to the integral form.

Instead, consider maximizing a concave lower bound obtained by using Jensen’s in-

equality [46],

l(θ) = log

∫
p(x, y|θ)dx

≥
∫

q(x) log
p(x, y|θ)

q(x)
dx , L(q, θ). (5.6)

The EM algorithm can be interpreted as maximizing the lower bound using a

coordinate ascent iteration [49]. Each iteration of the EM algorithm consists of two

steps:

E-step: q(i) = arg maxq L(q, θ(i−1))

M-step: θ(i) = arg maxθ L(q(i), θ)

In the expectation or E-step, we fix the parameters and optimize over the distribution

q. In the maximization or M-step, the set of parameters which maximizes the lower

bound defined by the distribution q is selected. The algorithm converges to the local

maximum of L(q, θ) [12].
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Given the current parameter estimates θ(i−1), it can be shown that the distribution

q(x) which maximizes the lower bound is the conditional distribution p(x|y, θ(i−1))

[49]. When p(x, y|θ) is an exponential family as in (5.4), it is sufficient to compute the

expected values of the sufficient statistics E[φa(x, y)|y, θ(i−1)] for the subsequent M-

step. Therefore, the E-step is equivalent to performing inference given measurements

and current parameter estimates. When exact inference is intractable, it is common to

use approximate inference algorithms such as BP or embedded subgraph algorithms,

although the convergence of the EM is no longer guaranteed [49].

The M-step finds the next parameter estimates which maximize L(q(i), θ). Sub-

stituting q(i)(x) = p(x|y, θ(i−1)) in (5.6),

L(q(i), θ) =

∫
p(x|y, θ(i−1)) log p(x, y|θ)dx + H(q(i)) (5.7)

where the second term is the entropy of q(i)(x) and is irrelevant to θ. So, we define

Q(θ, θ(i−1)) as the first term of the above equation. Then, using the exponential family

representation in (5.4):

Q(θ, θ(i−1)) = E[log p(x, y|θ) | y, θ(i−1)]

=
∑
a∈A

θaE[φa(x, y) | y, θ(i−1)]− Φ(θ) (5.8)

Note that the expected values in the above equation are computed using the parameter

values at the preceding E-step. Since the first term is linear in θ and the log partition

function is a convex function of θ (see Section 2.1.2), the Q function is concave with

respect to θ. Therefore, to find θa’s which maximize the Q function, we set the

gradient of Q as zero and solve the following equations:

∂Φ(θ)

∂θa

= E[φa(x, y) | y, θ(i−1)] ∀a ∈ A (5.9)

Estimation of θ = (ϕ, γ) Consider applying the EM algorithm to our pyramidal

graph with J defined in (5.1). Using p(x, y|θ) = p(x|θ)p(y|x, θ), the Q function can

be separated into the terms involving either ϕ or γ. In particular, the log partition
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function can be decomposed as Φ(θ) = Φ1(θ1) + Φ2(θ2) and we have

θ1 = ϕ θ2 = γ

φ1(x) = −1
2
xT JP x φ2(x, y) = −1

2
‖ y − Cx ‖2

Φ1(θ1) = −1
2
log det(ϕJP ) Φ2(θ2) = −1

2
log det(γCT C)

(5.10)

where we have assumed (for simplicity) that hprior is zero and ignored the constant
(

N
2

log(2π)
)

in the log partition function.

In the E-step, the expected values of φa’s are evaluated using the conditional

means x̂(i−1) = E[x | y, θ(i−1)] and error variances P̂ (i−1) = E[(x− x̂(i−1))(x− x̂(i−1))T |
y, θ(i−1)]. First, using the fact that the trace and the expectation operators commute,

η1 , E[xT JP x | y, θ(i−1)] = E[tr(JP xxT ) | y, θ(i−1)]

= tr(JP E[xxT | y, θ(i−1)])

= tr
(
JP (P̂ (i−1) + x̂(i−1)(x̂(i−1))T )

)

= tr(JP P̂ (i−1)) + (x̂(i−1))T JP x̂(i−1) (5.11)

Due to the sparsity of JP , we only need the variances of individual nodes and covari-

ances between the pairs of neighboring nodes to compute both terms in the above

equation [23]. Similarly,

η2 , E[‖ y − Cx ‖2| y, θ(i−1)] = E[tr((y − Cx)(y − Cx)T | y, θ(i−1)]

= ‖ y − Cx̂(i−1) ‖2 +tr(CP̂ (i−1)CT ) (5.12)

where tr(CP̂ (i−1)CT ) can be computed from the error variances of individual nodes.

When exact inference is intractable, we approximately evaluate η1 and η2 using the

approximation to x̂(i−1) and P̂ (i−1) computed from the inference algorithms in Chapter

4.

In the M-step, we solve (5.9) to find ϕ(i) and γ(i) which maximize the Q function.

Note that the log partition functions in (5.10) can be represented in terms of the
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parameters as follows:

Φ1(θ1) = −1

2
(log det JP −N log ϕ) (5.13)

Φ2(θ2) = −1

2
(log det CT C −Nmeas log γ) (5.14)

where N and Nmeas are the number of nodes and measurements, respectively. Sub-

stituting (5.13) and (5.14) into (5.9), we obtain the following expressions for the next

parameter estimates:

ϕ(i) =
N

η1

(5.15)

γ(i) =
Nmeas

η2

(5.16)

where η1 and η2 are the expected values in (5.11) and (5.12), respectively.

Simulation Results In order to test the accuracy of the EM algorithm on the

pyramidal graph, we first generate measurements from the pyramidal graph with

known parameters and estimate parameters from these measurements. Consider a

pyramidal graph with four scales with 16 × 16 nodes at the finest scale. Figure 5-1

shows the estimation results of γ for three different sets of parameters. For each

parameter set, we randomly generate k sets of measurements, where k runs from 1 to

10, and apply the EM algorithm. To be consistent with the assumption throughout

the thesis, we only generate measurements at the finest scale. For this problem, exact

inference is still tractable, so at each iteration of the EM algorithm, we compute

the conditional means and error variances exactly by matrix inversion. Figure 5-1

demonstrates that the estimate of γ converges to the true value as we increase the

number of measurements.

The accuracy of the estimates of ϕ can be increased by using a pyramidal graph

with a larger number of nodes at the finest scale. Figure 5-2 shows the estimation

results of ϕ using 5 sets of measurements generated from different sizes of pyramidal

graphs. The numbers on the x-axis indicate the number of nodes at the finest scale.
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Figure 5-1: Parameter γ estimated from measurements generated by the pyramidal
graph with 16× 16 nodes at the finest scale. The x-axis show the number of sets of
measurements, where each set is generated by the finest scale nodes of the pyramidal
graph.
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Figure 5-2: Parameter ϕ estimated from 5 sets of measurements generated by the
finest scale nodes of the pyramidal graph. The x-axis show the number of nodes at
the finest scale of the pyramidal graph.
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Model 1 Model 2 Model 3
ϕ γ ϕ γ ϕ γ

True 0.5 2 0.5 0.1 5 5
Estimates1 0.5628 2.0655 0.5074 0.0987 4.1801 4.9800
Estimates2 0.4955 2.0390 0.5072 0.0993 5.0758 4.9130

Table 5.1: Parameter estimation results on measurements generated by pyramidal
graphical models. Estimates1: Parameters estimated from 10 sets of measurements,
where each set is randomly generated by 16 × 16 nodes at the finest scale of the
pyramidal graph. Estimates2: Parameters estimated from 5 sets of measurements
generated by 64× 64 nodes.

For the pyramidal graphs with more than 1024 nodes at the finest scale, we use the

multipole-motivated algorithm to estimate the conditional means and the wavelet-

based low-rank algorithm to compute the covariances. As the number of nodes grows

larger, the estimate of ϕ converges to the correct value. Table 5.1 lists the estimates

of ϕ and γ using 10 sets of measurements generated by 16 × 16 nodes at the finest

scale, and 5 sets of measurements generated by 64 × 64 nodes at the finest scale of

the pyramidal graph.

Next, consider the surface used in Section 4.5 with dense measurements corrupted

by high-level noise (σ2 = 25, i.e. γ = 0.04) in Figure 4-9(c). Figure 5-3 shows the

estimates of ϕ and γ at each iteration using two different inference algorithms. First,

we apply the multipole-motivated algorithm with Gauss-Jacobi iterations (see Section

4.1.2) to estimate conditional means, and the wavelet-based low-rank approximation

algorithm (see Section 4.3) to estimate error variances at individual nodes and covari-

ances between the pairs of neighboring nodes. Secondly, the Lagrangian relaxation

method (see Section 4.2) is used to estimate both conditional means and approximate

covariances. Note that these two inference algorithms lead the estimates to converge

to different values because the variances computed by the LR method produce a

rather loose upper bound on the true variances. Table 5.2 lists the estimated values

of the parameters after 25 iterations. Since the measurements are not generated using

the pyramidal graph, the table lists the parameter value used for inference in Section

4.5 as ’true’ value of ϕ, which produced satisfying results both visually and in terms

of the RMS error.
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Figure 5-3: Estimates of parameters at each iteration. Left: ϕ, Right: γ.

ϕ γ

”true” 0.2 0.04
estimates using GJ & wavelet 0.0391 0.0543

estimates using LR 0.1022 0.0352

Table 5.2: Parameter estimation results on the synthetic surface used in Section 4.5
with dense measurements corrupted by noise with variance σ2 = 25. The true ϕ is
the value of parameter used for inference in Section 4.5.

Estimation of θ = (α1, . . . , αM , β, γ) Now, let us consider applying the EM al-

gorithm to the case with a larger number of parameters. For the analysis in this

part, considering each element of α is more convenient than forcing the fixed ra-

tio αm−1 = 1
4
αm, so we use the J matrix defined in (5.3). In order to find θ(i) =

(α
(i)
1 , . . . , α

(i)
M , β(i), γ(i)) which maximizes the Q function, we solve the system of equa-

tions in (5.9). Using the Jacobi’s formula: ∂ log det A
∂x

= tr(A−1 ∂A
∂x

), we obtain

tr
(
(J−1

prior)[m,m] · Jsm

)− E[xT
mJsmxm | y, θ(i−1)] = 0 ∀m (5.17)

tr
(
J−1

prior · JT

)− E[xT JT x | y, θ(i−1)] = 0 (5.18)

Nmeas

γ
− E[‖ y − Cx ‖2| y, θ(i−1)] = 0 (5.19)

Note that although Jprior is linear in terms of αm’s and β, it is not easy to represent

J−1
prior in terms of those parameters.
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From (5.3), JT =
Jprior−Js

β
, and it follows that

tr
(
J−1

prior · JT

)
=

1

β
tr

(
IN − J−1

prior · Js

)

=
1

β

(
N −

M∑
m=1

αmtr
(
(J−1

prior)[m,m] · Jsm

)
)

(5.20)

where we used the fact that Js is a block diagonal matrix. Substituting (5.17) into

the above equation and comparing the resulting expression with (5.18),

β =
Nnodes −

∑M
m=1 αmE[xT

mJsmxm | y, θ(i−1)]

E[xT JT x | y, θ(i−1)]
. (5.21)

Therefore, we can determine β(i) once we have estimates of αm’s. However, it is

difficult to estimate αm from (5.17) because of the term involving the inverse prior

matrix.

Instead, recall from Theorem 4.5 that (J−1)[m,m] can be represented in terms

of
(
J[m,m]

)−1
. Here, we ignore the second term in (4.15) and make the following

approximation:

tr((J−1
prior)[m,m]Jsm) ≈ tr(((Jprior)[m,m])

−1Jsm). (5.22)

Moreover, from (3.3), (Jprior)[m,m] = αmJsm + βcmI, where cm is a constant which

varies from scale to scale. Thus, it follows that eigenvalues of (Jprior)[m,m] can be

represented in terms of eigenvalues of Jsm which we denote as λi’s:

tr(((Jprior)[m,m])
−1Jsm) =

∂ log det(Jprior)[m,m]

∂αm

=
∂ log

∏
i eig((Jprior)[m,m])

∂αm

=
∂ log

∏
i(αmλi + βcm)

∂αm

=
∑

i

λi

αmλi + βcm

(5.23)
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Then, (5.17) reduces to the simple form:

∑
i

λi

αmλi + βcm

= E[xT
mJsmxm | y, θ(i−1)]. (5.24)

Thus, using (5.21) and (5.24), the values of αm’s and β can be computed iteratively.

Once the eigenvalues of Jsm are computed at the beginning of the parameter es-

timation algorithm, the values can be used throughout the algorithm to compute

tr(((Jprior)[m,m])
−1Jsm) efficiently.

However, we observed that the approximation in (5.22) is not close enough to give

good estimates of the parameters. In Section 4.3, evaluating the lower bound on the

second term of (4.15) is considered to improve the accuracy in variance estimation.

However, it is not straightforward to apply the same approach to parameter estima-

tion, since the second term in (4.15) can not be represented as a tractable function

of αm’s and β.

5.3 The Log-determinant Bounds

The EM algorithm maximizes the lower bound on the log-likelihood function, but

for the pyramidal graph with more than two free parameters for the prior model,

it is intractable to maximize the lower bound because of the log partition function.

In [55], a class of upper bounds on the log partition function is discussed for para-

meter estimation on a completely observed model, but the pyramidal graph is only

partially observed when we have measurements only at the finest scale. In this and

the next section, we discuss possible directions for approximate multiscale parameter

estimation and leave their investigation as future research topics.

Instead of maximizing the lower bound in (5.6), we further relax the lower bound

to get a more tractable form of the log partition function. This surrogate log parti-

tion function is derived in [22] to develop the Lagrangian relaxation method for the

Gaussian case. Let us define a function related to the log partition function Φ(J):
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Ψ(J) = − 1

N
log detJ =

2

N
Φ(J) + log(2π) (5.25)

where N is the dimension of the matrix J . Note that for all c > 0,

Ψ(cJ) = Ψ(J)− log c. (5.26)

Consider a valid additive decomposition J =
∑

k Jk. Using the convexity of the

log-det function, we obtain a similar upper bound as in (2.26):

Ψ(J) = Ψ(
∑

k

Jk) = Ψ(
∑

k

ρk

(
Jk

ρk

)
) ≤

∑

k

ρkΨ

(
Jk

ρk

)
=

∑

k

ρk[Ψ(Jk) + log ρk]

(5.27)

The upper bound can be explicitly minimized using the optimal weights defined in

(2.27), with the tightest bound given as

Ψ(J) ≤ Ψ̃(J) , − log
∑

k

exp−Ψ(Jk) (5.28)

Now, we consider a decomposition of the prior matrix Jprior = αJS + βJT . Sub-

stituting J1 = αJS and J2 = βJT , and using the property in (5.26), we obtain a

surrogate log partition function:

Φ(Jprior) = −1

2
log detJprior ≤ −N

2
log(αe

log detJS
N + βe

log detJT
N ) , Φ̃(Jprior) (5.29)

Since the values of cS , e
log detJS

N and cT , e
log detJT

N do not change during the

parameter estimation process, they can be computed once at the beginning of the

algorithm. Using the notation η
(i−1)
1 , E[xT JSx|y, θ(i−1)], η

(i−1)
2 , E[xT JT x|y, θ(i−1)],

and η
(i−1)
3 , E[‖ y−Cx ‖2 |y, θ(i−1)] the Q function using the surrogate log partition

function has the following simple form:

Q̃(θ, θ(i−1)) =
1

2
(−αη

(i−1)
1 −βη

(i−1)
2 +N log(cSα+cT β)−γη

(i−1)
3 +Nmeas log γ) (5.30)

where we ignored the terms which are irrelevant to the parameters. The surrogate Q
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function is a concave lower bound on the original Q function, and we observed that

the error between the true value and the lower bound is about 10%. Unfortunately,

however, the point which maximizes the surrogate Q function does not match the

maximum point of the Q function, so using the surrogate log partition function for

the parameter estimation process fails to provide satisfying results.

5.4 Discussion

The pyramidal graphical model has rich modeling power when the ratios between the

parameters are allowed to vary as illustrated in Figure 3-3. However, we observed in

this section that considering more than one free parameter for the prior model makes

the parameter estimation problem intractable to solve because of the log partition

function. In the previous sections, we considered approximating the log partition

function as a tractable surrogate function, but it not produce satisfying results in

parameter estimation given partially observed data.

The Lagrangian relaxation method, described in Section 2.2.3 and Section 4.2,

minimizes the bound on the log partition function not only with respect to the weights,

but also with respect to the optimal decomposition. Since the log partition functions

of tractable subgraphs are easy to manipulate, we may obtain tighter, yet tractable

bounds on the log partition function. However, recall that in order to apply the LR

method, we need to perform inference on each subgraph. Thus, although we may

use the LR method to find an upper bound on Φ(J), where J = Jprior + CT R−1C, it

is not straightforward to apply the LR method to parameter estimation to compute

tractable upper bounds on the log partition function of the prior model Φ(Jprior)
1.

1Since Jprior is near-singluar, applying inference algorithms to compute J−1
prior does not produce

stable values.
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Chapter 6

Conclusions

In this chapter, we summarize the contributions of this thesis, and discuss open

research problems motivated by our work.

6.1 Contributions

In this thesis, we proposed a pyramidal graphical model, which is an extension of the

multiscale tree-structured models augmented by in-scale edges, to incorporate both

intra- and inter- scale dependency structures among Gaussian random variables. The

prior model on the pyramidal graph is simply defined to be the thin-membrane model

within each scale as well as between parent-child pairs. The pyramidal graph has rich

modeling capability and produces smooth and slowly decaying correlations. Moreover,

conditioned on other scales, the correlations within one scale decay quickly, motivating

us to develop efficient inference algorithms in which far-apart nodes communicate

approximately through coarser scales and nearby nodes interact at finer scales.

Our multipole-motivated inference algorithms consist of two steps: in the tree

inference steps, different scales share information through a spanning tree embedded

in the pyramidal graph. During the in-scale inference steps, nearby nodes within each

scale pass messages to each other to obtain smooth estimates. This iterative procedure

is guaranteed to converge thanks to the walk-summability of the pyramidal graph.

We have presented empirical results to show that the iterations converge much faster
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than in the counterpart monoscale model.

A great advantage of using the pyramidal graph over other multiscale approaches

such as coarse-to-fine multigrid methods, is that we are blessed with many efficient

inference algorithms recently developed for Gaussian graphical models. Using the

adaptive ET algorithms in our multipole-motivated inference, we improved the con-

vergence rates even further. The Lagrangian relaxation method decomposes the pyra-

midal graph into simple tractable subgraphs and computes the optimal estimates as

well as upper bounds on covariances by solving inference problems on each subgraph.

When more accurate values for variances are needed, we may apply recently intro-

duced low-rank approximation algorithms.

It is often required to correct or update estimates locally to incorporate new in-

formation. Even when extremely efficient inference algorithms are available, it is

time-consuming to re-start the estimation process for large-scale problems. Using

the hierarchical structure of the pyramidal graph and adaptive iteration methods, we

developed the re-estimation algorithm to update estimates locally. Two motivating

examples are considered. First, it is shown that smoothness priors tend to blur the

discontinuities. By modifying the prior model locally and applying the re-estimation

algorithm, we computed more accurate estimates around the discontinuities. Sec-

ondly, we introduced a new set of measurements to a local region and updated the

estimates rapidly to incorporate the new measurements.

6.2 Open Research Questions

Pyramidal Graphs with Other Prior Models In this thesis, we focused on

the pyramidal graph with a simple prior model extended from the thin-membrane

model. It is of interest to explore other modeling approaches which may produce

better estimation results or may be more appropriate for other applications.

First of all, the thin-plate model is also commonly used as a smoothness prior,

and it has been observed to produce better estimates when the surface of interest

has steep gradients. We can consider using the thin-plate model to define Js or Jt
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in the prior model of the pyramidal graph. Since the resulting graph is no longer

walk-summable, the convergence of multipole-motivated inference algorithms are not

guaranteed, but the Lagrangian relaxation method can be used for inference.

Alternatively, we may to use wavelet coefficients in modeling the coarser scale

variables as commonly used in multiscale tree modeling [9, 10, 45]. Since the support

lengths of general wavelet transforms are longer than two, additional edges are re-

quired between adjacent scales to capture parent-child dependencies correctly. Even

so, the inference algorithm alternating the tree inference steps with the in-scale in-

ference steps may still be applicable with just minor changes.

Finally, we considered only Gaussian processes here, and it would be an interesting

extension to consider non-Gaussian cases. Specifically, nodes with discrete random

variables play an important role in many applications [24, 42, 43]. However, in this

case, it is not straightforward to design a hidden node to represent a coarser version

of its children.

Structural Optimization of Pyramidal Graphs The pyramidal graph we sug-

gested in this thesis has a nearest neighbor grid model at each scale and quadtree

structure to connect different scales. In general, the computational complexity of

an inference algorithm critically depends on the sparsity of the graph. So, we are

interested in getting sparser structures by graph-thinning, i.e. reducing the number

of edges while minimizing the resulting information loss. Johnson et al. [21] formu-

lated a convex optimization problem for thinning Markov models using the maximum

entropy relaxation principle. Using this framework, we are especially interested in

thinning the finest scale with the aid of the coarser scales.

Alternatively, instead of starting from specifying the structure of the pyramidal

graph, we may consider the problem of building the pyramidal graph given the proba-

bility distribution at the finest scale. This problem is closely related to the multiscale

realization problem in which the goal is to construct a distribution with respect to a

sparse multiscale graph G so that the marginal distribution of the finest scale is close

to the original true (or empirical) distribution. Tucker [51] studied the problem for
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the case when G is tree-structured, and Chandrasekaran [5] addressed the problem

for general graphs.

Adaptive and Interactive Re-estimation We have presented the re-estimation

problem as updating the estimates given some local changes in the information para-

meters J or h. Using this framework, we considered two cases when we need to solve

the re-estimation problem.

First, estimates of discontinuities blurred during the estimation process can be re-

covered more accurately by modifying the prior model locally and then applying the

re-estimation algorithm. We demonstrated simulation results based on the assump-

tion that those changes have been computed previously by edge detecting algorithms

or by human analysts. It is of interest to incorporate the automatic edge detecting

method into our re-estimation algorithm to detect the discontinuities and modify the

prior model adaptively depending on the level of discontinuity.

Secondly, the re-estimation algorithm can update the estimates rapidly when a set

of new measurements are introduced. This procedure may also enhance the efficiency

of human-computer interaction by rapidly updating the estimates based on human

input. In many cases, estimation algorithms are used as pre-processing steps for

human experts, and it is important for these algorithms to provide fast and accurate

feedback to humans.

In addition, we proposed algorithms to update optimal estimates but not error

covariance computations. The re-estimation algorithm will be more powerful with

efficient error variance update methods, which is an important and open problem.

Multiscale Parameter Estimation The parameter estimation algorithm we pre-

sented in Chapter 5 only worked well when we have a single free parameter to control

the overall strength of the prior constraints. Allowing more freedom in the parame-

ters of the pyramidal graph will greatly enhance the modeling power of the pyramidal

graph. Finding a surrogate log partition function may provide a starting point for

solving parameter estimation problem in multiscale pyramidal graphs.
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Appendix A

Proof of Theorem 4.4

We prove the following lemma first.

Lemma A.1. At sub-iteration n, the following conditions are satisfied:

1. Before step 2(a), u(n) has all incoming messages up-to-date.

2. After step 2(b), at each node in every subgraph, there exist at most one edge for

which the incoming message is not up-to-date.

Proof. We prove by induction.

At sub-iteration 1: Since the BP algorithm in each subgraph has converged,

every message is up-to-date before step 2(a), and the first condition holds. After

Step 2(b), only the node potentials of u(1) has been changed, so u(1) has all incoming

messages up-to-date, and at every other node i 6= u(1) in each subgraph, only the

message from the direction u(1) is not up-to-date, so the second condition holds.

At sub-iteration (n − 1): Assume that the two conditions are satisfied at it-

eration (n − 1). Since the node potential of u(n−1) is changed at step 2(b), every

outward message from node u(n−1) is out-of-date before a set of messages are updated

at step 2(c). For all nodes i ∈ V except u(n−1), there exist a neighbor j such that

u(n−1) ∈ Tj\i and mj→i is not up-to-date. From the assumption that there exist at

most one incoming message which is not up-to-date, all incoming messages mk→i are

up-to-date for k ∈ N (i), k 6= j.
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Figure A-1: An illustration of the efficient message passing scheme for the Lagrangian
relaxation method.

At sub-iteration n: First, for any node i such that there exist a neighboring node

j which satisfies u(n−1) ∈ Tj\i and u(n) ∈ Tj\i (the nodes outside of the circled area in

Figure A-1), the information regarding u(n−1) and u(n) comes from the same incoming

message mj→i. Since all other messages mk→i are up-to-date by the assumption at

sub-iteration (n− 1), and since those messages are not disturbed by the change in

u(n), they are still up-to-date after step 2(b). So the second condition holds for the

nodes outside of the circled area.

At sub-iteration (n− 1), all incoming messages to u(n−1) are up-to-date before

step 2(a). So, when u(n−1) updates the message to its neighbor i on the path to u(n),

the message mu(n−1)→i is up-to-date. Since i had up-to-date incoming messages from

all other nodes except u(n−1), it now has all incoming messages up-to-date. Then,

i updates the message to its neighbor j such that u(n) ∈ Tj\i. This process can be

repeated until the message update procedure reaches u(n), and all the nodes on the

path from u(n−1) to u(n) have all incoming messages up-to-date.

When we change the node potential of u(n) at step 2(c), it does not affect the

incoming messages at u(n), so the first condition is satisfied. For all other nodes on

the path from u(n−1) to u(n), the message coming from the direction of u(n) becomes

out-of-date, but since this is the only incoming message which is not up-to-date, the

second condition holds for all nodes inside the circled area in Figure A-1 as well.

The proof of Theorem 4.4 directly follows from the first condition of the lemma.
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