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Abstract

We study the problem of learning a latent tree graphical model where samples are
available only from a subset of variables. We propose two consistent and computationally
efficient algorithms for learning minimal latent trees, that is, trees without any redundant
hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not
constrained to be leaf nodes. Our algorithms can be applied to both discrete and Gaussian
random variables and our learned models are such that all the observed and latent variables
have the same domain (state space). Our first algorithm, recursive grouping, builds the
latent tree recursively by identifying sibling groups using so-called information distances.
One of the main contributions of this work is our second algorithm, which we refer to
as CLGrouping. CLGrouping starts with a pre-processing procedure in which a tree over
the observed variables is constructed. This global step groups the observed nodes that
are likely to be close to each other in the true latent tree, thereby guiding subsequent
recursive grouping (or equivalent procedures such as neighbor-joining) on much smaller
subsets of variables. This results in more accurate and efficient learning of latent trees. We
also present regularized versions of our algorithms that learn latent tree approximations
of arbitrary distributions. We compare the proposed algorithms to other methods by
performing extensive numerical experiments on various latent tree graphical models such
as hidden Markov models and star graphs. In addition, we demonstrate the applicability
of our methods on real-world datasets by modeling the dependency structure of monthly
stock returns in the S&P index and of the words in the 20 newsgroups dataset.
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1. Introduction

The inclusion of latent variables in modeling complex phenomena and data is a well-
recognized and a valuable construct in a variety of applications, including bio-informatics
and computer vision, and the investigation of machine-learning methods for models with
latent variables is a substantial and continuing direction of research.

There are three challenging problems in learning a model with latent variables: learning
the number of latent variables; inferring the structure of how these latent variables relate
to each other and to the observed variables; and estimating the parameters characterizing
those relationships. Issues that one must consider in developing a new learning algorithm
include developing tractable methods; incorporating the tradeoff between the fidelity to
the given data and generalizability; deriving theoretical results on the performance of such
algorithms; and studying applications that provide clear motivation and contexts for the
models so learned.

One class of models that has received considerable attention in the literature is the
class of latent tree models, i.e., graphical models Markov on trees, in which variables at
some nodes represent the original (observed) variables of interest while others represent
the latent variables. The appeal of such models for computational tractability is clear:
with a tree-structured model describing the statistical relationships, inference—processing
noisy observations of some or all of the original variables to compute the estimates of all
variables—is straightforward and scalable. Although the class of tree-structured models,
with or without latent variables, is a constrained one, there are interesting applications
that provide strong motivation for the work presented here. In particular, a very active
avenue of research in computer vision is the use of context—e.g., the nature of a scene to
aid the reliable recognition of objects (and at the same time to allow the recognition of
particular objects to assist in recognizing the scene). For example, if one knows that an
image is that of an office, then one might expect to find a desk, a monitor on that desk, and
perhaps a computer mouse. Hence if one builds a model with a latent variable representing
that context (“office”) and uses simple, noisy detectors for different object types, one would
expect that the detection of a desk would support the likelihood that one is looking at
an office and through that enhance the reliability of detecting smaller objects (monitors,
keyboards, mice, etc.). Work along these lines, including by some of the authors of this
paper (Parikh and Chen, 2007; Choi et al., 2010), show the promise of using tree-based
models of context.

This paper considers the problem of learning tree-structured latent models. If all vari-
ables are observed in the tree under consideration, then the well-known algorithm of Chow
and Liu (1968) provides a tractable algorithm for performing maximum likelihood (ML)
estimation of the tree structure. However, if not all variables are observed, i.e., for latent
tree models, then ML estimation is NP-hard (Roch, 2006). This has motivated a number
of investigations of other tractable methods for learning such trees as well as theoretical
guarantees on performance. Our work represents a contribution to this area of investigation.

There are three main contributions in our paper. Firstly, by adopting a statistical
distance-based framework, we develop two new algorithms for the learning of latent trees—
recursive grouping and CLGrouping, which apply equally well to discrete and Gaussian
models. Secondly, we provide consistency guarantees (both structural and parametric) as
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well as very favorable computational and sample complexity characterizations for both of
our algorithms. Thirdly, through extensive numerical experiments on both synthetic and
real-world data, we demonstrate the superiority of our approach for a wide variety of models
ranging from ones with very large tree diameters (e.g., hidden Markov models (HMMs)) to
star models and complete trees.1

Our first algorithm, which we refer to as recursive grouping, constructs a latent tree
in a bottom-up fashion, grouping nodes into sibling groups that share the same parent
node, recursively at each level of the resulting hierarchy (and allowing for some of the
observed variables to play roles at arbitrary levels in the resulting hierarchy). Our second
algorithm, CLGrouping first implements a global construction step, namely producing the
Chow-Liu tree for the observed variables without any hidden nodes. This global step then
provides guidance for groups of observed nodes that are likely to be topologically close to
each other in the latent tree, thereby guiding subsequent recursive grouping or neighbor-
joining (Saitou and Nei, 1987) computations. Each of these algorithms is consistent and
has excellent sample and computational complexity.2

As Pearl (1988) points out, the identification of latent tree models has some built-in
ambiguity, as there is an entire equivalence class of models in the sense that when all latent
variables are marginalized out, each model in this class yields the same joint distribution over
the observed variables. For example, we can take any such latent model and add another
hidden variable as a leaf node connected to only one other (hidden or observed) node.
Hence, much as one finds in fields such as state space dynamic systems (e.g., Luenberger
(1979, Section 8)), there is a notion of minimality that is required here, and our results are
stated in terms of consistent learning of such minimal latent models.

1.1 Related Work

The relevant literature on learning latent models is vast and in this section, we summarize
the main lines of research in this area.

The classical latent cluster models (LCM) consider multivariate distributions in which
there exists only one latent variable and each state of that variable corresponds to a cluster in
the data (Lazarsfeld and Henry, 1968). Hierarchical latent class (HLC) models (Zhang and
Kočka, 2004; Zhang, 2004; Chen et al., 2008) generalize these models by allowing multiple
latent variables. HLC allows latent variables to have different number of states, but assume
that all observed nodes are at the leaves of the tree. Their learning algorithm is based on
a greedy approach of making one local move at a time (e.g., introducing one hidden node,
or replacing an edge), which is computationally expensive and does not have consistency
guarantees. A greedy learning algorithm for HLC called BIN is proposed in (Harmeling
and Williams, 2010), which is computationally more efficient. In addition, Silva et al.
(2006) considered the learning of directed latent models using so-called tetrad constraints,
and there have also been attempts to tailor the learning of latent tree models in order to

1. A tree is called a complete k-ary tree (or k-complete tree), if all its internal nodes have degree k and
there exists one node (commonly referred as the root node) that has the exactly same distance to all leaf
nodes.

2. As we will see, depending on the true latent tree model, one or the other of these may be more efficient.
Roughly speaking, for smaller diameter graphs (such as the star), recursive grouping is faster, and for
larger diameter graphs (such as an HMM), CLgrouping is more efficient.
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perform approximate inference accurately and efficiently downstream (Wang et al., 2008).
In all these works, the latent variables can have different state spaces, but the observed
nodes are required to be leaves of the tree. In contrast, we fix the state space of each
hidden node, but allow the possibility that some observed nodes are internal nodes (non-
leaves). This assumption leads to an identifiable model, and we provide algorithms with
consistency guarantees which can recover the correct structure under mild conditions. In
contrast, the works in Zhang and Kočka (2004); Zhang (2004); Chen et al. (2008); Harmeling
and Williams (2010) do not provide such consistency guarantees.

Many authors also propose reconstructing latent trees using the expectation maximiza-
tion (EM) algorithm (Elidan and Friedman, 2005; Kemp and Tenenbaum, 2008). However,
as with all other EM-based methods, these approaches depend on the initialization and
suffer from the possibility of being trapped in local optima and thus no consistency guar-
antees can be provided. At each iteration, a large number of candidate structures need to
be evaluated, so these methods assume that all observed nodes are the leaves of the tree
to reduce the number of candidate structures. Algorithms have been proposed (Hsu et al.,
2009) with sample complexity guarantees for learning HMMs under the condition that the
joint distribution of the observed variables generated by distinct hidden states are distinct.

Another related line of research is that of (hierarchical) clustering. See Jain et al.
(1999), Balcan and Gupta (2010) and the references therein for extensive discussions. The
primary objective of hierarchical clustering is to build a tree consisting of nested partitions
of the observed data, where the leaves (typically) consist of single data points while the
internal nodes represent coarser partitions. The difference from our work is that hierarchical
clustering does not assume a probabilistic graphical model (Markov random field) on the
data, but imposes constraints on the data points via a similarity matrix. We are interested
in learning tree-structured graphical models with hidden variables.

The reconstruction of latent trees has been studied extensively by the phylogenetic com-
munity where sequences of extant species are available and the unknown phylogenetic tree
is to be inferred from these sequences. See Durbin et al. (1999) for a thorough overview.
Efficient algorithms with provable performance guarantees are available (Erdős et al., 1999;
Daskalakis et al., 2006). However, the works in this area mostly assume that only the leaves
are observed and each internal node (which is hidden) has the same degree except for the
root. The most popular algorithm for constructing phylogenetic trees is the neighbor-joining
(NJ) method by Saitou and Nei (1987). Like our recursive grouping algorithm, the input
to the algorithm is a set of statistical distances between observed variables. The algorithm
proceeds by recursively pairing two nodes that are the closest neighbors in the true latent
tree and introducing a hidden node as the parent of the two nodes. For more details on NJ,
the reader is referred to Durbin et al. (1999, Section 7.3).

Another popular class of reconstruction methods used in the phylogenetic community is
the family of quartet-based distance methods (Bandelth and Dress, 1986; Erdős et al., 1999;
Jiang et al., 2001).3 Quartet-based methods first construct a set of quartets for all subsets
of four observed nodes. Subsequently, these quartets are then combined to form a latent
tree. However, when we only have access to the samples at the observed nodes, then it
is not straightforward to construct a latent tree from a set of quartets since the quartets

3. A quartet is simply an unrooted binary tree on a set of four observed nodes.
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may be not be consistent.4 In fact, it is known that the problem of determining a latent
tree that agrees with the maximum number of quartets is NP-hard (Steel, 1992), but many
heuristics have been proposed (Farris, 1972; Sattath and Tversky, 1977). Also, in practice,
quartet-based methods are usually much less accurate than NJ (St. John et al., 2003), and
hence, we only compare our proposed algorithms to NJ in our experiments. For further
comparisons (the sample complexity and other aspects of) between the quartet methods
and NJ, the reader is referred to Csűrös (2000) and St. John et al. (2003).

Another distance-based algorithm was proposed in Pearl (1988, Section 8.3.3). This
algorithm is very similar in spirit to quartet-based methods but instead of finding quartets
for all subsets of four observed nodes, it finds just enough quartets to determine the location
of each observed node in the tree. Although the algorithm is consistent, it performs poorly
when only the samples of observed nodes are available (Pearl, 1988, Section 8.3.5).

The learning of phylogenetic trees is related to the emerging field of network tomography
(Castro et al., 2004) in which one seeks to learn characteristics (such as structure) from
data which are only available at the end points (e.g., sources and sinks) of the network.
However, again observations are only available at the leaf nodes and usually the objective is
to estimate the delay distributions corresponding to nodes linked by an edge (Tsang et al.,
2003; Bhamidi et al., 2009). The modeling of the delay distributions is different from the
learning of latent tree graphical models discussed in this paper.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we introduce the notations
and terminologies used in the paper. In Section 3, we introduce the notion of information
distances which are used to reconstruct tree models. In the subsequent two sections, we
make two assumptions: Firstly, the true distribution is a latent tree and secondly, perfect
knowledge of information distance of observed variables is available. We introduce recursive
grouping in Section 4. This is followed by our second algorithm CLGrouping in Section 5.
In Section 6, we relax the assumption that the information distances are known and develop
sample based algorithms and at the same time provide sample complexity guarantees for
recursive grouping and CLGrouping. We also discuss extensions of our algorithms for the
case when the underlying model is not a tree and our goal is to learn an approximation to
it using a latent tree model. We demonstrate the empirical performance of our algorithms
in Section 7 and conclude the paper in Section 8. The appendix includes proofs for the
theorems presented in the paper.

2. Latent Tree Graphical Models

In this section, we provide some background and introduce the notion of minimal-tree
extensions and consistency.

4. The term consistent here is not the same as the estimation-theoretic one. Here, we say that a set of
quartets is consistent if there exists a latent tree such that all quartets agree with the tree.
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2.1 Undirected Graphs

Let G = (W, E) be an undirected graph with vertex (or node) set W = {1, . . . , M} and
edge set E ⊂

(
W
2

)
. Let nbd(i; G) and nbd[i; G] be the set of neighbors of node i and the

closed neighborhood of i respectively, i.e., nbd[i; G] := nbd(i; G)∪{i}. If an undirected graph
does not include any loops, it is called a tree. A collection of disconnected trees is called a
forest.5 For a tree T = (W, E), the set of leaf nodes (nodes with degree 1), the maximum
degree, and the diameter are denoted by Leaf(T ), ∆(T ), and diam(T ) respectively. The
path between two nodes i and j in a tree T = (W, E), which is unique, is the set of edges
connecting i and j and is denoted as Path((i, j); E). The distance between any two nodes i
and j is the number of edges in Path((i, j); E). In an undirected tree, we can choose a root
node arbitrarily, and define the parent-child relationships with respect to the root: for a
pair neighboring nodes i and j, if i is closer to the root than j is, then i is called the parent
of j, and j is called the child of i. Note that the root node does not have any parent, and
for all other nodes in the tree, there exists exactly one parent. We use C(i) to denote the
set of child nodes. A set of nodes that share the same parent is called a sibling group. A
family is the union of the siblings and the associated parent.

A latent tree is a tree with node set W := V ∪H, the union of a set of observed nodes V
(with m = |V |), and a set of latent (or hidden) nodes H. The effective depth δ(T ; V ) (with
respect to V ) is the maximum distance of a hidden node to its closest observed node, i.e.,

δ(T ; V ) := max
i∈H

min
j∈V
|Path((i, j); T )|. (1)

2.2 Graphical Models

An undirected graphical model (Lauritzen, 1996) is a family of multivariate probability
distributions that factorize according to a graph G = (W, E). More precisely, let X =
(X1, . . . , XM ) be a random vector, where each random variable Xi, which takes on values
in an alphabet X , corresponds to variable at node i ∈ V . The set of edges E encodes the set
of conditional independencies in the model. The random vector X is said to be Markov on
G if for every i, the random variable Xi is conditionally independent of all other variables
given its neighbors, i.e, if p is the joint distribution6 of X, then

p(xi|xnbd(i;G)) = p(xi|x\i), (2)

where x\i denotes the set of all variables7 excluding xi. Eqn. (2) is known as the local
Markov property.

In this paper, we consider both discrete and Gaussian graphical models. For discrete
models, the alphabet X = {1, . . . , K} is a finite set. For Gaussian graphical models, X = R

and furthermore, without loss of generality, we assume that the mean is known to be the

5. Strictly speaking, a graph with no loops is called a forest, and it is called a tree only if every node is
connected to each other.

6. We abuse the term distribution to mean a probability mass function in the discrete case (density with
respect to the counting measure) and a probability density function (density with respect to the Lebesgue
measure) in the continuous case.

7. We will use the terms node, vertex and variable interchangeably in the sequel.
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zero vector and hence, the joint distribution

p(x) =
1

det(2πΣ)1/2
exp

(
−1

2
xTΣ−1x

)

depends only on the covariance matrix Σ.
An important and tractable class of graphical models is the set of tree-structured graph-

ical models, i.e., multivariate probability distributions that are Markov on an undirected
tree T = (W, E). It is known from junction tree theory (Cowell et al., 1999) that the joint
distribution p for such a model factorizes as

p(x1, . . . , xM ) =
∏

i∈W

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
. (3)

That is, the sets of marginal {p(xi) : i ∈ W} and pairwise joints on the edges {p(xi, xj) :
(i, j) ∈ E} fully characterize the joint distribution of a tree-structured graphical model.

A special class of a discrete tree-structured graphical models is the set of symmetric
discrete distributions. This class of models is characterized by the fact that the pairs of
variables (Xi, Xj) on all the edges (i, j) ∈ E follow the conditional probability law:

p(xi|xj) =

{
1− (K − 1)θij , if xi = xj ,
θij , otherwise,

(4)

and the marginal distribution of every variable in the tree is uniform, i.e., p(xi) = 1/K for
all xi ∈ X and for all i ∈ V ∪ H. The parameter θij ∈ (0, 1/K) in (4), which does not
depend on the state values xi, xj ∈ X (but can be different for different pairs (i, j) ∈ E), is
known as the crossover probability.

Let xn := {x(1), . . . ,x(n)} be a set of n i.i.d. samples drawn from a graphical model
(distribution) p, Markov on a latent tree Tp = (W, Ep), where W = V ∪ H. Each sample
x(l) ∈ XM is a length-M vector. In our setup, the learner only has access to samples
drawn from the observed node set V , and we denote this set of sub-vectors containing

only the elements in V , as xn
V := {x(1)

V , . . . ,x
(n)
V }, where each observed sample x

(l)
V ∈ Xm

is a length-m vector. Our algorithms learn latent tree structures using the information
distances (defined in Section 3) between pairs of observed variables, which can be estimated
from samples.

We now comment on the above model assumptions. Note that we assume that the
the hidden variables have the same domain as the observed ones (all of which also have a
common domain). We do not view this as a serious modeling restriction since we develop
efficient algorithms with strong theoretical guarantees, and these algorithms have very good
performance on real-world data (see Section 7). Nonetheless, it may be possible to develop a
unified framework to incorporate variables with different state spaces (i.e., both continuous
and discrete) under a reproducing kernel Hilbert space (RKHS) framework along the lines
of Song et al. (2010). We defer this to future work.

2.3 Minimal Tree Extensions

Our ultimate goal is to recover the graphical model p, i.e., the latent tree structure and its
parameters, given n i.i.d. samples of the observed variables xn

V . However, in general, there
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can be multiple latent tree models which result in the same observed statistics, i.e., the same
joint distribution pV of the observed variables. We consider the class of tree models where
it is possible to recover the latent tree model uniquely and provide necessary conditions for
structure identifiability, i.e., the identifiability of the edge set E.

Firstly, we limit ourselves to the scenario where all the random variables (both observed
and latent) take values on a common alphabet X . Thus, in the Gaussian case, each hidden
and observed variable is a univariate Gaussian. In the discrete case, each variable takes on
values in the same finite alphabet X . Note that the model may not be identifiable if some
of the hidden variables are allowed to have arbitrary alphabets. As an example, consider
a discrete latent tree model with binary observed variables (K = 2). A latent tree with
the simplest structure (fewest number of nodes) is a tree in which all m observed binary
variables are connected to one hidden variable. If we allow the hidden variable to take on
2m states, then the tree can describe all possible statistics among the m observed variables,
i.e., the joint distribution pV can be arbitrary.8

A probability distribution pV (xV ) is said to be tree-decomposable if it is the marginal
(of variables in V ) of a tree-structured graphical model p(xV ,xH). In this case, p (over
variables in W ) is said to be a tree extension of pV (Pearl, 1988). A distribution p is said
to have a redundant hidden node h ∈ H if we can remove h and the marginal on the set of
visible nodes V remains as pV . The following conditions ensure that a latent tree does not
include a redundant hidden node (Pearl, 1988):

(C1) Each hidden variable has at least three neighbors (which can be either hidden or
observed). Note that this ensures that all leaf nodes are observed (although not all
observed nodes need to be leaves).

(C2) Any two variables connected by an edge in the tree model are neither perfectly de-
pendent nor independent.

Figure 1(a) shows an example of a tree satisfying (C1). If (C2), which is a condition on
parameters, is also satisfied, then the tree in Figure 1(a) is identifiable. The tree shown in
Figure 1(b) does not satisfy (C1) because h4 and h5 have degrees less than 3. In fact, if we
marginalize out the hidden variables h4 and h5, then the resulting model has the same tree
structure as in Figure 1(a).

We assume throughout the paper that (C2) is satisfied for all probability distributions.
Let T≥3 be the set of (latent) trees satisfying (C1). We refer to T≥3 as the set of minimal
(or identifiable) latent trees. Minimal latent trees do not contain redundant hidden nodes.
The distribution p (over W and Markov on some tree in T≥3) is said to be a minimal
tree extension of pV . As illustrated in Figure 1, using marginalization operations, any
non-minimal latent tree distribution can be reduced to a minimal latent tree model.

Proposition 1 (Minimal Tree Extensions) (Pearl, 1988, Section 8.3)

(i) For every tree-decomposable distribution pV , there exists a minimal tree extension p
Markov on a tree T ∈ T≥3, which is unique up to the renaming of the variables or
their values.

8. This follows from a elementary parameter counting argument.

8



Learning Latent Tree Graphical Models

(a)

h1

1

2 3 4 5

6

h3h2

(b)

h1

1

2 3 4 5

6

h3h2

h5

h4

Figure 1: Examples of minimal latent trees. Shaded nodes are observed and unshaded
nodes are hidden. (a) An identifiable tree. (b) A non-identifiable tree because h4

and h5 have degrees less than 3.

(ii) For Gaussian and binary distributions, if pV is known exactly, then the minimal tree
extension p can be recovered.

(iii) The structure of T is uniquely determined by the pairwise distributions of observed
variables p(xi, xj) for all i, j ∈ V .

2.4 Consistency

We now define the notion of consistency. In Section 6, we show that our latent tree learning
algorithms are consistent.

Definition 2 (Consistency) A latent tree reconstruction algorithm A is a map from the
observed samples xn

V to an estimated tree T̂n and an estimated tree-structured graphical
model p̂n. We say that a latent tree reconstruction algorithm A is structurally consistent if
there exists a graph homomorphism9 h such that

lim
n→∞

Pr(h(T̂n) 6= Tp) = 0. (5)

Furthermore, we say that A is risk consistent if to every ε > 0,

lim
n→∞

Pr (D(p || p̂n) > ε) = 0, (6)

where D(p || p̂n) is the KL-divergence (Cover and Thomas, 2006) between the true distribu-
tion p and the estimated distribution p̂n.

In the following sections, we design structurally and risk consistent algorithms for (min-
imal) Gaussian and symmetric discrete latent tree models, defined in (4). Our algorithms
use pairwise distributions between the observed nodes. However, for general discrete mod-
els, pairwise distributions between observed nodes are, in general, not sufficient to recover

9. A graph homomorphism is a mapping between graphs that respects their structure. More precisely, a
graph homomorphism h from a graph G = (W, E) to a graph G′ = (V ′, E′), written h : G → G′ is a
mapping h : V → V ′ such that (i, j) ∈ E implies that (h(i), h(j)) ∈ E′.
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the parameters (Chang and Hartigan, 1991). Therefore, we only prove structural consis-
tency, as defined in (5), for general discrete latent tree models. For such distributions, we
consider a two-step procedure for structure and parameter estimation: Firstly, we estimate
the structure of the latent tree using the algorithms suggested in this paper. Subsequently,
we use the Expectation Maximization (EM) algorithm (Dempster et al., 1977) to infer the
parameters. Note that, as mentioned previously, risk consistency will not be guaranteed in
this case.

3. Information Distances

The proposed algorithms in this paper receive as inputs the set of so-called (exact or es-
timated) information distances, which are functions of the pairwise distributions. These
quantities are defined in Section 3.1 for the two classes of tree-structured graphical models
discussed in this paper, namely the Gaussian and discrete graphical models. We also show
that the information distances have a particularly simple form for symmetric discrete distri-
butions. In Section 3.2, we use the information distances to infer the relationships between
the observed variables such as j is a child of i or i and j are siblings.

3.1 Definitions of Information Distances

We define information distances for Gaussian and discrete distributions and show that these
distances are additive for tree-structured graphical models. Recall that for two random
variables Xi and Xj , the correlation coefficient is defined as

ρij :=
Cov(Xi, Xj)√

Var(Xi)Var(Xj)
. (7)

For Gaussian graphical models, the information distance associated with the pair of variables
Xi and Xj is defined as:

dij := − log |ρij |. (8)

Intuitively, if the information distance dij is large, then Xi and Xj are weakly correlated
and vice-versa.

For discrete random variables, let Jij denote the joint probability matrix between Xi and
Xj (i.e., J ij

ab = p(xi = a, xj = b), a, b ∈ X ). Also let Mi be the diagonal marginal probability
matrix of Xi (i.e., M i

aa = p(xi = a)). For discrete graphical models, the information distance
associated with the pair of variables Xi and Xj is defined as (Lake, 1994):

dij := − log
|detJij |√

detMi detMj
. (9)

Note that for binary variables, i.e., K = 2, the value of dij in (9) reduces to the expression
in (8), i.e., the information distance is a function of the correlation coefficient, defined in (7),
just as in the Gaussian case.

For symmetric discrete distributions defined in (4), the information distance defined for
discrete graphical models in (9) reduces to

dij := −(K − 1) log(1−Kθij). (10)

10
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Note that there is one-to-one correspondence between the information distances dij and the
model parameters for Gaussian distributions (parametrized by the correlation coefficient ρij)
in (8) and the symmetric discrete distributions (parametrized by the crossover probability
θij) in (10). Thus, these two distributions are completely characterized by the information
distances dij . On the other hand, this does not hold for general discrete distributions.

Moreover, if the underlying distribution is a symmetric discrete model or a Gaussian
model, the information distance dij and the mutual information I(Xi; Xj) (Cover and
Thomas, 2006) are monotonic, and we will exploit this result in Section 5. For general
distributions, this is not valid. See Section 5.5 for further discussions.

Equipped with these definitions of information distances, assumption (C2) in Section 2.3
can be rewritten as the following: There exists constants 0 < l, u <∞, such that

(C2) l ≤ dij ≤ u, ∀ (i, j) ∈ Ep. (11)

Proposition 3 (Additivity of Information Distances) The information distances dij

defined in (8), (9), and (10) are additive tree metrics (Erdős et al., 1999). In other words,
if the joint probability distribution p(x) is a tree-structured graphical model Markov on the
tree Tp = (W, Ep), then the information distances are additive on Tp:

dkl =
∑

(i,j)∈Path((k,l);Ep)

dij , ∀k, l ∈W. (12)

The property in (12) implies that if each pair of vertices i, j ∈W is assigned the weight
dij , then Tp is a minimum spanning tree on W , denoted as MST(W ;D), where D is the
information distance matrix with elements dij for all i, j ∈ V .

It is straightforward to show that the information distances are additive for the Gaussian
and symmetric discrete cases using the local Markov property of graphical models. For
general discrete distributions with information distance as in (9), see Lake (1994) for the
proof. In the rest of the paper, we map the parameters of Gaussian and discrete distributions
to an information distance matrix D = [dij ] to unify the analyses for both cases.

3.2 Testing Inter-Node Relationships

In this section, we use Proposition 3 to ascertain child-parent and sibling (cf. Section 2.1)
relationships between the variables in a latent tree-structured graphical model. To do so,
for any three variables i, j, k ∈ V , we define Φijk := dik − djk to be the difference between
the information distances dik and djk. The following lemma suggests a simple procedure to
identify the set of relationships between the nodes.

Lemma 4 (Sibling Grouping) For distances dij for all i, j ∈ V on a tree T ∈ T≥3, the
following two properties on Φijk = dik − djk hold:

(i) Φijk = dij for all k ∈ V \ {i, j} if and only if i is a leaf node and j is its parent.

(i) Φijk = −dij for all k ∈ V \ {i, j} if and only if j is a leaf node and i is its parent.

(ii) −dij < Φijk = Φijk′ < dij for all k, k′ ∈ V \ {i, j} if and only if both i and j are leaf
nodes and they have the same parent, i.e., they belong to the same sibling group.

11
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Figure 2: Examples for each case in TestNodeRelationships. For each edge, ei represents the
information distance associated with the edge. (a) Case 1: Φijk = −e8 = −dij for
all k ∈ V \ {i, j}. (b) Case 2: Φijk = e6 − e7 6= dij = e6 + e7 for all k ∈ V \ {i, j}
(c) Case 3a: Φijk = e4 + e2 + e3 − e7 6= Φijk′ = e4 − e2 − e3 − e7. (d) Case 3b:
Φijk = e4 + e5 6= Φijk′ = e4 − e5. (e) Case 3c: Φijk = e5 6= Φijk′ = −e5.

The proof of the lemma uses Proposition 3 and is provided in Appendix A.1. Given
Lemma 4, we can first determine all the values of Φijk for triples i, j, k ∈ V . Now we can
determine the relationship between nodes i and j as follows: Fix the pair of nodes i, j ∈ V
and consider all the other nodes k ∈ V \ {i, j}. Then, there are three cases for the set
{Φijk : k ∈ V \ {i, j}}:

1. Φijk = dij for all k ∈ V \{i, j}. Then, i is a leaf node and j is a parent of i. Similarly,
if Φijk = −dij for all k ∈ V \ {i, j}, j is a leaf node and i is a parent of j.

2. Φijk is constant for all k ∈ V \ {i, j} but not equal to either dij or −dij . Then i and
j are leaf nodes and they are siblings.

3. Φijk is not equal for all k ∈ V \ {i, j}. Then, there are three cases: Either

(a) Nodes i and j are not siblings nor have a parent-child relationship or,

(b) Nodes i and j are siblings but at least one of them is not a leaf or,

(c) Nodes i and j have a parent-child relationship but the child is not a leaf.

Thus, we have a simple test to determine the relationship between i and j and to ascertain
whether i and j are leaf nodes. We call the above test TestNodeRelationships. See Figure 2
for examples. By running this test for all i and j, we can determine all the relationships
among all pairs of observed variables.

In the following section, we describe a recursive algorithm that is based on the above
TestNodeRelationships procedure to reconstruct the entire latent tree model assuming that
the true model is a latent tree and that the true distance matrix D = [dij ] are known. In
Section 5, we provide improved algorithms for the learning of latent trees again assuming
that D is known. Subsequently, in Section 6, we develop algorithms for the consistent
reconstruction of latent trees when information distances are unknown and we have to
estimate them from the samples xn

V . In addition, in Section 6.5 we discuss how to extend
these algorithms for the case when pV is not necessarily tree-decomposable, i.e., the original
graphical model is not assumed to be a latent tree.

12
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4. Recursive Grouping Algorithm Given Information Distances

This section is devoted to the development of the first algorithm for reconstructing latent
tree models, recursive grouping (RG). At a high level, RG is a recursive procedure in which
at each step, TestNodeRelationships is used to identify nodes that belong to the same family.
Subsequently, RG introduces a parent node if a family of nodes (i.e., a sibling group)
does not contain an observed parent. This newly introduced parent node corresponds to a
hidden node in the original unknown latent tree. Once such a parent (i.e., hidden) node h is
introduced, the information distances from h to all other observed nodes can be computed.

The inputs to RG are the vertex set V and the matrix of information distances D
corresponding to a latent tree. The algorithm proceeds by recursively grouping nodes and
adding hidden variables. In each iteration, the algorithm acts on a so-called active set of
nodes Y , and in the process constructs a new active set Ynew for the next iteration.10 The
steps are as follows:

1. Initialize by setting Y := V to be the set of observed variables.

2. Compute Φijk = dik − djk for all i, j, k ∈ Y .

3. Using the TestNodeRelationships procedure, define {Πl}Ll=1 to be the coarsest parti-
tion11 of Y such that for every subset Πl (with |Πl| ≥ 2), any two nodes in Πl are
either siblings which are leaf nodes or they have a parent-child relationship12 in which
the child is a leaf.13 Note that for some l, Πl may consist of a single node. Be-
gin to construct the new active set by adding nodes in these single-node partitions:
Ynew ←

⋃
l:|Πl|=1 Πl.

4. For each l = 1, . . . , L with |Πl| ≥ 2, if Πl contains a parent node u, update Ynew ←
Ynew ∪ {u}. Otherwise, introduce a new hidden node h, connect h (as a parent) to
every node in Πl, and set Ynew ← Ynew ∪ {h}.

5. Update the active set: Yold ← Y and Y ← Ynew.

6. For each new hidden node h ∈ Y , compute the information distances dhl for all l ∈ Y
using (13) and (14) described below.

7. If |Y | ≥ 3, return to step 2. Otherwise, if |Y | = 2, connect the two remaining nodes
in Y with an edge then stop. If instead |Y | = 1, do nothing and stop.

10. Note that the current active set is also used (in Step 6) after the new active set has been defined. For
clarity, we also introduce the quantity Yold in Steps 5 and 6.

11. Recall that a partition P of a set Y is a collection of nonempty subsets {Πl ⊂ Y }L
l=1 such that ∪L

l=1Πl = Y

and Πl ∩ Πl′ = ∅ for all l 6= l′. A partition P is said to be coarser than another partition P ′ if every
element of P ′ is a subset of some element of P .

12. In an undirected tree, the parent-child relationships can be defined with respect to a root node. In this
case, the node in the final active set in Step 7 before the algorithm terminates (or one of the two final
nodes if |Y | = 2) is selected as the root node.

13. Note that since we use the active set Y in the TestNodeRelationships procedure, the leaf nodes are defined
with respect to Y , i.e., a node is considered as a leaf node if it has only one neighbor in Y or in the set
of nodes that have not yet been in an active set.

13
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Figure 3: An illustrative example of RG. Solid nodes indicate the active set Y for each
iteration. (a) Original latent tree. (b) Output after the first iteration of RG. Red
dotted lines indicate the subsets Πl in the partition of Y . (c) Output after the
second iteration of RG. Note that h3, which was introduced in the first iteration,
is an active node for the second iteration. Nodes 4,5, and 6 do not belong to the
current active set and are represented in grey. (d) Output after the third iteration
of RG, which is same as the original latent tree.

We now describe how to compute the information distances in Step 6 for each new
hidden node h ∈ Y and all other active nodes l ∈ Y . Let i, j ∈ C(h) be two children of h,
and let k ∈ Yold \ {i, j} be any other node in the previous active set. From Lemma 4 and
Proposition 3, we have that dih − djh = dik − djk = Φijk and dih + djh = dij , from which
we can recover the information distances between a previously active node i ∈ Yold and its
new hidden parent h ∈ Y as follows:

dih =
1

2
(dij + Φijk) . (13)

For any other active node l ∈ Y , we can compute dhl using a child node i ∈ C(h) as follows:

dhl =

{
dil − dih, if l ∈ Yold,
dik − dih − dlk, otherwise, where k ∈ C(l). (14)

Using equations (13) and (14), we can infer all the information distances dhl between a
newly introduced hidden node h to all other active nodes l ∈ Y . Consequently, we have all
the distances dij between all pairs of nodes in the active set Y . It can be shown that this
algorithm recovers all minimal latent trees. The proof of the following theorem is provided
in Appendix A.2.

Theorem 5 (Correctness and Computational Complexity of RG) If Tp ∈ T≥3 and
the matrix of information distances D (between nodes in V ) is available, then RG outputs
the true latent tree Tp correctly in time O(diam(Tp)m

3).

We now use a concrete example to illustrate the steps involved in RG. In Figure 3(a),
the original unknown latent tree is shown. In this tree, nodes 1, . . . , 6 are the observed
nodes and h1, h2, h3 are the hidden nodes. We start by considering the set of observed
nodes as active nodes Y := V = {1, . . . , 6}. Once Φijk are computed from the given
distances dij , TestNodeRelationships is used to determine that Y is partitioned into four
subsets: Π1 = {1}, Π2 = {2, 4}, Π3 = {5, 6}, Π4 = {3}. The subsets Π1 and Π4 contain

14
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only one node. The subset Π3 contains two siblings that are leaf nodes. The subset Π2

contains a parent node 2 and a child node 4, which is a leaf node. Since Π3 does not
contain a parent, we introduce a new hidden node h1 and connect h1 to 5 and 6 as shown
in Figure 3(b). The information distances d5h1

and d6h1
can be computed using (13), e.g.,

d5h1
= 1

2(d56 +Φ561). The new active set is the union of all nodes in the single-node subsets,
a parent node, and a new hidden node Ynew = {1, 2, 3, h1}. Distances among the pairs of
nodes in Ynew can be computed using (14) (e.g., d1h1

= d15− d5h1
). In the second iteration,

we again use TestNodeRelationships to ascertain that Y can be partitioned into Π1 = {1, 2}
and Π2 = {h1, 3}. These two subsets do not have parents so h2 and h3 are added to Π1

and Π2 respectively. Parent nodes h2 and h3 are connected to their children in Π1 and
Π2 as shown in Figure 3(c). Finally, we are left with the active set as Y = {h2, h3} and
the algorithm terminates after h2 and h3 are connected by an edge. The hitherto unknown
latent tree is fully reconstructed as shown in Figure 3(d).

A potential drawback of RG is that it involves multiple local operations, which may result
in a high computational complexity. Indeed, from Theorem 5, the worst-case complexity is
O(m4) which occurs when Tp, the true latent tree, is a hidden Markov model (HMM). This
may be computationally prohibitive if m is large. In Section 5 we design an algorithm which
uses a global pre-processing step to reduce the overall complexity substantially, especially
for trees with large diameters (of which HMMs are extreme examples).

5. CLGrouping Algorithm Given Information Distances

In this section, we present CLGrouping, an algorithm for reconstructing latent trees more
efficiently than RG. As in Section 4, in this section, we assume that D is known exactly;
the extension to inexact knowledge of D is discussed in Section 6.4. CLGrouping is a
two-step procedure, the first of which is a global pre-processing step that involves the
construction of a so-called Chow-Liu tree (Chow and Liu, 1968) over the set of observed
nodes V . This step identifies nodes that do not belong to the same sibling group. In the
second step, we complete the recovery of the latent tree by applying a distance-based latent
tree reconstruction algorithm (such as RG or NJ) repeatedly on smaller subsets of nodes.
We review the Chow-Liu algorithm in Section 5.1, relate the Chow-Liu tree to the true
latent tree in Section 5.2, derive a simple transformation of the Chow-Liu tree to obtain the
latent tree in Section 5.3 and propose CLGrouping in Section 5.4. For simplicity, we focus
on the Gaussian distributions and the symmetric discrete distributions first, and discuss
the extension to general discrete models in Section 5.5.

5.1 A Review of the Chow-Liu Algorithm

In this section, we review the Chow-Liu tree reconstruction procedure. To do so, define
T (V ) to be the set of trees with vertex set V and P(T (V )) to be the set of tree-structured
graphical models whose graph has vertex set V , i.e., every q ∈ P(T (V )) factorizes as in (3).

Given an arbitrary multivariate distribution pV (xV ), Chow and Liu (1968) considered
the following KL-divergence minimization problem:

pCL := argmin
q∈P(T (V ))

D(pV || q). (15)

15
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That is, among all the tree-structured graphical models with vertex set V , the distribution
pCL is the closest one to pV in terms of the KL-divergence. By using the factorization
property in (3), we can easily verify that pCL is Markov on the Chow-Liu tree TCL = (V, ECL)
which is given by the optimization problem:14

TCL = argmax
T∈T (V )

∑

(i,j)∈T

I(Xi ; Xj). (16)

In (16), I(Xi ; Xj) = D(p(xi, xj) || p(xi) p(xj)) is the mutual information (Cover and Thomas,
2006) between random variables Xi and Xj . The optimization in (16) is a max-weight span-
ning tree problem (Cormen et al., 2003) which can be solved efficiently in time O(m2 log m)
using either Kruskal’s algorithm (Kruskal, 1956) or Prim’s algorithm (Prim, 1957). The edge
weights for the max-weight spanning tree are precisely the mutual information quantities
between random variables. Note that once the optimal tree TCL is formed, the parameters
of pCL in (15) are found by setting the pairwise distributions pCL(xi, xj) on the edges to
pV (xi, xj), i.e., pCL(xi, xj) = pV (xi, xj) for all (i, j) ∈ ECL. We now relate the Chow-Liu
tree on the observed nodes and the information distance matrix D.

Lemma 6 (Correspondence between TCL and MST) If pV is a Gaussian distribution
or a symmetric discrete distribution, then the Chow-Liu tree in (16) reduces to the minimum
spanning tree (MST) where the edge weights are the information distances dij, i.e.,

TCL = MST(V ;D) := argmin
T∈T (V )

∑

(i,j)∈T

dij . (17)

Lemma 6, whose proof is omitted, follows because for Gaussian and symmetric discrete
models, the mutual information15 I(Xi ; Xj) is a monotonically decreasing function of the
information distance dij .

16 For other graphical models (e.g., non-symmetric discrete dis-
tributions), this relationship is not necessarily true. See Section 5.5 for a discussion. Note
that when all nodes are observed (i.e., W = V ), Lemma 6 reduces to Proposition 3.

5.2 Relationship between the Latent Tree and the Chow-Liu Tree (MST)

In this section, we relate MST(V ;D) in (17) to the original latent tree Tp. To relate the
two trees, MST(V ;D) and Tp, we first introduce the notion of a surrogate node.

Definition 7 (Surrogate Node) Given the latent tree Tp = (W, Ep) and any node i ∈W ,
the surrogate node of i with respect to V is defined as

Sg(i; Tp, V ) := argmin
j∈V

dij .

14. In (16) and the rest of the paper, we adopt the following simplifying notation; If T = (V, E) and if
(i, j) ∈ E, we will also say that (i, j) ∈ T .

15. Note that, unlike information distances dij , the mutual information quantities I(Xi ; Xj) do not form
an additive metric on Tp.

16. For example, in the case of Gaussians, I(Xi ; Xj) = − 1

2
log(1 − ρ2

ij) (Cover and Thomas, 2006).
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Intuitively, the surrogate node of a hidden node h ∈ H is an observed node j ∈ V that
is most strongly correlated to h. In other words, the information distance between h and j
is the smallest. Note that if i ∈ V , then Sg(i; Tp, V ) = i since dii = 0. The map Sg(i; Tp, V )
is a many-to-one function, i.e., several nodes may have the same surrogate node, and its
inverse is the inverse surrogate set of i denoted as

Sg−1(i; Tp, V ) := {h ∈W : Sg(h; Tp, V ) = i}.

When the tree Tp and the observed vertex set V are understood from context, the surrogate
node of h and the inverse surrogate set of i are abbreviated as Sg(h) and Sg−1(i) respectively.
We now relate the original latent tree Tp = (W, Ep) to the Chow-Liu tree (also termed the
MST) MST(V ;D) formed using the distance matrix D.

Lemma 8 (Properties of the MST) The MST in (17) and surrogate nodes satisfy the
following properties:

(i) The surrogate nodes of any two neighboring nodes in Ep are neighbors in the MST,
i.e., for all i, j ∈W with Sg(i) 6= Sg(j),

(i, j) ∈ Ep ⇒ (Sg(i), Sg(j)) ∈ MST(V ;D). (18)

(ii) If j ∈ V and h ∈ Sg−1(j), then every node along the path connecting j and h belongs
to the inverse surrogate set Sg−1(j).

(iii) The maximum degree of the MST satisfies

∆(MST(V ;D)) ≤ ∆(Tp)
1+ u

l
δ(Tp;V ), (19)

where δ(Tp; V ) is the effective depth defined in (1) and l, u are the bounds on the
information distances on edges in Tp defined in (11).

The proof of this result can be found in Appendix A.3. As a result of Lemma 8, the
properties of MST(V ;D) can be expressed in terms of the original latent tree Tp. For ex-
ample, in Figure 5(a), a latent tree is shown with its corresponding surrogacy relationships,
and Figure 5(b) shows the corresponding MST over the observed nodes.

The properties in Lemma 8(i-ii) can also be regarded as edge-contraction operations
(Robinson and Foulds, 1981) in the original latent tree to obtain the MST. More precisely,
an edge-contraction operation on an edge (j, h) ∈ V × H in the latent tree Tp is defined
as the “shrinking” of (j, h) to a single node whose label is the observed node j. Thus, the
edge (j, h) is “contracted” to a single node j. By using Lemma 8(i-ii), we observe that the
Chow-Liu tree MST(V ;D) is formed by applying edge-contraction operations to each (j, h)
pair for all h ∈ Sg−1(j)∩H sequentially until all pairs have been contracted to a single node
j. For example, the MST in Figure 5(b) is obtained by contracting edges (3, h3), (5, h2),
and then (5, h1) in the latent tree in Figure 5(a).

The properties in Lemma 8 can be used to design efficient algorithms based on trans-
forming the MST to obtain the latent tree Tp. Note that the maximum degree of the
MST, ∆(MST(V ;D)), is bounded by the maximum degree in the original latent tree. The
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Figure 4: An illustration of CLBlind. The shaded nodes are the observed nodes and the
rest are hidden nodes. The dotted lines denote surrogate mappings for the hidden
nodes. (a) Original latent tree, which belongs to the class of blind latent graphical
models, (b) Chow-Liu tree over the observed nodes, (c) Node 3 is the input to the
blind transformation, (d) Output after the blind transformation, (e) Node 2 is
the input to the blind transformation, (f) Output after the blind transformation,
which is same as the original latent tree.

quantity ∆(MST(V ;D)) determines the computational complexity of one of our proposed
algorithms (CLGrouping) and it is small if the depth of the latent tree δ(Tp; V ) is small (e.g.,
HMMs) and the information distances dij satisfy tight bounds (i.e., u/l is close to unity).
The latter condition holds for (almost) homogeneous models in which all the information
distances dij on the edges are almost equal.

5.3 Chow-Liu Blind Algorithm for a Subclass of Latent Trees

In this section, we present a simple and intuitive transformation of the Chow-Liu tree
that produces the original latent tree. However, this algorithm, called Chow-Liu Blind (or
CLBlind), is applicable only to a subset of latent trees called blind latent tree-structured
graphical models P(Tblind). Equipped with the intuition from CLBlind, we generalize it
in Section 5.4 to design the CLGrouping algorithm that produces the correct latent tree
structure from the MST for all minimal latent tree models.

If p ∈ P(Tblind), then its structure Tp = (W, Ep) and the distance matrix D satisfy the
following properties:

(i) The true latent tree Tp ∈ T≥3 and all the internal nodes17 are hidden, i.e., V =
Leaf(Tp).

(ii) The surrogate node of (i.e., the observed node with the strongest correlation with)
each hidden node is one of its children, i.e., Sg(h) ∈ C(h) for all h ∈ H.

We now describe the CLBlind algorithm, which involves two main steps. Firstly,
MST(V ;D) is constructed using the distance matrix D. Secondly, we apply the blind
transformation of the Chow-Liu tree BlindTransform(MST(V ;D)), which proceeds as fol-
lows:

1. Identify the set of internal nodes in MST(V ;D). We perform an operation for each
internal node as follows:

2. For internal node i, add a hidden node h to the tree.

17. Recall that an internal node is one whose degree is greater than or equal to 2, i.e., a non-leaf.
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3. Connect an edge between h and i (which now becomes a leaf node) and also connect
edges between h and the neighbors of i in the current tree model.

4. Repeat steps 2 and 3 until all internal nodes have been operated on.

See Figure 4 for an illustration of CLBlind. We use the adjective blind to describe the
transformation BlindTransform(MST(V ;D)) since it does not depend on the distance matrix
D but uses only the structure of the MST. The following theorem whose proof can be found
in Appendix A.4 states the correctness result for CLBlind.

Theorem 9 (Correctness and Computational Complexity of CLBlind) If the dis-
tribution p ∈ P(Tblind) is a blind tree-structured graphical model Markov on Tp and the
matrix of distances D is known, then CLBlind outputs the true latent tree Tp correctly in
time O(m2 log m).

The first condition on P(Tblind) that all internal nodes are hidden is not uncommon
in applications. For example, in phylogenetics, (DNA or amino acid) sequences of extant
species at the leaves are observed, while the sequences of the extinct species are hidden
(corresponding to the internal nodes), and the evolutionary (phylogenetic) tree is to be
reconstructed. However, the second condition is more restrictive18 since it implies that
each hidden node is directly connected to at least one observed node and that it is closer
(i.e., more correlated) to one of its observed children compared to any other observed
node. If the first constraint is satisfied but not the second, then the blind transformation
BlindTransform(MST(V ;D)) does not overestimate the number of hidden variables in the
latent tree (the proof follows from Lemma 8 and is omitted).

Since the computational complexity of constructing the MST is O(m2 log m) where
m = |V |, and the blind transformation is at most linear in m, the overall computational
complexity is O(m2 log m). Thus, CLBlind is a computationally efficient procedure com-
pared to RG, described in Section 4.

5.4 Chow-Liu Grouping Algorithm

Even though CLBlind is computationally efficient, it only succeeds in recovering latent trees
for a restricted subclass of minimal latent trees. In this section, we propose an efficient
algorithm, called CLGrouping that reconstructs all minimal latent trees. We also illustrate
CLGrouping using an example. CLGrouping uses the properties of the MST as described
in Lemma 8.

At a high-level, CLGrouping involves two distinct steps: Firstly, we construct the Chow-
Liu tree MST(V ;D) over the set of observed nodes V . Secondly, we apply RG or NJ
to reconstruct a latent subtree over the closed neighborhoods of every internal node in
MST(V ;D). If RG (respectively NJ) is used, we term the algorithm CLRG (respectively
CLNJ). In the rest of the section, we only describe CLRG for concreteness since CLNJ
proceeds along similar lines. Formally, CLRG proceeds as follows:

1. Construct the Chow-Liu tree MST(V ;D) as in (17). Set T = MST(V ;D).

18. The second condition on P(Tblind) holds when the tree is (almost) homogeneous.
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Figure 5: Illustration of CLRG. The shaded nodes are the observed nodes and the rest are
hidden nodes. The dotted lines denote surrogate mappings for the hidden nodes
so for example, node 3 is the surrogate of h3. (a) The original latent tree, (b) The
Chow-Liu tree (MST) over the observed nodes V , (c) The closed neighborhood
of node 5 is the input to RG, (d) Output after the first RG procedure, (e) The
closed neighborhood of node 3 is the input to the second iteration of RG, (f)
Output after the second RG procedure, which is same as the original latent tree.

2. Identify the set of internal nodes in MST(V ;D).

3. For each internal node i, let nbd[i; T ] be its closed neighborhood in T and let S =
RG(nbd[i; T ],D) be the output of RG with nbd[i; T ] as the set of input nodes.

4. Replace the subtree over node set nbd[i; T ] in T with S. Denote the new tree as T .

5. Repeat steps 3 and 4 until all internal nodes have been operated on.

Note that the only difference between the algorithm we just described and CLNJ is Step 3
in which the subroutine NJ replaces RG. Also, observe in Step 3 that RG is only applied
to a small subset of nodes which have been identified in Step 1 as possible neighbors in
the true latent tree. This reduces the computational complexity of CLRG compared to
RG, as seen in the following theorem whose proof is provided in Appendix A.5. Let |J | :=
|V \ Leaf(MST(V ;D))| < m be the number of internal nodes in the MST.

Theorem 10 (Correctness and Computational Complexity of CLRG) If the dis-
tribution Tp ∈ T≥3 is a minimal latent tree and the matrix of information distances D
is available, then CLRG outputs the true latent tree Tp correctly in time O(m2 log m +
|J |∆3(MST(V ;D))).

Thus, the computational complexity of CLRG is low when the latent tree Tp has a small
maximum degree and a small effective depth (such as the HMM) because (19) implies that
∆(MST(V ;D)) is also small. Indeed, we demonstrate in Section 7 that there is a significant
speedup compared to applying RG over the entire observed node set V .

We now illustrate CLRG using the example shown in Figure 5. The original minimal
latent tree Tp = (W, E) is shown in Figure 5(a) with W = {1, 2, . . . , 6, h1, h2, h3}. The
set of observed nodes is V = {1, . . . , 6} and the set of hidden nodes is H = {h1, h2, h3}.
The Chow-Liu tree TCL = MST(V ;D) formed using the information distance matrix D is
shown in Figure 5(b). Since nodes 3 and 5 are the only internal nodes in MST(V ;D), two
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Latent variables Distribution MST(V ;D) = TCL? Structure Parameter

Non-latent Gaussian X X X

Non-latent Symmetric Discrete X X X

Non-latent General Discrete × X ×
Latent Gaussian X X X

Latent Symmetric Discrete X X X

Latent General Discrete × X ×

Table 1: Comparison between various classes of distributions. In the last two columns,
we state whether CLGrouping is consistent for learning either the structure or
parameters of the model, namely whether CLGrouping is structurally consistent
or risk consistent respectively (cf. Definition 2). Note that the first two cases
reduce exactly to the algorithm proposed by Chow and Liu (1968) in which the
edge weights are the mutual information quantities.

RG operations will be executed on the closed neighborhoods of each of these two nodes. In
the first iteration, the closed neighborhood of node 5 is the input to RG. This is shown in
Figure 5(c) where nbd[5; MST(V ;D)] = {1, 3, 4, 5}, which is then replaced by the output
of RG to obtain the tree shown in Figure 5(d). In the next iteration, RG is applied to
the closed neighborhood of node 3 in the current tree nbd[3;T ] = {2, 3, 6, h1} as shown
in Figure 5(e). Note that nbd[3;T ] includes h1 ∈ H, which was introduced by RG in the
previous iteration. The distance from h1 to other nodes in nbd[3;T ] can be computed using
the distance between h1 and its surrogate node 5, which is part of the output of RG, e.g.,
d2h1

= d25 − d5h1
. The closed neighborhood nbd[3;T ] is then replaced by the output of the

second RG operation and the original latent tree Tp is obtained as shown in Figure 5(f).

Observe that the trees obtained at each iteration of CLRG can be related to the original
latent tree in terms of edge-contraction operations (Robinson and Foulds, 1981), which
were defined in Section 5.2. For example, the Chow-Liu tree in Figure 5(b) is obtained
from the latent tree Tp in Figure 5(a) by sequentially contracting all edges connecting an
observed node to its inverse surrogate set (cf. Lemma 8(ii)). Upon performing an iteration
of RG, these contraction operations are inverted and new hidden nodes are introduced. For
example, in Figure 5(d), the hidden nodes h1, h2 are introduced after performing RG on
the closed neighborhood of node 5 on MST(V ;D). These newly introduced hidden nodes
in fact, turn out to be the inverse surrogate set of node 5, i.e., Sg−1(5) = {5, h1, h2}. This
is not merely a coincidence and we formally prove in Appendix A.5 that at each iteration,
the set of hidden nodes introduced corresponds exactly to the inverse surrogate set of the
internal node.

We conclude this section by emphasizing that CLGrouping (i.e., CLRG or CLNJ) has
two primary advantages. Firstly, as demonstrated in Theorem 10, the structure of all
minimal tree-structured graphical models can be recovered by CLGrouping in contrast to
CLBlind. Secondly, it typically has much lower computational complexity compared to RG.
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5.5 Extension to General Discrete Models

For general (i.e., not symmetric) discrete models, the mutual information I(Xi ; Xj) is in
general not monotonic in the information distance dij , defined in (9).19 As a result, Lemma 6
does not hold, i.e., the Chow-Liu tree TCL is not necessarily the same as MST(V ;D).
However, Lemma 8 does hold for all minimal latent tree models. Therefore, for general
(non-symmetric) discrete models, we compute MST(V ;D) (instead of the Chow-Liu tree
TCL with edge weights I(Xi ; Xj)), and apply RG or NJ to each internal node and its
neighbors. This algorithm guarantees that the structure learned using CLGrouping is the
same as Tp if the distance matrix D is available. These observations are summarized clearly
in Table 1. Note that in all cases, the latent structure is recovered consistently.

6. Sample-Based Algorithms for Learning Latent Tree Structures

In Sections 4 and 5, we designed algorithms for the exact reconstruction of latent trees as-
suming that pV is a tree-decomposable distribution and the matrix of information distances
D is available. In most (if not all) machine learning problems, the pairwise distributions
p(xi, xj) are unavailable. Consequently, D is also unavailable so RG, NJ and CLGrouping as
stated in Sections 4 and 5 are not directly applicable. In this section, we consider extending
RG, NJ and CLGrouping to the case when only samples xn

V are available. We show how to
modify the previously proposed algorithms to accommodate ML estimated distances and
we also provide sample complexity results for relaxed versions of RG and CLGrouping.

ML Estimation of Information Distances

The canonical method for deterministic parameter estimation is via maximum-likelihood
(ML) (Serfling, 1980). We focus on Gaussian and symmetric discrete distributions in this
section. The generalization to general discrete models is straightforward. For Gaussians
graphical models, we use ML to estimate the entries of the covariance matrix,20 i.e.,

Σ̂ij =
1

n

n∑

k=1

x
(k)
i x

(k)
j , ∀ i, j ∈ V. (20)

The ML estimate of the correlation coefficient is defined as ρ̂ij := Σ̂ij/(Σ̂iiΣ̂jj)
1/2. The

estimated information distance is then given by the analog of (8), i.e., d̂ij = − log |ρ̂ij |. For
symmetric discrete distributions, we estimate the crossover probability θij via ML as21

θ̂ij =
1

n

n∑

k=1

I
{
x

(k)
i 6= x

(k)
j

}
, ∀ i, j ∈ V.

The estimated information distance is given by the analogue of (10), i.e., d̂ij = −(K −
1) log(1−Kθ̂ij). For both classes of models, it can easily be verified from the Central Limit

19. The mutual information, however, is monotonic in dij for asymmetric binary discrete models.
20. Recall that we assume that the mean of the true random vector X is known and equals to the zero vector

so we do not need to subtract the empirical mean in (20).
21. We use I{·} to denote the indicator function.
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Theorem and continuity arguments (Serfling, 1980) that d̂ij − dij = Op(n
−1/2), where n

is the number of samples. This means that the estimates of the information distances are
consistent with rate of convergence being n−1/2. The m×m matrix of estimated information
distances is denoted as D̂ = [d̂ij ].

6.1 Post-processing Using Edge Contractions

For all sample-based algorithms discussed in this section, we apply a common post-processing
step using edge-contraction operations. Recall from (11) that l is the minimum bound on
the information distances on edges. After learning the latent tree, if we find that there
exists an edge (i, h) ∈W ×H with the estimated distance d̂ih < l, then (i, h) is contracted
to a single node whose label is i, i.e., the hidden node h is removed and merged with node
i. This edge contraction operation removes a hidden node if it is too close in information
distances to another node. For Gaussian and binary variables, d̂ih = − log |ρ̂ih|, so in our
experiments, we use l = − log 0.9 to contract an edge (i, h) if the correlation between the
two nodes is higher than 0.9.

6.2 Relaxed Recursive Grouping (RG) Given Samples

We now show how to relax the canonical RG algorithm described in Section 4 to handle the
case when only D̂ is available. Recall that RG calls the TestNodeRelationships procedure
recursively to ascertain child-parent and sibling relationships via equality tests Φijk = dik−
djk (cf. Section 3.2). These equality constraints are, in general, not satisfied with the

estimated differences Φ̂ijk := d̂ik− d̂jk, which are computed based on the estimated distance

in D̂. Besides, not all estimated distances are equally accurate. Longer distance estimates
(i.e., lower correlation estimates) are less accurate for a given number of samples.22 As
such, not all estimated distances can be used for testing inter-node relationships reliably.
These observations motivate the following three modifications to the RG algorithm:

1. Consider using a smaller subset of nodes to test whether Φ̂ijk is constant (across k).

2. Apply a threshold (inequality) test to the Φ̂ijk values.

3. Improve on the robustness of the estimated distances d̂ih in (13) and (14) by averaging.

We now describe each of these modifications in greater detail. Firstly, in the relaxed RG
algorithm, we only compute Φ̂ijk for those estimated distances d̂ij , d̂ik and d̂jk that are
below a prescribed threshold τ > 0 since longer distance estimates are unreliable. As such,
for each pair of nodes (i, j) such that d̂ij < τ , associate the set

Kij :=
{

k ∈ V \{i, j} : max{d̂ik, d̂jk} < τ
}

. (21)

This is the subset of nodes in V whose estimated distances to i and j are less than τ .
Compute Φ̂ijk for all k ∈ Kij only.

22. In fact, by using a large deviation result in Shen (2007, Theorem 1), we can formally show that a larger
number of samples is required to get a good approximation of ρik if it is small compared to when ρik is
large.
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Secondly, instead of using equality tests in TestNodeRelationships to determine the rela-
tionship between nodes i and j, we relax this test and consider the statistic

Λ̂ij := max
k∈Kij

Φ̂ijk − min
k∈Kij

Φ̂ijk (22)

Intuitively, if Λ̂ij in (22) is close to zero, then nodes i and j are likely to be in the same
family. Thus, declare that nodes i, j ∈ V are in the same family if

Λ̂ij < ǫ, (23)

for another threshold ǫ > 0. Similarly, an observed node k is identified as a parent node if
|d̂ik + d̂kj − d̂ij | < ǫ for all i and j in the same family. If such an observed node does not
exists for a group of family, then a new hidden node is introduced as the parent node for
the group.

Thirdly, in order to further improve on the quality of the distance estimate d̂ih of a
newly introduced hidden node to observed nodes, we compute d̂ih using (13) with different
pairs of j ∈ C(h) and k ∈ Kij , and take the average as follows:

d̂ih =
1

2(|C(h)| − 1)




∑

j∈C(h)

d̂ij +
1

|Kij |
∑

k∈Kij

Φ̂ijk



 . (24)

Similarly, for any other node k /∈ C(h), we compute d̂kh using all child nodes in C(h) and
C(k) (if C(k) 6= ∅) as follows:

d̂kh =

{
1

|C(h)|

∑
i∈C(h)(d̂ik − d̂ih), if k ∈ V,

1
|C(h)||C(k)|

∑
(i,j)∈C(h)×C(k)(d̂ij − d̂ih − d̂jk), otherwise.

(25)

It is easy to verify that if d̂ih and d̂kh are equal to dih and dkh respectively, then (24)
and (25) reduce to (13) and (14) respectively.

The following theorem shows that relaxed RG is consistent, and with appropriately
chosen thresholds ǫ and τ , it has the sample complexity logarithmic in the number of
observed variables. The proof follows from standard Chernoff bounds and is provided in
Appendix A.6.

Theorem 11 (Consistency and Sample Complexity of Relaxed RG) (i) Relaxed RG
is structurally consistent for all Tp ∈ T≥3. In addition, it is risk consistent for Gaussian and
symmetric discrete distributions. (ii) Assume that the effective depth is δ(Tp; V ) = O(1)

(i.e., constant in m) and relaxed RG is used to reconstruct the tree given D̂. For every
η > 0, there exists thresholds ǫ, τ > 0 such that if

n > C log(m/ 3
√

η) (26)

for some constant C > 0, the error probability for structure reconstruction in (5) is bounded
above by η. If, in addition, p is a Gaussian or symmetric discrete distribution and n >
C ′ log(m/ 3

√
η), the error probability for distribution reconstruction in (6) is also bounded
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above by η. Thus, the sample complexity of relaxed RG, which is the number of samples
required to achieve a desired level of accuracy, is logarithmic in m, the number of observed
variables.

As we observe from (26), the sample complexity for RG is logarithmic in m for shallow
trees (i.e., trees where the effective depth is constant). This is in contrast to NJ where the
sample complexity is super-polynomial in the number of observed nodes for the HMM (St.
John et al., 2003; Lacey and Chang, 2006).

RG with k-means Clustering

In practice, if the number of samples is limited, the distance estimates d̂ij are noisy and it
is difficult to select the threshold ǫ in Theorem 11 to identify sibling nodes reliably. In our
experiments, we employ a modified version of the k-means clustering algorithm to cluster a
set of nodes with small Λ̂ij , defined in (22), as a group of siblings. Recall that we test each

Λ̂ij locally with a fixed threshold ǫ in (23). In contrast, the k-means algorithm provides a
global scheme and circumvents the need to select the threshold ǫ. We adopt the silhouette
method (Rousseeuw, 1987) with dissimilarity measure Λ̂ij to select optimal the number of
clusters k.

6.3 Relaxed Neighbor-Joining Given Samples

In this section, we describe how NJ can be relaxed when the true distances are unavailable.
We relax the NJ algorithm by using ML estimates of the distances d̂ij in place of unavailable
distances dij . NJ typically assume that all observed nodes are at the leaves of the latent tree,
so after learning the latent tree, we perform the post-processing step described in Section 6.1
to identify internal nodes that are observed.23 The sample complexity of NJ is known to
be O(exp(diam(Tp)) log m) (St. John et al., 2003) and thus does not scale well when the
latent tree Tp has a large diameter. Comparisons between the sample complexities of other
closely related latent tree learning algorithms are discussed in Atteson (1999); Erdős et al.
(1999); Csűrös (2000) and St. John et al. (2003).

6.4 Relaxed CLGrouping Given Samples

In this section, we discuss how to modify CLGrouping (CLRG and CLNG) when we only
have access to the estimated information distance D̂. The relaxed version of CLGrouping
differs from CLGrouping in two main aspects. Firstly, we replace the edge weights in the
construction of the MST in (17) with the estimated information distances d̂ij , i.e.,

T̂CL = MST(V ; D̂) := argmin
T∈T (V )

∑

(i,j)∈T

d̂ij . (27)

The procedure in (27) can be shown to be equivalent to the learning of the ML tree structure
given samples xn

V if pV is a Gaussian or symmetric discrete distribution.24 It has also been

shown that the error probability of structure learning Pr(T̂CL 6= TCL) converges to zero

23. The processing (contraction) of the internal nodes can be done in any order.
24. This follows from the observation that the ML search for the optimal structure is equivalent to the

KL-divergence minimization problem in (15) with pV replaced by bpV , the empirical distribution of x
n
V .

25



Choi, Tan, Anandkumar, and Willsky

exponentially fast in the number of samples n for both discrete and Gaussian data (Tan
et al., 2010, 2011). Secondly, for CLRG (respectively CLNJ), we replace RG (respectively
NJ) with the relaxed version of RG (respectively NJ). The sample complexity result of
CLRG (and its proof) is similar to Theorem 11 and the proof is provided in Appendix A.7.

Theorem 12 (Consistency and Sample Complexity of Relaxed CLRG) (i) Re-
laxed CLRG is structurally consistent for all Tp ∈ T≥3. In addition, it is risk consistent
for Gaussian and symmetric discrete distributions. (ii) Assume that the effective depth is
δ(Tp; V ) = O(1) (i.e., constant in m). Then the sample complexity of relaxed CLRG is
logarithmic in m.

6.5 Regularized CLGrouping for Learning Latent Tree Approximations

For many practical applications, it is of interest to learn a latent tree that approximates the
given empirical distribution. In general, introducing more hidden variables enables better
fitting to the empirical distribution, but it increases the model complexity and may lead
to overfitting. The Bayesian Information Criterion (Schwarz, 1978) provides a trade-off
between model fitting and model complexity, and is defined as follows:

BIC(T̂ ) = log p(xn
V ; T̂ )− κ(T̂ )

2
log n (28)

where T̂ is a latent tree structure and κ(T̂ ) is the number of free parameters, which grows
linearly with the number of hidden variables because T̂ is a tree. Here, we describe regu-
larized CLGrouping, in which we use the BIC in (28) to specify a stopping criterion on the
number of hidden variables added.

For each internal node and its neighbors in the Chow-Liu tree, we use relaxed NJ or RG
to learn a latent subtree. Unlike in regular CLGrouping, before we integrate this subtree
into our model, we compute its BIC score. Computing the BIC score requires estimating
the maximum likelihood parameters for the models, so for general discrete distributions,
we run the EM algorithm on the subtree to estimate the parameters.25 After we compute
the BIC scores for all subtrees corresponding to all internal nodes in the Chow-Liu tree, we
choose the subtree that results in the highest BIC score and incorporate that subtree into
the current tree model.

The BIC score can be computed efficiently on a tree model with a few hidden variables.
Thus, for computational efficiency, each time a set of hidden nodes is added to the model,
we generate samples of hidden nodes conditioned on the samples of observed nodes, and
use these augmented samples to compute the BIC score approximately when we evaluate
the next subtree to be integrated in the model.

If none of the subtrees increases the BIC score (i.e., the current tree has the highest
BIC score), the procedure stops and outputs the estimated latent tree. Alternatively, if we
wish to learn a latent tree with a given number of hidden nodes, we can used the BIC-based
procedure mentioned in the previous paragraph to learn subtrees until the desired number

25. Note that for Gaussian and symmetric discrete distributions, the model parameters can be recovered
from information distances directly using (8) or (10).
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(b) HMM(a) Double star

(c) 5-complete

Figure 6: Latent tree structures used in our simulations.

of hidden nodes is introduced. Depending on whether we use NJ or RG as the subroutine,
we denote the specific regularized CLGrouping algorithm as regCLNJ or regCLRG.

This approach of using an approximation of the BIC score has been commonly used
to learn a graphical model with hidden variables (Elidan and Friedman, 2005; Zhang and
Kočka, 2004). However, for these algorithms, the BIC score needs to be evaluated for a
large subset of nodes, whereas in CLGrouping, the Chow-Liu tree among observed variables
prunes out many subsets, so we need to evaluate BIC scores only for a small number of
candidate subsets (the number of internal nodes in the Chow-Liu tree).

7. Experimental Results

In this section, we compare the performances of various latent tree learning algorithms.
We first show simulation results on synthetic datasets with known latent tree structures
to demonstrate the consistency of our algorithms. We also analyze the performance of
these algorithms when we change the underlying latent tree structures. Then, we show that
our algorithms can approximate arbitrary multivariate probability distributions with latent
trees by applying them to two real-world datasets, a monthly stock returns example and
the 20 newsgroups dataset.

7.1 Simulations using Synthetic Datasets

In order to analyze the performances of different tree reconstruction algorithms, we generate
samples from known latent tree structures with varying sample sizes and apply reconstruc-
tion algorithms. We compare the neighbor-joining method (NJ) (Saitou and Nei, 1987)
with recursive grouping (RG), Chow-Liu Neighbor Joining (CLNJ), and Chow-Liu Recur-
sive Grouping (CLRG). Since the algorithms are given only samples of observed variables,
we use the sample-based algorithms described in Section 6. For all our experiments, we use
the same edge-contraction threshold ǫ′ = − log 0.9 (see Sections 6.3 and 6.4), and set τ in
Section 6.2 to grow logarithmically with the number of samples.
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Figure 7: Performance of RG, NJ, CLRG, and CLNJ for the latent trees shown in Figure 6.

Figure 6 shows the three latent tree structures used in our simulations. The double-
star has 2 hidden and 80 observed nodes, the HMM has 78 hidden and 80 observed nodes,
and the 5-complete tree has 25 hidden and 81 observed nodes including the root node. For
simplicity, we present simulation results only on Gaussian models but note that the behavior
on discrete models is similar. All correlation coefficients on the edges ρij were independently
drawn from a uniform distribution supported on [0.2, 0.8]. The performance of each method
is measured by averaging over 200 independent runs with different parameters. We use the
following performance metrics to quantify the performance of each algorithm in Figure 7:

(i) Structure recovery error rate: This is the proportion of times that the proposed
algorithm fails to recover the true latent tree structure. Note that this is a very strict
measure since even a single wrong hidden node or misplaced edge results in an error
for the entire structure.
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(ii) Robinson Foulds metric (Robinson and Foulds, 1981): This popular phylogenetic
tree-distortion metric computes the number of graph transformations (edge contrac-
tion or expansion) needed to be applied to the estimated graph in order to get the
correct structure. This metric quantifies the difference in the structures of the esti-
mated and true models.

(iii) Error in the number of hidden variables: We compute the average number of
hidden variables introduced by each method and plot the absolute difference between
the average estimated hidden variables and the number of hidden variables in the true
structure.

(iv) KL-divergence D(pV || p̂n
V ): This is a measure of the distance between the estimated

and the true models over the set of observed nodes V .26

We first note that from the structural error rate plots that the double star is the easiest
structure to recover and the 5-complete tree is the hardest. In general, given the same
number of observed variables, a latent tree with more hidden variables or larger effective
depth (see Section 2) is more difficult to recover.

For the double star, RG clearly outperforms all other methods. With only 1,000 sam-
ples, it recovers the true structure exactly in all 200 runs. On the other hand, CLGrouping
performs significantly better than RG for the HMM. There are two reasons for such per-
formance differences. Firstly, for Gaussian distributions, it was shown (Tan et al., 2010)
that given the same number of variables and their samples, the Chow-Liu algorithm is most
accurate for a chain and least accurate for a star. Since the Chow-Liu tree of a latent double
star graph is close to a star, and the Chow-Liu tree of a latent HMM is close to a chain, the
Chow-Liu tree tend to be more accurate for the HMM than for the double star. Secondly,
the internal nodes in the Chow-Liu tree of the HMM tend to have small degrees, so we can
apply RG or NJ to a very small neighborhood, which results in a significant improvement
in both accuracy and computational complexity.

Note that NJ is particularly poor at recovering the HMM structure. In fact, it has
been shown that even if the number of samples grows polynomially with the number of
observed variables (i.e., n = O(mB) for any B > 0), it is insufficient for NJ to recover
HMM structures (Lacey and Chang, 2006). The 5-complete tree has two layers of hidden
nodes, making it very difficult to recover the exact structure using any method. CLNJ has
the best structure recovery error rate and KL divergence, while CLRG has the smallest
Robinson-Foulds metric.

Table 2 shows the running time of each algorithm averaged over 200 runs and all sample
sizes. All algorithms are implemented in MATLAB. As expected, we observe that CLRG is
significantly faster than RG for HMM and 5-complete graphs. NJ is fastest, but CLNJ is
also very efficient and leads to much more accurate reconstruction of latent trees.

Based on the simulation results, we conclude that for a latent tree with a few hidden
variables, RG is most accurate, and for a latent tree with a large diameter, CLNJ performs

26. Note that this is not the same quantity as in (6) because if the number of hidden variables is estimated
incorrectly, D(p || bpn) is infinite so we plot D(pV || bpn

V ) instead. However, for Gaussian and symmetric
discrete distributions, D(p || bpn) converges to zero in probability since the number of hidden variables is
estimated correctly asymptotically.
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RG NJ CLRG CLNJ

HMM 10.16 0.02 0.10 0.05

5-complete 7.91 0.02 0.26 0.06

Double star 1.43 0.01 0.76 0.20

Table 2: Average running time of each algorithm in seconds.

Log-Likelihood BIC # Hidden # Parameters Time (secs)

CL -13,321 -13,547 0 84 0.15

NJ -12,400 -12,747 45 129 0.02

RG -14,042 -14,300 12 96 21.15

CLNJ -11,990 -12,294 29 113 0.24

CLRG -12,879 -13,174 26 110 0.40

Table 3: Comparison of the log-likelihood, BIC, number of hidden variables introduced,
number of parameters, and running time for the monthly stock returns example.

the best. A latent tree with multiple layers of hidden variables is more difficult to recover
correctly using any method, and CLNJ and CLRG outperform NJ and RG.

7.2 Monthly Stock Returns

In this and the next section, we test our algorithms on real-world datasets. The probability
distributions that govern these datasets of course do not satisfy the assumptions required for
consistent learning of the latent tree models. Nonetheless the experiments here demonstrate
that our algorithms are also useful in approximating complex probability distributions by
latent models in which the hidden variables have the same domain as the observed ones.

We apply our latent tree learning algorithms to model the dependency structure of
monthly stock returns of 84 companies in the S&P 100 stock index.27 We use the samples
of the monthly returns from 1990 to 2007. As shown in Table 3 and Figure 8, CLNJ achieves
the highest log-likelihood and BIC scores. NJ introduces more hidden variables than CLNJ
and has lower log-likelihoods, which implies that starting from a Chow-Liu tree helps to
get a better latent tree approximation. Figure 11 shows the latent tree structure learned
using the CLNJ method. Each observed node is labeled with the ticker of the company.
Note that related companies are closely located on the tree. Many hidden nodes can be
interpreted as industries or divisions. For example, h1 has Verizon, Sprint, and T-mobile
as descendants, and can be interpreted as the telecom industry, and h3 correspond to the
technology division with companies such as Microsoft, Apple, and IBM as descendants.
Nodes h26 and h27 group commercial banks together, and h25 has all retail stores as child
nodes.

27. We disregard 16 companies that have been listed on S&P 100 only after 1990.
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Figure 8: Plot of BIC scores for the monthly stock returns example.

7.3 20 Newsgroups with 100 Words

For our last experiment, we apply our latent tree learning algorithms to the 20 Newsgroups
dataset with 100 words.28 The dataset consists of 16,242 binary samples of 100 words,
indicating whether each word appears in each posting or not. In addition to the Chow-Liu
tree (CL), NJ, RG, CLNJ, and CLRG, we also compare the performances with the regCLNJ
and regCLRG (described in Section 6.5), the latent cluster model (LCM) (Lazarsfeld and
Henry, 1968), and BIN, which is a greedy algorithm for learning latent trees (Harmeling
and Williams, 2010).

Table 4 shows the performance of different algorithms, and Figure 9 plots the BIC score.
We use the MATLAB code (a small part of it is implemented in C) provided by Harmeling
and Williams (2010)29 to run LCM and BIN. Note that although LCM has only one hidden
node, the hidden node has 16 states, resulting in many parameters. We also tried to run
the algorithm by Chen et al. (2008), but their JAVA implementation on this dataset did not
complete even after several days. For NJ, RG, CLNJ, and CLRG, we learned the structures
using only information distances (defined in (9)) and then used the EM algorithm to fit
the parameters. For regCLNJ and regCLRG, the model parameters are learned during the
structure learning procedure by running the EM algorithm locally, and once the structure
learning is over, we refine the parameters by running the EM algorithm for the entire latent
tree. All methods are implemented in MATLAB except the E-step of the EM algorithm,
which is implemented in C++.

Despite having many parameters, the models learned via LCM have the best BIC score.
However, it does not reveal any interesting structure and is computationally more expensive
to learn. In addition, it may result in overfitting. In order to show this, we split the dataset
randomly and use half as the training set and the other half as the test set. Table 5 shows
the performance of applying the latent trees learned from the training set to the test set,
and Figure 10 shows the log-likelihood on the training and the test sets. For LCM, the test
log-likelihood drops significantly compared to the training log-likelihood, indicating that
LCM is overfitting the training data. NJ, CLNJ, and CLRG achieve high log-likelihood
scores on the test set. Although regCLNJ and regCLRG do not result in a better BIC

28. http://cs.nyu.edu/~roweis/data/20news_w100.mat
29. http://people.kyb.tuebingen.mpg.de/harmeling/code/ltt-1.3.tar
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Log-Likelihood BIC Hidden Params
Time (s)

Total Structure EM

CL -238,713 -239,677 0 199 8.9 - -

LCM -223,096 -230,925 1 1,615 8,835.9 - -

BIN -232,042 -233,952 98 394 3,022.6 - -

NJ -230,575 -232,257 74 347 1,611.2 3.3 1,608.2

RG -239,619 -240,875 30 259 927.1 30.8 896.4

CLNJ -230,858 -232,540 74 347 1,479.6 2.7 1,476.8

CLRG -231,279 -232,738 51 301 1,224.6 3.1 1,224.6

regCLNJ -235,326 -236,553 27 253 630.8 449.7 181.1

regCLRG -234,012 -235,229 26 251 606.9 493.0 113.9

Table 4: Comparison between various algorithms on the newsgroup set.
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Figure 9: The BIC scores of various algorithms on the newsgroup set.

score, they introduce fewer hidden variables, which is desirable if we wish to learn a latent
tree with small computational complexity, or if we wish to discover a few hidden variables
that are meaningful in explaining the dependencies of observed variables.

Figure 12 shows the latent tree structure learned using regCLRG from the entire dataset.
Many hidden variables in the tree can be roughly interpreted as topics—h5 as sports, h9 as
computer technology, h13 as medical, etc. Note that some words have multiple meanings
and appear in different topics—e.g., program can be used in the phrase “space program”
as well as “computer program”, and win may indicate the windows operating system or
winning in sports games.

8. Discussion and Conclusion

In this paper, we proposed algorithms to learn a latent tree model from the information
distances of observed variables. Our first algorithm, recursive grouping (RG), identifies
sibling and parent-child relationships and introduces hidden nodes recursively. Our second
algorithm, CLGrouping, maintains a tree in each iteration and adds hidden variables by
locally applying latent-tree learning procedures such as recursive grouping. These algo-
rithms are structurally consistent (and risk consistent as well in the case of Gaussian and
discrete symmetric distributions), and have sample complexity logarithmic in the number
of observed variables for constant depth trees.
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Train Test
Hidden Params

Time (s)
Log-Like BIC Log-Like BIC Total Struct EM

CL -119,013 -119,909 -120,107 -121,003 0 199 3.0 - -
LCM -112,746 -117,288 -116,884 -120,949 1 1,009 3,197.7 - -
BIN -117,172 -118,675 -117,957 -119,460 78 334 1,331.3 - -
NJ -115,319 -116,908 -116,011 -117,600 77 353 802.8 1.3 801.5

RG -118,280 -119,248 -119,181 -120,149 8 215 137.6 7.6 130.0
CLNJ -115,372 -116,987 -116,036 -117,652 80 359 648.0 1.5 646.5
CLRG -115,565 -116,920 -116,199 -117,554 51 301 506.0 1.7 504.3

regCLNJ -117,723 -118,924 -118,606 -119,808 34 267 425.5 251.3 174.2
regCLRG -116,980 -118,119 -117,652 -118,791 27 253 285.7 236.5 49.2

Table 5: Comparison between various algorithms on the newsgroup dataset with a
train/test split.
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Figure 10: Train and test log-likelihood scores of various algorithms on the newsgroup
dataset with a train/test split.

Using simulations on synthetic datasets, we showed that RG performs well when the
number of hidden variables is small, while CLGrouping performs significantly better than
other algorithms when there are many hidden variables in the latent tree. We compared our
algorithms to other EM-based approaches and the neighbor-joining method on real-world
datasets, under both Gaussian and discrete data modeling. Our proposed algorithms show
superior results in both accuracy (measured by KL-divergence and graph distance) and
computational efficiency. In addition, we introduced regularized CLGrouping, which can
learn a latent tree approximation by trading off model complexity (number of hidden nodes)
with data fidelity. This is very relevant for practical implementation on real-world datasets.
In future, we plan to develop a unified framework for learning latent trees where each
random variable (node) may be continuous or discrete. The MATLAB implementation of
our algorithms can be downloaded from the project webpage http://people.csail.mit.

edu/myungjin/latentTree.html.
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Figure 11: Tree structure learned from monthly stock returns using CLNJ.
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Figure 12: Tree structure learned from 20 newsgroup dataset using regCLRG.
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Appendix A. Proofs

A.1 Proof of Lemma 4: Sibling Grouping

We prove statement (i) in Lemma 4 using (12) in Proposition 3. Statement (ii) follows
along similar lines and its proof is omitted for brevity.

If : From the additive property of information distances in (12), if i is a leaf node and
j is its parent, dik = dij + djk and thus Φijk = dij for all k 6= i, j.

Only If: Now assume that Φijk = dij for all k ∈ V \ {i, j}. In order to prove that i
is a leaf node and j is its parent, assume to the contrary, that i and j are not connected
with an edge, then there exists a node u 6= i, j on the path connecting i and j. If u ∈ V ,
then let k = u. Otherwise, let k be an observed node in the subtree away from i and j
(see Figure 13(a)), which exists since Tp ∈ T≥3. By the additive property of information
distances in (12) and the assumption that all distances are positive,

dij = diu + duj > diu − duj = dik − dkj = Φijk

which is a contradiction. If i is not a leaf node in Tp, then there exist a node u 6= i, j such
that (i, u) ∈ Ep. Let k = u if u ∈ V , otherwise, let k be an observed node in the subtree
away from i and j (see Figure 13(b)). Then,

Φijk = dik − djk = −dij < dij ,

which is again a contradiction. Therefore, (i, j) ∈ Ep and i is a leaf node.

A.2 Proof of Theorem 5: Correctness and Computational Complexity of RG

The correctness of RG follows from the following observations: Firstly, from Proposition 3,
for all i, j in the active set Y , the information distances dij can be computed exactly
with Equations (13) and (14). Secondly, at each iteration of RG, the sibling groups within
Y are identified correctly using the information distances by Lemma 4. Since the new parent
node added to a partition that does not contain an observed parent corresponds to a hidden
node (in the original latent tree), a subforest of Tp is recovered at each iteration, and when
|Y | ≤ 2, and the entire latent tree is recovered.

The computational complexity follows from the fact there are a maximum of O(m3)
differences Φijk = dik − djk that we have to compute at each iteration of RG. Furthermore,
there are at most diam(Tp) subsets in the coarsest partition (cf. step 3) of Y at the first
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Figures for Proof of Lemma 4. Dashed red line represent the subtrees away from
i and j. (c) Figure for Proof of Lemma 8(i). (d) Figure for Proof of Lemma 8(iI)

iteration, and the number of subsets reduce at least by 2 from one iteration to the next due
to the assumption that Tp ∈ T≥3. This proves the claim that the computational complexity
is upper bounded by O(diam(Tp)m

3).

A.3 Proof of Lemma 8: Properties of the MST

(i) For an edge (i, j) ∈ Ep such that Sg(i) 6= Sg(j), let Vi\j ⊂ V and Vj\i ⊂ V denote
observed nodes in the subtrees obtained by the removal of edge (i, j), where the former
includes node i and excludes node j and vice versa (see Figure 13(c)). Using part (ii) of the
lemma and the fact that Sg(i) 6= Sg(j), it can be shown that Sg(i) ∈ Vi\j and Sg(j) ∈ Vj\i.
Since (i, j) lies on the unique path from k to l on Tp, for all observed nodes k ∈ Vi\j , l ∈ Vj\i,
we have

dkl = dki + dij + djl ≥ dSg(i),i + dij + dSg(j),j = dSg(i),Sg(j),

where the inequality is from the definition of surrogacy and the final equality uses the fact
that Sg(i) 6= Sg(j). By using the property of the MST that (Sg(i), Sg(j)) is the shortest
edge from Vi\j to Vj\i, we have (18).

(ii) First assume that we have a tie-breaking rule consistent across all hidden nodes so
that if duh = dvh = mini∈V dih and duh′ = dvh′ = mini∈V dih′ then both h and h′ choose the
same surrogate node. Let j ∈ V , h ∈ Sg−1(j), and let u be a node on the path connecting
h and j (see Figure 13(d)). Assume that Sg(u) = k 6= j. If duj > duk, then

dhj = dhu + duj > dhu + duk = dhk,

which is a contradiction since j = Sg(h). If duj = duk, then dhj = dhk, which is again a
contradiction to the consistent tie-breaking rule. Thus, the surrogate node of u is j.

(iii) First we claim that

|Sg−1(i)| ≤ ∆(Tp)
u
l
δ(Tp;V ). (29)

To prove this claim, let γ be the longest (worst-case) graph distance of any hidden node
h ∈ H from its surrogate, i.e.,

γ := max
h∈H
|Path(h, Sg(h); Tp)|. (30)
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From the degree bound, for each i ∈ V , there are at most ∆(Tp)
γ hidden nodes that are

within the graph distance of γ,30 so

|Sg−1(i)| ≤ ∆(Tp)
γ (31)

for all i ∈ V . Let d∗ := maxh∈H dh,Sg(h) be the longest (worst-case) information distance
between a hidden node and its surrogate. From the bounds on the information distances,
lγ ≤ d∗. In addition, for each h ∈ H, let z(h) := argminj∈V |Path((h, j); Tp)| be the
observed node that is closest to h in graph distance. Then, by definition of the effective
depth, dh,Sg(h) ≤ dh,z(h) ≤ uδ for all h ∈ H, and we have d∗ ≤ uδ. Since lγ ≤ d∗ ≤ uδ, we
also have

γ ≤ uδ/l. (32)

Combining this result with (31) establishes the claim in (29). Now consider

∆(MST(V ;D))
(a)

≤ ∆(Tp)max
i∈V
|Sg−1(i)|

(b)

≤ ∆(Tp)
1+ u

l
δ(Tp;V )

where (a) is a result of the application of (18) and (b) results from (29). This completes
the proof of the claim in (19) in Lemma 8.

A.4 Proof of Theorem 9: Correctness and Computational Complexity of
CLBlind

It suffices to show that the Chow-Liu tree MST(V ;d) is a transformation of the true latent
tree Tp (with parameters such that p ∈ P(Tblind)) as follows: contract the edge connecting
each hidden variable h with its surrogate node Sg(h) (one of its children and a leaf by
assumption). Note that the blind transformation on the MST is merely the inverse mapping
of the above. From (18), all the children of a hidden node h, except its surrogate Sg(h),
are neighbors of its surrogate node Sg(h) in MST(V ;d). Moreover, these children of h
which are not surrogates of any hidden nodes are leaf nodes in the MST. Similarly for
two hidden nodes h1, h2 ∈ H such that (h1, h2) ∈ Ep, (Sg(h1), Sg(h2)) ∈ MST(V ;d) from
Lemma 8(i). Hence, CLBlind outputs the correct tree structure Tp. The computational
complexity follows from the fact that the blind transformation is linear in the number of
internal nodes, which is less than the number of observed nodes, and that learning the
Chow-Liu tree takes O(m2 log m) operations.

A.5 Proof of Theorem 10: Correctness and Computational Complexity of
CLRG

We first define some new notations.

Notation: Let I := V \ Leaf(MST(V ;d)) be the set of internal nodes. Let vr ∈ I
be the internal node visited at iteration r, and let Hr be all hidden nodes in the inverse
surrogate set Sg−1(vr), i.e., Hr = Sg−1(vr)\{vr}. Let Ar := nbd[vr; T r−1], and hence Ar is
the node set input to the recursive grouping routine at iteration r, and let RG(Ar,d) be the
output latent tree learned by recursive grouping. Define T r as the tree output at the end

30. The maximum size of the inverse surrogate set in (30) is attained by a ∆(Tp)-ary complete tree.
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Figure 14: Figure for Proof of Theorem 10. (a) Original latent tree. (b) Illustration of
CLGrouping. (c) Illustration of the trees constructed using edge contractions.

of r iterations of CLGrouping. Let V r := {vr+1, vr+2, . . . , v|I|} be the set of internal nodes
that have not yet been visited by CLGrouping at the end of r iterations. Let EC(Tp, V

r) be
the tree constructed using edge contractions as follows: in the latent tree Tp, we contract
edges corresponding to each node u ∈ V r and all hidden nodes in its inverse surrogate set
Sg−1(u). Let Sr be a subtree of EC(Tp, V

r) spanning vr, Hr and their neighbors.
For example, in Figure 14, the original latent tree Tp is shown in Figure 14(a), and

T 0, T 1, T 2 are shown in Figure 14(b). The set of internal nodes is I = {3, 5}. In the
first iteration, v1 = 5, A1 = {1, 3, 4, 5} and H1 = {h1, h2}. In the second iteration, v2 =
3, A2 = {2, 3, 6, h1} and H1 = {h3}. V 0 = {3, 5}, V 1 = {3}, and V 2 = ∅, and in
Figure 14(c), we show EC(Tp, V

0), EC(Tp, V
1), and EC(Tp, V

2). In EC(Tp, V
1), S1 is the

subtree spanning 5, h1, h2 and their neighbors, i.e., {1, 3, 4, 5, h1, h2}. In EC(Tp, V
2), S2

is the subtree spanning 3, h3 and their neighbors, i.e., {2, 3, 6, h1, h3}. Note that T 0 =
EC(Tp, V

0), T 1 = EC(Tp, V
1), and T 2 = EC(Tp, V

2); we show below that this holds for all
CLGrouping iterations in general.

We prove the theorem by induction on the iterations r = 1, . . . , |I| of the CLGrouping
algorithm.

Induction Hypothesis: At the end of k iterations of CLGrouping, the tree obtained is

T k = EC(Tp, V
k), ∀ k = 0, 1, . . . , |I|. (33)

In words, the latent tree after k iterations of CLGrouping can be constructed by contracting
each surrogate node in Tp that has not been visited by CLGrouping with its inverse surrogate
set. Note that V |I| = ∅ and EC(Tp, V

|I|) is equivalent to the original latent tree Tp. Thus,
if the above induction in (33) holds, then the output of CLGrouping T |I| is the original
latent tree.
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Base Step r = 0: The claim in (33) holds since V 0 = I and the input to the CLGrouping
procedure is the Chow-Liu tree MST(V ;D), which is obtained by contracting all surrogate
nodes and their inverse surrogate sets (see Section 5.2).

Induction Step: Assume (33) is true for k = 1, . . . , r − 1. Now consider k = r.

We first compare the two latent trees EC(Tp, V
r) and EC(Tp, V

r−1). By the definition
of EC, if we contract edges with vr and the hidden nodes in its inverse surrogate set Hr

on the tree EC(Tp, V
r), then we obtain EC(Tp, V

r−1), which is equivalent to T r−1 by the
induction assumption. Note that as shown in Figure 14, this transformation is local to the
subtree Sr: contracting vr with Hr on EC(Tp, V

r) transforms Sr into a star graph with vr

at its center and the hidden nodes Hr removed (contracted with vr).

Recall that the CLGrouping procedure replaces the induced subtree of Ar in T r−1 (which
is precisely the star graph mentioned above by the induction hypothesis) with RG(Ar,d)
to obtain T r. Thus, to prove that T r = EC(Tp, V

r), we only need to show that RG reverses
the edge-contraction operations on vr and Hr, that is, the subtree Sr = RG(Ar,d). We
first show that Sr ∈ T≥3, i.e., it is identifiable (minimal) when Ar is the set of visible nodes.
This is because an edge contraction operation does not decrease the degree of any existing
nodes. Since Tp ∈ T≥3, all hidden nodes in EC(Tp, V

r) have degrees equal to or greater
than 3, and since we are including all neighbors of Hr in the subtree Sr, we have Sr ∈ T≥3.
By Theorem 5, RG reconstructs all latent trees in T≥3 and hence, Sr = RG(Ar,d).

The computational complexity follows from the corresponding result in recursive group-
ing. The Chow-Liu tree can be constructed with O(m2 log m) complexity. The recursive
grouping procedure has complexity maxr |Ar|3 and maxr |Ar| ≤ ∆(MST(V ; d̂)).

A.6 Proof of Theorem 11: Consistency and Sample Complexity of Relaxed RG

(i) Structural consistency follows from Theorem 5 and the fact that the ML estimates of
information distances d̂ij approach dij (in probability) for all i, j ∈ V as the number of
samples tends to infinity.

Risk consistency for Gaussian and symmetric discrete distributions follows from struc-
tural consistency. If the structure is correctly recovered, we can use the equations in (13)
and (14) to infer the information distances. Since the distances are in one-to-one corre-
spondence to the correlation coefficients and the crossover probability for Gaussian and
symmetric discrete distribution respectively, the parameters are also consistent. This im-
plies that the KL-divergence between p and p̂n tends to zero (in probability) as the number
of samples n tends to infinity. This completes the proof.

(ii) The theorem follows by using the assumption that the effective depth δ = δ(Tp; V )
is constant. Recall that τ > 0 is the threshold used in relaxed RG (see (21) in Section 6.2).
Let the set of triples (i, j, k) whose pairwise information distances are less than τ apart be
J , i.e., (i, j, k) ∈ J if and only if max{dij , djk, dki} < τ . Since we assume that the true
information distances are uniformly bounded, there exist τ > 0 and some sufficiently small
λ > 0 so that if |Φ̂ijk − Φijk| ≤ λ for all (i, j, k) ∈ J , then RG recovers the correct latent
structure.
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Define the error event Eijk := {|Φ̂ijk − Φijk| > λ}. We note that the probability of the
event Eijk decays exponentially fast, i.e., there exists Jijk > 0 such that for all n ∈ N,

Pr(Eijk) ≤ exp(−nJijk). (34)

The proof of (34) follows readily for Chernoff bounds (Hoeffding, 1958) and is omitted. The
error probability associated to structure learning can be bounded as follows:

Pr
(
h(T̂n) 6= Tp

) (a)

≤ Pr




⋃

(i,j,k)∈J

Eijk




(b)

≤
∑

(i,j,k)∈J

Pr(Eijk)

≤ m3 max
(i,j,k)∈J

Pr(Eijk)
(c)

≤ exp(3 log m) exp

[
−n min

(i,j,k)∈J
Jijk

]
,

where (a) follows from the fact that if the event {h(T̂n) 6= Tp} occurs, then there is at least
one sibling or parent-child relationship that is incorrect, which corresponds to the union of
the events Eijk, i.e., there exists a triple (i, j, k) ∈ J is such that Φ̂ijk differs from Φijk by
more than λ. Inequality (b) follows from the union bound and (c) follows from (34).

Because the information distances are uniformly bounded, there also exists a constant
Jmin > 0 (independent of m) such that min(i,j,k)∈J Jijk ≥ Jmin for all m ∈ N. Hence
for every η > 0, if the number of samples satisfies n > 3(log(m/ 3

√
η))/Jmin, the error

probability is bounded above by η. Let C := 3/Jmin to complete the proof of the sample
complexity result in (26). The proof for the logarithmic sample complexity of distribution
reconstruction for Gaussian and symmetric discrete models follows from the logarithmic
sample complexity result for structure learning and the fact that the information distances
are in a one-to-one correspondence with the correlation coefficients (for Gaussian models)
or crossover probabilities (for symmetric discrete models).

A.7 Proof of Theorem 12: Consistency and Sample Complexity of Relaxed
CLRG

(i) Structural consistency of CLGrouping follows from structural consistency of RG (or
NJ) and the consistency of the Chow-Liu algorithm. Risk consistency of CLGrouping for
Gaussian or symmetric distributions follows from the structural consistency, and the proof
is similar to the proof of Theorem 11(i).

(ii) The input to the CLGrouping procedure T̂CL is the Chow-Liu tree and has O(log m)
sample complexity (Tan et al., 2010, 2011), where m is the size of the tree. This is true for
both discrete and Gaussian data. From Theorem 11, the recursive grouping procedure has
O(log m) sample complexity (for appropriately chosen thresholds) when the input informa-
tion distances are uniformly bounded. In any iteration of the CLGrouping, the information
distances satisfy dij ≤ γu, where γ, defined in (30), is the worst-case graph distance of any
hidden node from its surrogate. Since γ satisfies (32), dij ≤ u2δ/l. If the effective depth
δ = O(1) (as assumed), the distances dij = O(1) and the sample complexity is O(log m).
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